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Abstract

Motivation: The vast number of available sequenced bacterial genomes occasionally exceeds the

facilities of comparative genomic methods or is dominated by a single outbreak strain, and thus a

diverse and representative subset is required. Generation of the reduced subset currently requires

a priori supervised clustering and sequence-only selection of medoid genomic sequences, inde-

pendent of any additional genome metrics or strain attributes.

Results: The Gaussian Genome Representative Selector with Prioritization (GGRaSP) R-package

described below generates a reduced subset of genomes that prioritizes maintaining genomes of

interest to the user as well as minimizing the loss of genetic variation. The package also allows for

unsupervised clustering by modeling the genomic relationships using a Gaussian mixture model

to select an appropriate cluster threshold. We demonstrate the capabilities of GGRaSP by generat-

ing a reduced list of 315 genomes from a genomic dataset of 4600 Escherichia coli genomes, priori-

tizing selection by type strain and by genome completeness.

Availability and implementaion: GGRaSP is available at https://github.com/JCVenterInstitute/

ggrasp/.

Contact: tclarke@jcvi.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing technologies have resulted in a large

number of publicly available microbial genome sequences. The num-

ber of genomes available for comparative genomic analysis can exceed

what can be feasibly visualized or analyzed (Chan et al., 2015;

Chavda et al., 2016; Zaslavsky et al., 2016). Additionally, sequencing

of clonal or nearly clonal bacterial pathogens involved in disease out-

breaks (e.g. Acinetobacter baumannii, Escherichia coli and Klebsiella

pneumoniae) can skew the analyses; therefore, a reduction in genome

redundancy to maximize diversity is necessary (Chan et al., 2015).

One common method to reduce sequence redundancy while minimiz-

ing information loss is to cluster genomes by their nucleotide distance

metrices and from each cluster select one genome, often a medoid (the

genomes with the minimal combined distance to the other genomes in

the cluster) (Chan et al., 2015; Moreno-Hagelsieb et al., 2013), as a

representative. However, these methods require the user to a priori

specify either the number of clusters or a distance cutoff, and they do

not allow the user to use the highest quality (i.e. most complete) repre-

sentative genome for each cluster. Likewise, no dedicated program

exists for loading and selecting these genomes.

2 Materials and methods

Here, we introduce GGRaSP (Gaussian Genome Representative

Selector with Prioritization), a R-package and associated executable
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Rscript program that generates a list of prioritized representative

genomes from either supervised or unsupervised clustering of related

genomes. GGRaSP supports three forms of input to describe the re-

lationship between the genomes: (i) a phylogeny in Newick format;

(ii) a distance or similarity matrix; or (iii) an aligned multiple

FASTA file. GGRaSP uses hierarchical clustering in the hclust R

function or the APE R-package to create phylogenies from (ii) and

(iii) (Paradis et al., 2004). By default, GGRaSP prioritizes medoids

as representative genomes in order to minimize the loss of informa-

tion, but this can result in removal of genomes that contain regions

of interests (e.g. plasmids, antibiotic resistance islands, pathogen-

icity islands and prophage), have a more complete assembly, or are

from a given project. Users can therefore specify criteria of genomes

for selection as representatives by generating a text file containing

tiered ranks of the genomes.

GGRaSP can cluster genomes using supervised methods, includ-

ing specifying the number of clusters or the cluster cut-off distance,

but it also allows for unsupervised clustering by using Gaussian mix-

ture models (GMMs) to identify a cut-off value that separates the

most closely related genomes from the more diverse genomes.

GMMs of sequence distances have previously been used to model

the evolutionary relationship between multiple genomes in metage-

nomes (e.g. Alneberg et al., 2014; Ji et al., 2017), and to model

homologs descending from distinct ancient large-scale duplications

in various eukaryotic organisms (e.g. Cui et al., 2006; Schwager

et al., 2017). The GMM model could be biased or limited by collec-

tions of genomes which contain a single branch of highly related

genomes (for which GGRaSP will select a cutoff that will only clus-

ter that single branch) or a set of genomes that can be best modeled

by a single Gaussian peak (in which case GGRaSP cannot find a

cutoff).

In GGRaSP, GMMs are calculated using expectation maximiza-

tion via mixtools or bgmm (Benaglia et al., 2009; Biecek et al.,

2012). Multiple Gaussian distributions are tested incrementally until

the addition of a distribution is not significant by the Likelihood

Ratio test or exceeds the user defined limit. After the GMM is

cleaned by removing overlapping and low count distributions,

the inflection point between the first two distributions is used as the

cut-off to generate the clusters (see dotted vertical line, Fig. 1). The

default pipeline behavior is described earlier, but many of the parame-

ters for the GMM-based threshold calculation are user-modifiable for

the cases where the GMM varies from the default model.

GGRaSP can output multiple supporting files as is described in

detail on the R help pages including: tab-delineated files with infor-

mation on the clusters; ggplot2-based images showing the GMM,

the initial or the final phylogenies (Wickham, 2009) with colorspace

to determine the hues of GMM and phylogeny shading (Ihaka et al.,

2016); the Newick files for any phylogeny used in GGRaSP; and the

iTOL-formatted text files showing the clusters on the phylogenies

(Letunic and Bork, 2016). A Rscript version of GGRaSP to run on a

command line to facilitate high-throughput analyses is also

provided.

3 Usage scenario

To demonstrate the usefulness of GGRaSP, we downloaded 4600

Escherichia genomes from NCBI RefSeq on 2/2/2017 using the

downloader script in the LOCUST package (Brinkac et al., 2017). A

whole genome-based Average Nucleotide Identity (gANI) matrix

was calculated with Mash (Ondov et al., 2016). The genomes were

ranked, in order by: whether it was a type strain; whether it was

circular; and whether it was complete. The remaining genomes

were ranked by the number of contigs and genes according to the

LOCUST downloader output. The similarity matrix and the ranking

file were input to GGRaSP, which computed a cut-off of 1.09%

identity after modeling 9 Gaussian distributions (10 before clean-

up), leading to a selection of 315 representative genomes in 98 min

and 2s (Fig. 1, Supplementary Fig. S1). When using to a priori cutoff

of 96.5% gANI cutoff suggested for species (Varghese et al., 2015),

only nine clusters were generated with the largest cluster containing

98.9% of the genomes. Ranking the genomes as described earlier

increased the completeness of retained genomes compared to select-

ing the representatives from an unranked set number of complete

genomes (from 6.7 to 25.4%) and mean N50 (from 205 to 556 kb).

All input and output files for these runs and the a priori cutoffs are

available on the GitHub repository.

4 Conclusion

As the number of sequenced genomes available for comparative gen-

omic analysis continues to expand, the need to generate robust rep-

resentative genomic subsets will increase. Building off the statistical,

bioinformatic, and graphical capabilities of R, GGRaSP and the

accompanying Rscript provides a single and customizable platform

to run multiple analyses to generate a subset of representative

genomes. The user can specify clustering parameters and levels of

importance for ranking the genomes, thus allowing for both general-

izable high-throughput and more dataset specific use.
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