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Abstract

Motivation: Protein–protein interactions (PPI) are essential for the function of the cellular

machinery. The rapid growth of protein–protein complexes with known 3D structures offers a

unique opportunity to study PPI to gain crucial insights into protein function and the causes of

many diseases. In particular, it would be extremely useful to compare interaction surfaces of

monomers, as this would enable the pinpointing of potential interaction surfaces based solely on

the monomer structure, without the need to predict the complete complex structure. While there

are many structural alignment algorithms for individual proteins, very few have been developed

for protein interfaces, and none that can align only the interface residues to other interfaces or sur-

faces of interacting monomer subunits in a topology independent (non-sequential) manner.

Results: We present InterComp, a method for topology and sequence-order independent structural

comparisons. The method is general and can be applied to various structural comparison

applications. By representing residues as independent points in space rather than as a sequence of

residues, InterComp can be applied to a wide range of problems including interface–surface com-

parisons and interface–interface comparisons. We demonstrate a use-case by applying InterComp

to find similar protein interfaces on the surface of proteins. We show that InterComp pinpoints the

correct interface for almost half of the targets (283 of 586) when considering the top 10 hits, and for

24% of the top 1, even when no templates can be found with regular sequence-order dependent

structural alignment methods.

Availability and implementation: The source code and the datasets are available at:

http://wallnerlab.org/InterComp.

Contact: bjorn.wallner@liu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are involved in almost all processes in cells and have

evolved to interact with a range of other molecules, such as proteins,

DNA, RNA or small molecules. The study of how proteins interact

with these molecules offers important insights into the function of

proteins, the way they operate, and possible causes of disease

(Alberts, 1998; Jeong et al., 2001; Li et al., 2004).

Proteins interact with other molecules by making direct physical

contact through specific residues on the protein surface. These resi-

dues constitute the interface of a protein. A variety of interfaces

have been experimentally identified and have been found to vary

both in shape and residue composition (Davis and Sali, 2005).

Interfaces can be stable, as for the multiple chains of the ribosome

or transient, as for many proteins involved in signalling pathways.

The same interface can interact with multiple molecules and an

interaction can also require multiple interfaces (Bomsztyk et al.,

2004; Cohen, 2002; Han et al., 2004).

To predict how proteins interact with other molecules it is of

fundamental importance to know where the interfacial residues are

located on their surface. For example, in the case of protein docking,

it has been shown that it is relatively easy to dock proteins using

template-based docking techniques if a similar interaction has been

experimentally determined (Kundrotas et al., 2012; Mirabello and

Wallner, 2017; Tuncbag et al., 2012; Zhang et al., 2013).

A number of template-based docking methods have been devel-

oped in the last few years. Some methods use sequence- or profile-

based alignments to match two target protein sequences to the

sequences of two protein chains that are part of an experimentally

solved quaternary structure (Chen and Skolnick, 2008; Mukherjee

and Zhang, 2011). When a match is found, the structure and mutual
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position of the two protein chains can be used as templates to model

the interaction of the targets. Unfortunately, this approach inherits

the same drawbacks as template-based modelling of protein mono-

mer structures, and when the pairwise sequence identity drops

below 30% it is difficult to obtain a reliable prediction (Aloy et al.,

2003).

Other methods are based on structural templates. The first step

in these methods is usually to build the monomer structure of each

molecule in the complex separately. Then, the structure of each

monomer is aligned to libraries of known complexes, and cases

where the two target monomers are structurally similar to mono-

mers of a known complex can be used as a template for the inter-

action. This improves the coverage of modellable multimers. Since

the structure of proteins is more conserved than the sequence, more

distantly related homologs can be found using structure (Aloy and

Russell, 2002; Mirabello and Wallner, 2017; Zhang et al., 2013).

However, a drawback of the methods based on structure is that

both the target monomers need to be overall structurally similar to

their templates. At the same time, it has been shown that an inter-

action is only specific to the shape and chemical composition of the

patches of residues directly involved in the interaction, i.e. the inter-

facial residues and not the overall structural scaffold. In fact, some

proteins interact through the same type of interface while differing

substantially in their overall structural similarity (Keskin and

Nussinov, 2007).

In addition, the number of different spatial arrangements of resi-

dues in protein interfaces seems to be lower than the number of dif-

ferent protein folds, and studies have shown that the space of

interface structures is already covered to a large degree in the known

structures in the Protein Data Bank (Gao and Skolnick, 2010b;

Kundrotas et al., 2012). Thus, in principle it should be possible to

find template interfaces for most unknown interactions from the

structure of single interacting monomers, particularly if the align-

ment is limited to the interfacial regions of proteins. But aligning

only interface residues is not trivial and methods adopt a mixed ap-

proach to this problem, where full structural alignments are used to

find templates, and the quality of the alignment at the interfacial re-

gion of the template is used to improve the quality of the prediction

(Guerler et al., 2013; Hosur et al., 2011; Mirabello and Wallner,

2017; Zhang et al., 2013). Other methods focus on structurally

aligning a subset of residues of the target structures corresponding

to the interfacial regions of templates as a more flexible way of find-

ing interaction templates whenever the evolutionary relationship be-

tween targets and templates is unclear or non-existent (Gao and

Skolnick, 2010a; Günther et al., 2007; Konc and Jane�zi�c, 2010;

Tuncbag et al., 2011).

However, thus far the full potential and the characteristics of

interfaces have not been explored, and it is still unclear whether

aligning interfaces, rather than full monomers, represents a real im-

provement in the search for interaction templates (Sinha et al.,

2010). In the latest CASP12/CAPRI experiment (2016) the most suc-

cessful groups were still using templates gathered from alignments

of sequences or full structures (Lensink et al., 2017). A possible rea-

son for why the full potential of interfaces has not yet been exploited

can be found by analyzing how current interface alignment methods

are implemented. For example, PRISM (Tuncbag et al., 2011), one

of the leading methods based on interface alignments, does not re-

strict its search for templates to only interfacial residues, but also

includes neighboring residues that are closer than 6 Å to other inter-

facial residues, even if these are buried in the protein core. Although

such an approach helps the alignment procedure by reducing the

fragmentation of the interface, it also restricts the alignment to cases

where basically the secondary structure elements at the interface

level match, and thus it might be less effective at finding evolution-

ary unrelated, yet compatible, templates.

Another approach to find templates is to rely on using structural

alignment programs such as TM-align (Zhang and Skolnick, 2005)

and restricting the alignment to only interfacial residues (Guerler

et al., 2013; Kundrotas and Vakser, 2013). The ability to insert mul-

tiple gaps in structural alignments can help to address the issue of

fragmentation at the interface. However, depending on the level of

fragmentation, TM-align might still fail in retrieving the correct

alignment, simply because it is not designed for dealing with heavily

fragmented coordinate sets. A further limitation of TM-align is that

the sequential order of the residues must be maintained for the algo-

rithm to work correctly, and as such it would not be possible to

align interfaces with different chain topologies.

Similarly, other structural alignment methods that were not

developed explicitly for the alignment of fragmented molecules or

molecules that are radically different in topology, such as MICAN

(Minami et al., 2013) and DaliLite (Holm and Park, 2000), suffer

from these same limitations.

To address the topological issue, iAlign was developed (Gao and

Skolnick, 2010a). It is a protein–protein interface comparison

method based on an extension of the Kabsch algorithm (Kabsch,

1976), also used in TM-align, that will optionally allow for

sequence-order independent comparisons for interfaces. However, it

utilizes a definition of protein interface, where the interfacial resi-

dues are collected across both the protein chains involved in the

interaction. This means that the mutual position of the patches of

interfacial residues must be known before any comparison can be

performed against a template. Thus, iAlign can only be used if the

complete interface is known, e.g. for comparing known interfaces,

and not for searching for interfacial residues on a monomer

structure.

In this study, we present InterComp, designed to perform

sequence-order independent structural comparisons and alignments.

Since the algorithm works on a disjointed set of points in space ra-

ther than on a sequence of residues, the method is general and can

be used for various structural comparisons applications, including

interface–surface and interface–interface comparisons. The main dif-

ference in these applications would be a few size-dependent parame-

ters and the statistics, i.e. P-value calculation. Here, we demonstrate

a case when we apply InterComp to find protein interfaces on mono-

mer structures using interface–surface comparisons. We show that

InterComp can pinpoint the interface location on the surface of pro-

teins, even when structural homologs found by regular structural

alignment methods (e.g. TM-align) have been removed.

2 Materials and methods

2.1 Algorithm
The aim of this study is to build a software that is capable of com-

paring molecules by treating them as a set of independent points on

a surface in a 3D space. This means that the points have no inherent

ordering, which differs from regular structural alignments, where

the atoms follow a fixed order according to the protein sequence.

We use a modified version of a stochastic method for molecular

structure matching (Barakat and Dean, 1991; Kirkpatrick et al.,

1983) and simulated annealing to solve an optimization problem

that maximizes the structural superposition score of two molecules

independently of the chain topology of their covalently bonded net-

work. The objective function is calculated by comparing the Ca
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distance maps of the two molecules. This simplifies the problem,

since distance maps are invariant to rotations and translation there

is no need to apply spatial transformations to superimpose mole-

cules. Instead, the optimal matching between two molecules is found

by permutating the rows and columns in the distance matrix while

maximizing the similarity (see below for details).

2.2 Objective function
In this study, the similarity measure for a given trial alignment be-

tween two molecules a and b with length La¼N and Lb¼M

(N�M), represented as internal distance matrices Da and Db, is a

variant of the Levitt-Gerstein score (Levitt and Gerstein, 1998)

adapted to internal distances:

strdistðDa;DbÞ ¼
1

N2

XN

x¼1

XN

y¼1

1

1þ ðdxy=d0Þ2
(1)

where N is number the of residues in a, and d0 is a parameter that

monitors the slope of the function (optimized d0¼0.5 Å, see

Supplementary Material), dxy is the absolute element (x, y) in the

matrix difference between Da and the first N columns and rows

of Db after it has been permutated to form a trial alignment, see diff

ðD1;D2Þ in Figure 1a. The M�N residues (for x>N and y>N)

from b are not included in the alignment and are thus excluded from

the similarity score.

To also consider the chemical compatibility of the molecules (i.e.

the similarity of the aligned residues), a second scoring component

based on amino acid similarity is used, analogous to the method

used for the structural similarity above:

seqdistðSa; SbÞ ¼
1

N

XN

z¼1

BLOSUMðsa
z ; s

b
z Þ (2)

where N is the number of residues in Sa, Sa and Sb are the aligned

amino acid residues from targets a and b, respectively, and the

BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) is

used to score the similarity for the matching position.

To represent both the structural and sequence similarity, the two

scores are combined using a weighted sum to form the complete ob-

jective function in the simulated annealing procedure:

optðpÞ ¼ arg max
p2PðM;NÞ

Wstr strdistðDa;D
p
bÞ

þ ð1�WstrÞ seqdistðSa; S
p
bÞ

(3)

where Wstr 2 ½0; 1� is the weight for the structural similarity score,

Dp
b is a permutation of the rows/columns in the distance matrix Db

and Sp
b the corresponding amino acids. The default weight of the

structural component of the scoring function, Wstr, has been opti-

mized to 0.5 by trying different values for Wstr in the 0.25–1.75

range (see Supplementary Material).

When the optimal mapping between two molecules has been

found, a structural superposition can be performed by minimizing

the RMSD for the mapping and outputting the two structurally

aligned molecules in PDB format.

2.3 Optimization protocol
The optimization procedure keeps the distance map Da of the small-

est molecule fixed, while trial configurations for the largest map Db

are generated by swapping a random pair of rows/columns. To ac-

count for the difference in size, a number of rows/columns in Db,

equal to the size difference, are always ignored when calculating the

final score. These are initialized randomly, and then sampled natur-

ally by the swapping of rows/columns in Db. Figure 1b shows how a

trial configuration is generated to obtain Dp
b from Db. In addition,

to model mismatches in Da a proportion of the rows/columns from

the smallest molecule, Da can optionally be ignored [null corre-

spondences as defined in Barakat and Dean (1991)]. However, in

our tests this option did not yield better results, most likely because

the structural similarity score [Equation (1)] already down-weight

residues with large deviations (data not shown).

The simulated annealing procedure is used to find the optimal

sorting for Db. At each iteration, two columns in Db are randomly

swapped to form a trial configuration, the score [Equation (3)] is

calculated and the configuration accepted if it improves on the cur-

rent best score. Otherwise, the configuration is accepted with prob-

ability: P ¼ expð�Dscore=TÞ, where the Dscore is the difference

between the trial score and the last accepted score, and T is the

annealing temperature, which is gradually lowered with the number

of iterations.

With regard to the annealing procedure discussed in Barakat and

Dean (1991), the main differences in the current method are the

larger number and length of Markov chains used during the search.

This is necessary since it is difficult to compare molecules containing

many atoms and a large imbalance in the number of atoms between

targets. The longer Markov chains allow the state of the system to

settle as the temperature is decreased in the annealing procedure.

The procedure is said to have converged whenever the acceptance

rate, i.e. the frequency at which a new trial configuration is

accepted, drops below 0.3%. The acceptance rate is reset at the be-

ginning of each Markov chain, and the minimum size of the Markov

chain is set so that the acceptance rate can always drop below the

stopping criteria.

2.4 Datasets
To test and optimize the method, a data set of hetero- or homo-

dimeric protein–protein complexes was constructed. The set is com-

posed of protein chains extracted from a 20% redundancy-reduced

version of PDB compiled by PISCES (Wang and Dunbrack, 2003).

Fig. 1. (a) The similarity score in InterComp is calculated by adding up the ele-

ments in the matrix of deltas diffðDa ;DbÞ. The deltas are the absolute differ-

ence, calculated element by element, between the first N rows/columns in the

distance matrix Da and the matrix Db. (b) A trial alignment is obtained by per-

mutating Db by swapping any two random rows/columns forming the Dp
b
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The reduced PDB contained 2952 protein chains (July 13, 2016)

with resolution 1.6 Å and R-factor 0.25 or better. From this set, any

protein chain involved in one or more dimer interactions was

selected, resulting in 668 protein chains involved in dimer interac-

tions. To avoid including targets with very small interfaces, any

monomer with an interface composed of <20 residues was removed.

In addition, targets with an interface covering >50% of their surface

were also removed, since these targets were deemed too easy and

even a random predictor would score well in our tests. The final set

called T568 consisted of 568 protein monomers. From this, a mono-

mer shells set (S568) was constructed, consisting of the Ca atoms

from residues on the surface of the protein chains defined by

Residue Solvent Accessibility (RSA) for the side-chain >15% calcu-

lated using Naccess (Hubbard and Thornton, 1993).

In addition, a library of template protein interfaces was also

extracted from PDB (May 19, 2016) using the defined biological

units to prevent non-native interfaces from crystal packing (Carugo

and Argos, 1997). If a biological unit is also a multimer, an interface

is defined as residues within 5.0 Å (all-atoms) between the two

monomers. Each resulting interface is characterized by the monomer

from which its residues were extracted and the monomer containing

the counterparts in the interaction. For example, if the PDB 1xyz

contains two chains, A and B, two separate interfaces will be

extracted: 1xyz_AB, containing the Ca atoms of residues from A

that were interacting with any residue in B, and 1xyz_BA, contain-

ing the Ca atoms of residues from B that were interacting with any

residue in A. The resulting template library, called I400k, contained

approximately 400 000 interfaces.

Figure 2a shows an example of a protein monomer (PDB id:

3vsv, chain A, colored in purple) where the shell atoms are high-

lighted as green spheres and the interface atoms (interface id:

3vsv_AD) are highlighted in red. It is important to note that all

the interface atoms are also shell atoms. A stylized version of the

same concept is shown in Figure 2b. In this work, we use

InterComp to align the interface to shells (Fig. 2c). We also

remove obvious structural homologs by applying TM-align to

align interfaces to monomers (Fig. 2d) and monomers to mono-

mers (Fig. 2e).

In order to estimate P-values for the structural score [Equation

(1)], a set of approximately 2 million random alignments between

target shells and biological interfaces was constructed. This set was

constructed by aligning 1790 monomer shells previously described

in Gao and Skolnick (2010a) against the library of biological interfa-

ces (I400k) using InterComp to calculate the structural score. To

avoid including non-random hits, pairs that showed a significant

similarity by TM-align (TM-score <0.35) were filtered out. It is im-

portant to note that this filtering will only remove any high scoring

interface–shell alignment that can be found by TM-align (sequence-

order dependent). It is still possible that the set of random align-

ments may include non-random high scoring matches, interfaces

that are only found when compared in a sequence-order independ-

ent manner using InterComp. Still, these examples will be few com-

pared to the whole random set and should not influence the P-value

calculation too much.

Since the structural score depends heavily on the size of the inter-

face and shell, the random structural scores were fitted to an ex-

treme value distribution for different interface and shell size bins. In

Figure 3, the random distribution for different size bins along with

the fitted distributions are shown. We used the fit to calculate the

P-values for each structural score. By analyzing the first row of plots

in Figure 3, it is clear that whenever interfaces contain <10 residues,

independently of the size of the shell, random scores tend to be high.

Thus, it will be hard to find significant hits for small interfaces,

which makes sense, since smaller interfaces can easily align with

most targets (e.g. single helix to helix alignment).

Since our tests consist of multiple comparisons against many

templates (400 k), using the P-value alone to decide whether the null

hypothesis can be rejected or not would be impossible without

performing the necessary multiple testing correction. In our tests, we

thus adopt the False Discovery Rate (FDR) controlling procedure

(Benjamini and Hochberg, 1995) and derive an FDR adjusted

P-value (q-value) for each P-value (Yekutieli and Benjamini, 1999).

The q-values are then used to decide if a given InterComp score is

significant.

Fig. 2. (a) Protein monomer 3vsv, chain A (purple). The shell atoms are Ca

atoms from residues whose RSA is over 15% (green). The interface atoms are

a subset of the shell atoms whose residues are also closer than 5 Å to any

residue in another protein chain (red). (b) Stylized version of a protein mono-

mer where the shell and interface residues are represented with a dashed

contour line. (c) Example of an interface–shell alignment, where an interface

and a shell extracted from two monomers are aligned. This is the case with

all InterComp alignments in this work. (d) Example of an interface–monomer

alignment, where the interface atoms are aligned against all Ca atoms in a

monomer. (e) Example of a monomer–monomer alignment, where all Ca

atoms from two protein monomers are aligned. The alignments shown in d

and e are performed with TM-align in this work

Fig. 3. Probability density distributions of InterComp scores from random

alignments for different interface (rows) and shell (column) sizes. The empir-

ical probability density is shown in blue and the fitted extreme value distribu-

tion in red
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To test the hypothesis that InterComp is more sensitive than a

sequence-order dependent algorithm, two additional interface sets

of varying difficulty were constructed. The first ‘medium’ set was

built by removing all template hits that would also be matched by

TM-align (TM-score >0.5) for a given target from the T568 set,

using Monomer–Interface alignments, see Figure 2d. The second

‘hard’ set was built by removing all template hits that would also be

matched by TM-align (TM-score >0.5) for a given target from the

T568 set, using Monomer–Monomer alignments, see Figure 2e.

In Figure 4a, schematic representation of all three subsets of tem-

plate interfaces used to test InterComp is shown. It is important to

note that while the I400k is the same for every target in the T568

set, the ‘medium’ and ‘hard’ sets will vary from target to target, de-

pending on the structural similarity found using interface–monomer

and monomer–monomer alignment with TM-align.

2.5 Performance measures
To assess the performance of InterComp, the Positive Predicted

Value (PPV) of interfacial residues is used:

PPV ¼ TP

TPþ FP
(4)

where TP is the number of True Positives, i.e. the number of residues

correctly predicted as part of an interface, and FP is the number of resi-

dues incorrectly predicted as part of an interface. The sum of TP and FP

is also the total number of residues predicted as part of an interface.

3 Results and discussion

3.1 Benchmark: aligning interfaces to surfaces
InterComp was applied to the problem of predicting the interface

residues on the surface of protein chains involved in a dimeric inter-

action. By restricting the search to the surface of proteins (shells) ra-

ther than to full monomers, the complexity of the search was

reduced. This was necessary since the time required for the

algorithm to converge is related to the length of the Markov chains

which increases quadratically with the size of the largest target. The

accuracy should not suffer from this choice, since interfaces are

expected to be on the surface of proteins.

We hypothesize that top-ranking interface templates by q-value

(see c) should correspond to residues involved in interactions with

partner proteins. The location of the interface on each monomer

was found by searching for areas on the surface that are compatible

in shape and chemical composition to interfaces in the library, as

illustrated in Figure 2c.

In detail, InterComp was used to align each monomer target shell

from the S568 set against the I400k interface library (‘easy’ test).

The top 1 and top 10 best matches by q-value are selected and the

performance is assessed by the fraction of correctly predicted inter-

face residues from the target shell, PPV [Equation (4)], see Figures 5

and 6 right panel. To account for the fact that the ‘easy’ test data-

base contains several simple cases that any structural alignment

method would find. The test was made more difficult by removing

any template that would be found using TM-align, a commonly

used sequence-order dependent structural alignment method. Two

difficulty levels were tested: for the first (‘medium’ test) any template

with an interface–monomer TM-score >0.5 was removed (Figs 5

and 6, middle panel); for the second (‘hard’ test) any interface whose

parent monomers had a TM-score >0.5 with the target was

removed, effectively removing any templates that overall were struc-

turally similar to the target (Figs 5 and 6, right panel). In this way, it

is possible to assess if InterComp is capable of finding correct tem-

plate interfaces even when sequence-order dependent structural

alignment methods like TM-align fail at various levels.

There is a clear correlation between the structural score from

InterComp and the PPV for all three tests (Figs 5 and 6). Although

the correlation between InterComp score and PPV for the ‘hard’

test, is less pronounced (Spearman’s rank correlation 0.20–0.24),

InterComp could still find at least the location of an interface with

PPV�0.5 for more than half (287/568) of targets for the top 10 hits

and for 24% (139/568) of the targets for the top 1. Moreover, the

chances of finding the right interface increases as the q-value derived

from the InterComp improves (Fig. 5, purple boxes). For the

Fig. 4. Schematic overview of the different template interface sets that were

used to test InterComp. The full I400k interface set, also called the ‘easy’ set,

is shown in red. The ‘medium’ subset of I400k for a given target is obtained

by removing any template interface that will align with the TM-align,

TM-score of the Interface–Monomer alignment �0.5. The ‘hard’ subset of

I400k is obtained by removing from the ‘medium’ subset any template

interface whose parent monomer is in the same fold as the target monomer,

TM-score of the Monomer–Monomer alignment �0.5

Fig. 5. Distribution of fraction of correctly predicted interface residues (PPV)

in relation to the negative logarithm of the q-value calculated from the top 10

InterComp hits using the ‘easy’ (green), ‘medium’ (orange) and ‘hard’ (purple)

interface sets. The ‘random’ box corresponds to the fraction of interfacial resi-

dues on each target shell and estimates the performance of a predictor that

would pick random shell residues to be part of the interface. The infinity (1)

sign on the x-axis corresponds to q-value¼0
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‘medium’ test, InterComp could correctly identify the correct

interface for 70% (401/568) of targets for the top 10, and 60%

(341/568) for the top 1. On the full I400k template set (excluding

self-hits, ‘easy’ test) InterComp founds at least one interface for

80% of targets (450/568) and 66% (373/568) for the top 10 and top

1 hits, respectively. In all cases, including the ‘hard’ set the number

of correctly identified interfaces is significantly better than would be

expected by a random predictor.

3.2 Alternative interfaces
In some cases, even at very significant q-values the PPV can be low

or close to zero (Fig. 6). The reason for this could of course be that

InterComp predicts completely wrong interfaces in all of these cases.

However, a more likely explanation is some of these very significant

hits are alternative, yet unknown interfaces or interfaces not

included among the test interfaces for the target. An example of a

potential correctly predicted interface that is classified as incorrect

in the benchmark is shown in Figure 7a. The top 1 interface pre-

dicted by InterComp (q-value¼0) for target 4b1y (medium diffi-

culty) is incorrect, since it does not match the interface in its

biological unit. However, the monomer from which the template

interface was extracted superimposes almost perfectly with the tar-

get, as shown in Figure 7b. This highlights a problem with multiple

correct interfaces, and although some can be identified, not all of

them are included in the relevant biological unit.

3.3 Successful examples
A few examples of successful cases from the ‘hard’ tests are shown

in Figure 8. For all of these examples, InterComp is able to find with

Fig. 6. Scatter plots of the PPV in relation to the negative logarithm of the q-value calculated from the InterComp score for the Top 1 and Top 10 hits for each tar-

get shell using the ‘easy’ (green), ‘medium’ (orange) and ‘hard’ (purple) interface sets. The infinity (1) sign on the x-axis corresponds to q-value¼0

Fig. 7. An example of a significant hit that is not part of the target set. (a) The

protein Phactr1 RPEL-3 (4b1y) from organism Oryctolagus cuniculus bound

to G-actin (cyan). The target interface is the binding site for G-actin (short pep-

tide shown in cyan), but InterComp identified another high-confidence inter-

face with template 2p9l1_BF (white spheres). However, the template 2p9l

(Arp2/3 complex from organism Bos taurus) superimpose almost perfectly to

the target (green/grey chains aligned on right side, RMSD: 0.65), with the

interface 2p9l1_BF highlighted in red and the relevant partner for the template

interaction shown in white. In this case, it is likely that the inferface pin-

pointed by InterComp is actually correct, even though it was not part of the

target set
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high accuracy (PPV >0.5) the location of the target interface. This

would not have been possible using regular sequence-order depend-

ent structural alignment methods such as TM-align. In this case, in

fact, the TM-score is <0.5 for aligning the template interface to the

target (0.23–0.35) and for aligning the template interface parent

monomer to the target (0.26–0.42). It is easy to spot the location of

some false positives, where the predicted interface residues (the red

spheres) are quite far away from the interaction surface, e.g. on the

rear side of 1t92A in Figure 8a and 3lagA in Figure 8b. In these

cases, a simple clustering technique could potentially be used to fil-

ter out spurious positives that are unlikely to be part of the interface.

But that is not the focus of this study.

3.4 Computational cost
To give an idea of the computational cost of running InterComp, we

timed the running times using a few typical sizes for target shells

against the full I400k set of template interfaces using a 28 core

2.6 GHz computer with 128GB RAM Linux node. The median

number of residues on the surface of a monomer (shell size) for set

S568 is 129. This corresponds to a monomer of about 200 residues

(e.g. target 2zcmA, 3cxnA) with a runtime of approximately

120 min on 28 cores (56 core hours in total). A run on a target shell

twice as large (250 residues and 400 residues in total in the

monomer) will need approximately 13 h to be completed (364 core

hours in total). Overall, a full test on all 568 targets in the S568 set

against I400k takes approximately 100 000 core hours, i.e. 176 core

hours per target on average.

4 Conclusions

We have presented InterComp, a topology and sequence-order inde-

pendent structural alignment method. We have shown that

InterComp is capable of performing protein surface to interface

alignment and can be used to pinpoint potential interaction points

on the surface of proteins, even when regular structural alignment

methods that are dependent on the sequence order fail. The fact that

InterComp can align monomer structures to one side of a complete

interface is extremely useful, and should leverage the use of struc-

tural information in protein–protein docking by providing novel

templates with similar interfaces but no overall structural similar-

ities. However, the interface–surface alignment case demonstrated

here is only one of many potential use-cases for InterComp. For in-

stance, we are currently recalculating the statistics to apply the

method to interface–interface, and small molecule comparisons,

which will enable clustering of interfaces and improvements to vir-

tual screening of small molecules.

Fig. 8. Successful predictions from the ‘hard’ category with the corresponding InterComp score, q-value, M-M TM-score (Monomer–Monomer TM-score), M-I

TM-score (Monomer–Interface TM-score) and PPV. The target chains are shown in yellow with the predicted interfacial residues highlighted by red spheres, tem-

plate chains are shown in cyan with the aligned interface residues highlighted by white spheres. The interacting target partners are showed in transparent orange

and template partners are showed in transparent magenta. (a) Target 1t92A, Pili subunit structure of N-terminal truncated pseudopilin PulG from Klebsiella oxy-

toca. Template 4uxz1_BC, crystal Structure of a Membrane Diacylglycerol Kinase from organism Escherichia coli. (b) Target 3lagA, Double-stranded beta-helix,

crystal structure of a functionally unknown protein RPA4178 from Rhodopseudomonas palustris. Template 3kvp1_AD, Beta-propeller-like, crystal structure of

uncharacterized protein ymzC precursor from Bacillus subtilis. (c) Target 4dt5A, Single-stranded left-handed beta-helix, crystal structure of antifreeze protein

from Rhagium inquisitor. Template 3cgl1_DC, GFP-like protein dsFP483, cyan fluorescent protein from organism Discosoma striata. (d) Target 5b08A, Alpha-beta

plaits, polyketide cyclase OAC from organism Cannabis sativa. Template 3oay2_LM Immunoglobulin-like beta-sandwich, HIV glycan shield from Homo sapiens
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discussions.

Funding

This work was supported by Swedish Research Council grants 2012-5270,

2016-05369, The Swedish e-Science Research Center, and the Foundation

Blanceflor Boncompagni Ludovisi, nee Bildt.

Conflict of Interest: none declared.

References

Alberts,B. (1998) The cell as a collection of protein machines: preparing the

next generation of molecular biologists. Cell, 92, 291–294.

Aloy,P. and Russell,R.B. (2002) Interrogating protein interaction networks

through structural biology. Proc. Natl. Acad. Sci. USA, 99, 5896–5901.

Aloy,P. et al. (2003) The relationship between sequence and interaction diver-

gence in proteins. J. Mol. Biol., 332, 989–998.

Barakat,M.T. and Dean,P.M. (1991) Molecular structure matching by simu-

lated annealing. III. The incorporation of null correspondences into the

matching problem. J. Comput.-Aided Mol. Des., 5, 107–117.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57,

289–300.

Bomsztyk,K. et al. (2004) hnRNP K: one protein multiple processes.

Bioessays, 26, 629–638.

Carugo,O. and Argos,P. (1997) Protein–protein crystal-packing contacts.

Protein Sci., 6, 2261–2263.

Chen,H. and Skolnick,J. (2008) M-TASSER: an algorithm for protein quater-

nary structure prediction. Biophys. J., 94, 918–928.

Cohen,P.T. (2002) Protein phosphatase 1-targeted in many directions. J. Cell

Sci., 115, 241–256.

Davis,F.P. and Sali,A. (2005) PIBASE: a comprehensive database of structural-

ly defined protein interfaces. Bioinformatics, 21, 1901–1907.

Gao,M. and Skolnick,J. (2010) iAlign: a method for the structural comparison

of protein–protein interfaces. Bioinformatics, 26, 2259–2265.

Gao,M. and Skolnick,J. (2010) Structural space of protein–protein interfaces

is degenerate, close to complete, and highly connected. Proc. Natl. Acad.

Sci. USA, 107, 22517–22522.

Guerler,A. et al. (2013) Mapping monomeric threading to protein–protein

structure prediction. J. Chem. Inf. Model., 53, 717–725.

Günther,S. et al. (2007) Docking without docking: iSEARCH-prediction of

interactions using known interfaces. Proteins, 69, 839–844.

Han,J.-D.J. et al. (2004) Evidence for dynamically organized modularity in the

yeast protein–protein interaction network. Nature, 430, 88.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA, 89, 10915–10919.

Holm,L. and Park,J. (2000) DaliLite workbench for protein structure com-

parison. Bioinformatics, 16, 566–567.

Hosur,R. et al. (2011) iWRAP: an interface threading approach with applica-

tion to prediction of cancer-related protein–protein interactions. J. Mol.

Biol., 405, 1295–1310.

Hubbard,S.J. and Thornton,J.M. (1993) ‘Naccess’. Computer Program,

Department of Biochemistry and Molecular Biology, University College,

London.

Jeong,H. et al. (2001) Lethality and centrality in protein networks. Nature,

411, 41–42.

Kabsch,W. (1976) A solution for the best rotation to relate two sets of vectors.

Acta Crystallogr. A, 32, 922–923.

Keskin,O. and Nussinov,R. (2007) Similar binding sites and different partners:

implications to shared proteins in cellular pathways. Structure, 15, 341–354.

Kirkpatrick,S. et al. (1983) Optimization by simulated annealing. Science,

220, 671–680.

Konc,J. and Jane�zi�c,D. (2010) ProBiS algorithm for detection of structurally

similar protein binding sites by local structural alignment. Bioinformatics,

26, 1160–1168.

Kundrotas,P.J. and Vakser,I.A. (2013) Global and local structural similarity in

protein–protein complexes: implications for template-based docking.

Proteins, 81, 2137–2142.

Kundrotas,P.J. et al. (2012) Templates are available to model nearly all com-

plexes of structurally characterized proteins. Proc. Natl. Acad. Sci. USA,

109, 9438–9441.

Lensink,M.F. et al. (2017) The challenge of modeling protein assemblies: the

CASP12-CAPRI experiment. Proteins, 86, 257–273.

Levitt,M. and Gerstein,M. (1998) A unified statistical framework for sequence

comparison and structure comparison. Proc. Natl. Acad. Sci. USA, 95,

5913–5920.

Li,S. et al. (2004) A map of the interactome network of the metazoan C. ele-

gans. Science, 303, 540–543.

Minami,S. et al. (2013) MICAN: a protein structure alignment algorithm that

can handle multiple-chains, inverse alignments, C(a) only models, alternative

alignments, and non-sequential alignments. BMC Bioinformatics, 14, 24.

Mirabello,C. and Wallner,B. (2017) Interpred: a pipeline to identify and model

protein–protein interactions. Proteins, 85, 1159–1170.

Mukherjee,S. and Zhang,Y. (2011) Protein–protein complex structure predic-

tions by multimeric threading and template recombination. Structure, 19,

955–966.

Sinha,R. et al. (2010) Docking by structural similarity at protein–protein inter-

faces. Proteins, 78, 3235–3241.

Tuncbag,N. et al. (2011) Predicting protein–protein interactions on a prote-

ome scale by matching evolutionary and structural similarities at interfaces

using PRISM. Nat. Protoc., 6, 1341–1354.

Tuncbag,N. et al. (2012) Fast and accurate modeling of protein–protein inter-

actions by combining template-interface-based docking with flexible refine-

ment. Proteins, 80, 1239–1249.

Wang,G. and Dunbrack,R.L. (2003) PISCES: a protein sequence culling ser-

ver. Bioinformatics, 19, 1589–1591.

Yekutieli,D. and Benjamini,Y. (1999) Resampling-based false discovery rate

controlling multiple test procedures for correlated test statistics. J. Stat.

Plan. Infer., 82, 171–196.

Zhang,Q.C. et al. (2013) PrePPI: a structure-informed database of

protein–protein interactions. Nucleic Acids Res., 41, D828–D833.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment al-

gorithm based on the TM-score. Nucleic Acids Res., 33, 2302–2309.

i794 C.Mirabello and B.Wallner

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i787/5093254 by guest on 20 April 2024


