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Abstract

Motivation: Learning probabilistic graphs over mixed data is an important way to combine gene

expression and clinical disease data. Leveraging the existing, yet imperfect, information in pathway

databases for mixed graphical model (MGM) learning is an understudied problem with tremen-

dous potential applications in systems medicine, the problems of which often involve high-

dimensional data.

Results: We present a new method, piMGM, which can learn with accuracy the structure of prob-

abilistic graphs over mixed data by appropriately incorporating priors from multiple experts with

different degrees of reliability. We show that piMGM accurately scores the reliability of prior infor-

mation from a given expert even at low sample sizes. The reliability scores can be used to deter-

mine active pathways in healthy and disease samples. We tested piMGM on both simulated and

real data from TCGA, and we found that its performance is not affected by unreliable priors. We

demonstrate the applicability of piMGM by successfully using prior information to identify pathway

components that are important in breast cancer and improve cancer subtype classification.

Availability and implementation: http://www.benoslab.pitt.edu/manatakisECCB2018.html

Contact: dimitris@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We undoubtedly live in the era of data deluge. Massive amounts of

data from different social and scientific fields are collected daily and

stored in databases. Recently, many research efforts are focused on

developing computationally efficient data analysis methods that can

mine and reveal ‘hidden’ patterns, trends and associations in such

large datasets. Probabilistic Graphical Models (PGMs) offer an at-

tractive solution to this problem since they can: i) discover and ele-

gantly represent (as a graph) the conditional (in)dependences

between variables in a dataset; ii) estimate the joint probability dis-

tribution of the data (Koller and Friedman, 2009); information that

can be used to develop predictive models of any variable in the

network.

Many algorithms have been proposed for learning the underlying

structure of PGMs (Koller and Friedman, 2009; Spirtes et al., 2000).

One of the most popular is graphical lasso (glasso) (Friedman,

2008), which can quickly learn the underlying graph structure.

Although glasso can only handle datasets of continuous variables,

recent extensions can learn PGMs over mixed data (hereby refer-

enced as Mixed Graphical Models—MGM) (Lee and Hastie, 2015;

Sedgewick et al., 2016; Tsagris, 2017). MGMs are gaining popular-

ity in biomedical research due to their ability to reveal complex asso-

ciations among multimodal variables that jointly influence the

disease or biological mechanism that generates the mixed dataset.

However, due to the fact that most biomedical datasets are high-

dimensional (i.e. small number of samples, large number of varia-

bles), their accuracy depends on the selection of regularization

(sparsity) parameters, which control the sparsity of the graph (in

terms of the number of edges) (Liu, 2010). Incorporating prior infor-

mation during structure learning can significantly improve accuracy

by biasing the computed structure on known biological associations.

During the last few years several methods have been proposed to

incorporate prior information in graph structures learned over con-

tinuous variables. (Wang et al., 2013) proposed a modified glasso al-

gorithm, named prior information dependent lasso (plasso), which

aims to incorporate prior knowledge about the presence of the
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graph’s edges. To achieve this, the authors use two sparsity parame-

ters: one for the edges for which no prior exists and one for those

with prior information. To select the values of these parameters, the

authors proposed two modified versions of the Bayesian

Information Criterion. Both BIC versions introduce extra parame-

ters (i.e. minimum average node degree and proportion of the true

edges in the given prior information) where their values must be

‘guessed’ by the user. However, in real world applications, it is im-

possible for the user to know the ‘true’ values of these parameters, a

fact that reduces the algorithm’s accuracy. Other modified versions

of the glasso which can incorporate prior information into structure

learning have been proposed by (Li and Jackson, 2015) and (Zuo

et al., 2017). Their prior incorporation methods are based on the es-

timation of a confidence p � p matrix (where p is the number of

variables) using prior information. The elements of this matrix take

their values in [0-1], where a 1(0) indicates that there is (not) a con-

nection between the corresponding pair of variables. To select the

value of the glasso’s sparsity parameter, they propose the BIC and

Cross-Validation (CV) methods. However, (Liu, 2010) in their sem-

inal work have shown that although BIC and CV perform well in

low dimensional data (i.e. small number of variables) they tend to

perform poorly in high dimensional data.

We note that all these methods can incorporate prior informa-

tion into graph structure learning over datasets with continuous

only variables. In this paper we propose a new method, piMGM

(prior incorporation Mixed Graphical Model), which incorporates

prior information over mixed datasets, addresses the limitations of

the aforementioned methods, and introduces the following unique

aspects: (i) Incorporates prior information from multiple sources

that may have different degrees of reliability. (ii) Introduces a novel

probabilistic scheme to evaluate the reliability of each prior informa-

tion source. (iii) Introduces a weighted scheme that fuses the multi-

source information and represents it in a probabilistic way, which is

used by the proposed prior information incorporation method. (iv)

Introduces a novel score function for the selection of the regulariza-

tion parameter values, which not only favors the incorporation of

the most reliable prior information, but it also produces stable

graphs (i.e. graphs insensitive to data variations). To the best of our

knowledge this is the first method that attempts to incorporate prior

information to graph structure learning over mixed data.

2 Materials and methods

2.1 Preliminaries
Suppose that we have a dataset S of size n � p where n is the num-

ber of samples and p is the number of random variables. Using this

dataset, the objective of a graph structure learning algorithm is to

find a graph G ¼ ðV; EÞ that best represents the conditional depend-

ences between the random variables. In graphical models, the nodes

V of the graph, have a 1-1 correspondence to the random variables,

and the presence of an edge �k 2 E indicates the conditional depend-

ence relation between the kth pair of random variables. Throughout

this paper, we assume that there is a fixed ordering over node pairs

and we denote the set of corresponding edges as E ¼ f�1; �2; . . . ; �Kg
where K ¼ jVjðjVj�1Þ

2 (number of edges in a fully connected graph with

no self-loops). We assume that �k ¼ 1ð0Þ if an edge is present (ab-

sent) between the kth kthpair of nodes in the graph.

We denote the sources of prior information as T ¼ ft1; t2; . . . ; tRg.
The prior information of a source tr where r ¼ f1; 2; . . . ;Rg is given as

a vector ~Mtr
of size K, where each of its elements mtr

k , describes the

probability of the corresponding edge (�k) to appear in the graph

structure. For the edges with no available prior information about their

presence, we assign a Null value to the corresponding vector elements.

In general, each source tr 2 T may provide information for a different

subset of edges. wptr (with prior) and nptr (no prior) denote the set of

edges for which the source tr does or does not provide prior informa-

tion, respectively. It holds that E ¼ wptr [ nptr 8 tr. Finally, we use wp

(np) to denote the set of edges for which we have (no) prior

information.

2.2 Learning the structure of graphical models over

mixed variables
In Sedgewick et al. (2016), the authors proposed a novel algorithm

named CausalMGM which accurately learns the structure of graph-

ical models over mixed variables (continuous and discrete), and it is

an improvement over the work of Lee and Hastie (2015).

CausalMGM’s novelties are: a) It utilizes edge type-specific regular-

ization parameters fkcc; kcd; kddg for the model [see Equation (1)] for

continuous-continuous, continuous-discrete and discrete-discrete

edges, respectively, that control the sparsity (in terms of the number

of edges) of the estimated graph structure. b) It proposes a computa-

tionally efficient subsampling method (StEPS) to select the value of

these parameters which give the most stable graph structure, as high

stability graphs should be closer to the true graphs.

Assume that we have p Gaussian variables x, and q categorical y.

Equations (1)–(4) (Sedgewick et al., 2016) summarizes the MGM al-

gorithm. The subscripts {1, 2, F} in Equation (1) denote the l1,

Euclidean and Frobenius norms respectively. bxu represents the

interaction term between the continuous variables xx and xu; qxt

represent the interaction term between continuous variable xx and

discrete variable yt; !ft represents the interaction term between dis-

crete variables yf and yt. H is shorthand for all the model parame-

ters (i.e. fbxu; ax; qxt;!ftg). (Sedgewick et al., 2016) describes the

MGM algorithm in detail.

Parameter estimation in the MGM model is done via:

argminH
~lðHÞ þ kcc

X
u<x

jbxuj1 þ kcd

X
x;t

kqxtk2 þ kdd

X
f< t

k!ftkF

(1)

where ~lðHÞ is the negative log pseudo-likelihood:

~lðHÞ ¼ �
Xp

x¼1

logpðxxjxnx; y; HÞ �
Xq

f¼1

logpðyfjx; ynf; HÞ (2)

and pðx; y; HÞ is a pairwise Markov random field.

pðx; y; HÞ / exp

 Xp

x¼1

Xp

u¼1

�1

2
bxuxxxu þ

Xp

x¼1

axxx

þ
Xp

x¼1

Xq

t¼1

qxtðytÞxx þ
Xq

t¼1

Xq

f¼1

!ftðyf; ytÞ
!

(3)

2.3 Estimating prior information dependent MGM

structures
In this section we present our new method, the prior information de-

pendent MGM (piMGM), which appropriately combines the infor-

mation from observational data with information provided by

multiple sources (e.g. pathways, domain experts, etc.) with different

confidence.

piMGM extends the framework of the original MGM [see

Equation (1)] by replacing each of the norms in Equation (1) with

two norms [see Equation (4)]: kwp
xx and knp

xx where xx 2 fcc; cd; ddg

piMGM: incorporating priors in learning mixed graphical models i849
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and wp and np designate the edge sets with prior or no prior infor-

mation, respectively. This new scheme provides greater flexibility to

the model, since it independently controls the sparsity of the corre-

sponding types of graph’s edges (cc, cd and dd) for which we do or

do not have prior information.

argminH
~lðHÞ þ knp

cc

X
u<x

jbxuj
np
1 þ kwp

cc

X
u<x

jbxuj
wp
1

þ knp
cd

X
x;t

kqxtk
np
2 þ kwp

cd

X
x;t

kqxtk
wp
2

þ knp
dd

X
f< t

k!ftknp
F þ kwp

dd

X
f< t

k!ftknp
F

(4)

To estimate the values of the regularization parameters kwp
xx and

knp
xx, we proposed the following procedure: We randomly draw Q

subsamples fS1; S2; . . . ; SQg of size b ð1�b�n Þ from the dataset S

(Fig. 1). Unlike bootstrapping, each subsample is drawn without

replacement. Since there is a total of

�
n
b

�
different subsamples,

Q should satisfy Q�
�

n
b

�
. For each subsample Sq (q 2

f1;2; . . . ;Qg) we run the CausalMGM algorithm for a range of

regularization parameter values K ¼ fk1; k2; . . . ; kJg. In order to re-

duce the time complexity of the method, we assume independence

between the three different edge types (cc, cd, dd) as in Sedgewick

et al. (2016), and so for each run we use the same value for all three

regularization parameters kcc ¼ kcd ¼ kdd. These runs generate Gi

graph structures, where i 2 f1;2; . . . ;Q � Jg (Fig. 1). It is worth men-

tioning that CausalMGM runs Q � J times independently, and there-

fore it can be easily parallelized for better efficiency.

2.4 Data-driven estimation of the probabilities of pres-

ence of the graph edges
Using the graph structures that have been estimated using the regu-

larization parameter values kj 2 K (see Fig. 1), we calculate the

probability of presence of an edge �k 2 E as:

Pp
k ¼

Nk

Q � J (5)

where Nk denotes the number of times �k appears in the Q � J
graphs.

2.4.1 Selecting regularization parameters knp
xx for the edges with

no prior

For each regularization parameter value kj 2 K we have estimated Q

graphs (Fig. 1). Using the structures of the Q graphs, for each edge

�k 2 E, we count the number of times, z
kj

k �Q, that �k appears in the

Q graphs. We assume z
kj

k follows the Binomial distribution

BðQ;Pp
kÞ, where Pp

k is the probability for edge �k to appear in a

graph structure, and we calculate the probability h
kj

k for edge �k to

appear exactly z
kj

k times in the Q graphs.

h
kj

k ¼
�

Q

z
kj

k

�
� ðPp

kÞ
z
kj

k � ð1� Pp
kÞ

Q�z
kj

k (6)

The higher the h
kj

k , the better the regularization parameter

kj ‘explains’ the presence of the edge �k in the Q graphs. Next, for

each edge �k 2 np, we calculate the relative frequency of its presence

in the Q graphs as follows:

f
kj

k ¼
z
kj

k

Q
(7)

Using the f
kj

k we then calculate,

g
kj

k ¼ 4 � f kj

k � ð1� f
kj

k Þ

where

0� g
kj

k �1 (8)

The algebraic expression in Equation (8) allows us to answer the

following question for each edge �k 2 np: ‘how often do the Q

graphs disagree on the presence of �k?’ Therefore, g
kj

k can be consid-

ered as a measure of instability for an edge �k in the Q graphs (Liu,

2010).

After applying this procedure for all edges �k 2 np, we calculate

for each kj 2 K the following score:

score
kj

np ¼
Xjnpj

k¼1

h
kj

k � ð1� g
kj

k Þ (9)

We select as knp
xx the kj 2 K that maximizes the score function

[Equation (9)]. This selection is justified if we observe that the value

of the score function increases with an increase in the probabilities

h
kj

k , and decreases with an increase in the instabilities g
kj

k . Therefore,

the k that maximizes the score function defines a stable graph struc-

ture that ‘best explains’ the presence of the edges for which no prior

information exists.

2.4.2 Selecting regularization parameters kwp
xx for the edges with

priors

In this section we present the selection procedure of the regulariza-

tion parameters kwp
xx , which control the incorporation of the prior in-

formation to the graphical model. First, we present the simplest

case, where the prior information is provided by a single source ðt1Þ,
and then we continue with the general case, where multiple sources

T ¼ ft1; t2; . . . ; tRg, provide information about different subsets of

edges fwpt1 ;wpt2 ; . . . ;wptRg when each source may have a different

degree of reliability for the given dataset. For example, if we con-

sider the KEGG pathways as different sources of prior information,

then not all pathways are expected to be active (relevant) in a given

gene expression dataset. Thus, the information included in the ‘irrel-

evant’ pathways will be ‘unreliable’ for this dataset.

Quantifying reliability of the prior information source(s): The

probability mtr

k (see Section 2.1) can be used to answer the question

‘how many times edge �k is expected to appear in Q graphs?’ In our

case, for each kj 2 K we have Q graphs and therefore the answer is:

wtr

k ¼ mtr

k �Q (10)

The estimated probability of presence Pp
k [see equation (5)] of an

edge �k 2 wptr , allows us to answer the same question. As discussed

Fig. 1. The Q � J graphical models. For each regularization parameter value k,

we estimate Q graphical models’ structures

i850 D.V.Manatakis et al.
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in Section 2.4.1, we assume that the number of times where an edge

�k 2 wptr will appear across the Q graphs is described by a Binomial

distribution BðQ; Pp
kÞ. It has been proven that Normal distributions

are very good approximations to Binomial distributions (Papoulis

and Pillai, 2002). Therefore, to make our calculations computation-

ally tractable, we approximate the corresponding Binomial distribu-

tions with normal distributions Dk ¼ Nðld
k;Vard

kÞ with parameters:

ld
k ¼ P

p
k �Q

Vard
k ¼ P

p
k � ð1� P

p
kÞ �Q

(11)

Using wtr

k and ld
k, we calculate:

str ¼

Xjwptr j
k¼1
jwtr

k � ld
kj

jwptr j (12)

Equation (12) measures the confidence we have on the source tr.

More specifically, the larger the str the less ‘confident’ we are about

source tr. For the derivation of this formula, we assumed that the

estimations wtr

k of the source tr, should be similar to the estimations

ld
k, which are derived from the data (i.e. the Q � J graphs, Fig. 1).

However, prior information datasets may inform about different

numbers of edges, which can affect the value of s. For example, having

prior information about the presence of only three edges may match

the edges learned by a graphical model just by chance, even if this prior

information is not well represented in the data (i.e. unreliable prior). To

mitigate this, we learn an empirical null distribution similarly to GSEA

(Subramanian et al., 2005). Given a prior source (e.g. a pathway) tr

with jwptr j edges, we randomly permute the labels of the nodes in these

edges (randomly select two other nodes to be in the edge) N ¼ 10 000

times to produce a distribution of random pathways of equal size. For

each pathway r in this distribution, we compute str exactly as specified

in Equation (12). Then, the empirical P-value of the prior tr is the per-

centage of values in the null distribution greater than str . To accurately

measure str independently of the size of the prior, we normalize str by

dividing by the mean of the empirical null distribution. With this, P-

value we can quantify whether we believe a prior source is well repre-

sented by the system under study.

Using Equations (10) and (12), we can model the prior informa-

tion of a source tr, with a normal distribution Utr

k ¼ N
�
wtr

k ; ðstr Þ2
�

,

which describes the number of times where an edge �k 2 wptr is

expected to appear in Q graphs. Note that if more than one source of

prior information is available (T ¼ ft1; t2; . . . ; tRg), then each source

is modeled by a different normal distribution Uti

k (i ¼ f1; 2; . . . ;Rg).
Selecting kwp

xx using prior information from a single source: If we have

a single source of prior information (t1), then for each edge �k 2 wp we

estimate two normal distributions: Dk ¼ Nðld
k ;Vard

kÞ, which is esti-

mated from the data; and Ut1

k ¼ N
�
wt1

k ; ðst1 Þ2
�

which constitutes the t1

prior information. By applying Bayes theorem, it can be proved

(Bromiley) that since the prior Ut1

k and the likelihood Dk are both

Normal distributions, the posterior will also be Normal Nðl�k;Var�kÞ
with parameters given by the following closed form expressions:

l�k ¼
ld

k � ðst1 Þ2 þ wt1

k � Vard
k

ðst1 Þ2 þ Vard
k

; Var�k ¼
ðst1 Þ2 � Vard

k

ðst1 Þ2 þVard
k

(13)

The posterior distribution Nðl�k;Var�kÞ is derived from the fusion

of the information provided by source t1 (prior information) and the

data, and describes our updated ‘belief’ about the probability of an

edge �k 2 wp to appear a specific number of times in the Q estimated

graph structures.

For each regularization parameter value kj 2 K we have estimated

Q graphs (see Fig. 1). For each edge �k 2 wp, we count the number of

times z
kj

k �Q that it appears in the Q graphs. From the corresponding

posterior distributions, we can calculate for each edge �k 2 wp, the

probability h
kj

k , to appear exactly z
kj

k times in the Q graphs

h
kj

k ¼
ðz

kj

k
þe

z
kj

k
�e

Nðxjl�k;Var�kÞdx (14)

where e is an arbitrarily small positive quantity.

Using Equations (7) and (8) we calculate for each edge in �k 2 wp,

the relative frequency f
kj

k of its presence in the Q graphs, and its corre-

sponding instability g
kj

k . After applying this procedure for all edges �k
2 wp we calculate for each kj 2 K the following score:

score
kj

wp ¼
Xjwpj

k¼1

h
kj

k � ð1� g
kj

k Þ (15)

We select as kwp
xx the value of kj 2 K where the score function

takes its maximum value. The justification of this selection is similar

to the one provided in Section 2.4.1.

Selecting kwp
xx using prior information from multiple sources: In this

section we present the selection procedure of kwp
xx when prior information

is provided by multiple sources T ¼ ft1; t2; . . . ; tRg. Using Equations

(10)–(12) we can estimate for each source tr 2 T the normal distributions

Utr

k that correspond to the edges �k 2 wptr . For each edge �k we have

jTkj � jTj normal distributions that were extracted by the information of

the sources Tk � T that contain prior information for edge �k.

Similar to the single source case, for each edge �k 2 wp we esti-

mate the following normal distributions: Dk ¼ Nðld
k;Vard

kÞ from

the data; and jTkj normal distributions Utr

k ¼ N
�
wtr

k ; ðstr Þ2
�

, which

are estimated using the prior information of the sources tr 2 Tk. To

combine their information, we propose the following procedure:

First, we calculate the mixture of the jTkj normal distributions

[black curve in Fig. 2a]

UkðxÞ ¼
XjTk j

i¼1

wti � N
�
wtr

k ; ðs
tr Þ2
�

(16)

To calculate the mixture weights wti , we apply the following

expressions:

wti ¼ atiXjTk j
i¼1

ati

where ati ¼

XjTk j
i¼1

sti

sti
(17)

For the calculation of the weights (wti ), we use the assumption

that the normal distributions with the smaller variances ðsti Þ2 should

Fig. 2. (a–c) The steps of the proposed information fusion method. (a) The

prior information (normal distribution fU t1

k ;U
t2

k ;U
t3

k g) of the 3 sources

ðft1; t2; t3g- blue, green and red curves) and their corresponding mixture Uk

(black curve). (b) The normal distribution FKL
k (black dashed curve) that has

minimum Kullback-Leibler divergence from the mixture Uk (black continuous

curve). (c) The posterior distribution which consists of the information fusion

of the probability distribution Dk and the FKL
k (see text for details)
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be trusted more. Note that
XjTk j

i¼1
wti ¼ 1. Next, by applying vari-

ational calculus, we approximate the Gaussian mixture UkðxÞ using

a single normal distribution FKL
k ¼ NðlKL

k ;VarKL
k Þ which minimizes

the Kullback-Leibler (KL) discrimination (maximizes the similarity)

from the Gaussian mixture. The parameters of the normal distribu-

tion FKL
k are calculated using the following analytical algebraic

expressions (Runnalls, 2007):

lKL
k ¼

XjTk j

i¼1

wti � wti

k (18)

VarKL
k ¼

XjTk j

i¼1

wti �
�
ðsti Þ2 þ ðlKL

k � wti

kÞ
2
�

(19)

After applying this procedure for all edges �k 2 wp we have 2

normal distributions for each edge �k; a) the Dk ¼ Nðld
k;Vard

kÞ,
which is estimated using the given dataset [pink dashed curve in Fig.

2c], and b) the distribution FKL
k ¼ NðlKL

k ;VarKL
k Þ [black dashed

curve in Fig. 2c]. Thus, for each edge �k 2 wp, the parameters of the

corresponding posterior distribution Nðl�k;Var�kÞ can be calculated

using the expressions in Equation (13). Next, using Equations (14)

and (15) we select the corresponding regularization parameter kwp
xx

as described in the single source case.

2.4.3 Limiting the selection range of the regularization parameters

In this section we propose a procedure that limits the selection range

K of the regularization parameters values, which help us to further

improve the estimation of the graph structure. In many real world

applications (e.g. biological, clinical, etc.) we expect the underlying

graphical structures (e.g. gene networks) to be sparse (Wang et al.,

2013). Our method exploits this by limiting the selection range

(K� � K) of regularization parameter values such as to avoid the se-

lection of parameter values that result in very dense or very sparse

graph structures.

For each regularization parameter value fk1; k2; . . . ; kJg we cal-

culate the average number of edges that appear across the Q graph

structures, estimated using the Sq (q 2 f1; 2; . . . ;Qg) subsamples

(see Fig. 1). In Figure 3 each red circle corresponds to the average

number of edges that appear across the Q graphs for a specific regu-

larization parameter value. The curve formed by the red circles in

Figure 3a indicates that as k increases (x-axis) the number of edges

(y-axis) in the graphs monotonically decreases. Note that for small

(large) values of k the estimated graphs are almost fully connected

(empty). Below we propose to use a new procedure to limit the selec-

tion range of the regularization parameter values.

We traverse the monotonically decreasing curve one point at a

time (‘current point’) and fit two lines. The first line [blue line in

Fig. 3a] is fitted to the points that belong on the left side of the

‘current point’ and the second line [green line in Fig. 3a] is fitted to

the points that belong on the right side of the ‘current point’. The

‘current point’ that corresponds to the minimum sum of the corre-

sponding lines’ fit errors becomes a ‘knee-point’ [see ‘knee-point’ 1

in Fig. 3a]. We apply this procedure to the points that are located on

the left and right side of ‘knee-point’ 1 [see Fig. 3b and c] and we de-

termine the ‘knee-point’ 2 and 3 respectively. The projections of the

‘knee-points’ 2 and 3 on the x-axis [see Fig. 3d], determine the ‘new’

selection range (K� ¼ fk1; k2; . . . ; kJ� g � K) of the regularization

parameter values which will be used by our regularization parameter

selection method (see Section 2.4).

3 Results

To demonstrate the value of piMGM we used simulated and real

data. In the latter case, we also address two important biological

problems: i) pathway scoring on expression datasets and ii) network

structure inference for understanding of genomic drivers of disease

subtype.

3.1 Description of data sources
Simulated data. Simulated datasets of varying sizes were generated

using the Lee and Hastie simulation method from Tetrad VI (http://

www.phil.cmu.edu/tetrad/). First, a Directed Acyclic Graph (DAG)

was generated uniformly at random with number of edges equal to

the number of nodes. Each node was randomly assigned to be a con-

tinuous or categorical variable with equal probability. This DAG

was parameterized with random edge weights in the range:

[�1.5, �0.5], [0.5, 1.5]. Independent samples were generated

from this parameterized graph to produce a final dataset, according

to the model from Lee and Hastie (2015). To compare the estimated

graph learned by piMGM, the DAG was converted to its equivalent

‘moralized’ undirected version, which maintains the independence

relationships present in the original DAG (Cowell, 1999).

Prior sources were generated based on the ground truth DAG

using two different methods depending on whether we wanted to

evaluate learning of the full network or scoring the prior sources

(also called ‘pathways’ here to highlight their relevance to biological

pathways in gene expression data). Specifically, for the pathway

experiments: we defined a ‘pathway’ i as a random selection of Ei

edges, where Ei is in the range [10, 2N] and N is the number of

edges in the data generating moralized graph. We then randomly

selected Ti edges from the ground truth graph to include in the

pathway, where. Ti is randomly selected from the range: [1,

minðEi; NÞ]. Thus, the reliability of pathway i is Ti=Ei, which meas-

ures what percent of a pathway’s edges are present in the data gener-

ating graph. Finally, we randomly selected Ei-Ti ‘false’ edges from

all edges not in the data generating graph. These pathways were

given as ‘hard priors’ which means that the prior information given

by a pathway only contained the values null and 1 corresponding to

the absence or presence of an edge in the pathway, respectively.

For the full network inference experiments, it was assumed that

all prior sources provide information about the same edges, but with

Fig. 3. (a–c) The ‘knee-points’ and the estimated lines (blue and green) that

minimize the corresponding sums of fit errors. (d) The new range of the regu-

larization parameter values K� � K determined by the ‘knee-points’ 2 and 3

on the x-axis (black line segments)
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different reliability, to test the ability of piMGM to successfully syn-

thesize prior information from multiple sources. We tested cases

where the sources only provide information for the true edges in the

ground truth graph and for edges uniformly at random. The number

of edges provided, and the number of experts were experimentally

controlled. The edges for which the experts give prior information

were determined randomly, and the information itself was a ‘soft

prior’ with a real numbered value ranging from (0.6, 1) for a reliable

source, and from (0, 1) for an unreliable source; in contrast to the

‘hard priors’ from the previous pathway experiments.

Biological data. We used the TCGA-BRCA RNA-Seq expression

dataset to demonstrate the applicability of piMGM. This data

included gene expression measurements from 800 breast tumor sam-

ples and 95 matched normal samples. Prior information consisted of

33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

(Kanehisa and Goto, 2000), which were selected by the same criteria

as a related pathway enrichment method (Ma et al., 2016), but

excluding those with fewer than 10 expressed genes or fewer than

20 gene–gene interactions. The gene–gene interactions encoded in

each pathway were used as a ‘hard prior’ with a value of 1 if the

edge existed in the pathway, and no information otherwise. 645

genes were included in the final dataset, consisting of the union of

the genes in the 33 pathways, excluding 2735 consistently lowly

expressed genes or those without a variance of at least 0.5.

To evaluate the usefulness of full network inference for classifi-

cation, breast cancer subtype information for each tumor sample

was obtained from Jiang et al. (2016). This determination was used

as a ground truth for classification experiments, and the fifty

genes commonly used to compute this classification on microarray

data, Prediction Analysis of Microarray 50 (PAM50) was used as a

prior information source. In this case, the edges between each gene

in the PAM50 list and the categorical variable denoting subtype was

given a prior probability of 1, while all other edges had no prior

information.

3.2 piMGM for pathway activation assessment
We first evaluate how well piMGM determines the state of activa-

tion of given pathways using both simulated and real data.

3.2.1 piMGM correctly estimates the reliability of pathways

Figure 4 presents the results of applying piMGM on 25 simulated

datasets with 100 variables each, 15 pathways for prior informa-

tion, and 200 samples. The figure demonstrates the strong inverse

correlation between the predicted deviance [Equation (12)] of each

simulated pathway from the ground truth and its reliability score

that piMGM calculated. The major outliers from the trendline are

those pathways that provide information about relatively few gene–

gene interaction edges. This is because if a pathway has few

interactions, they might match spurious correlations in the dataset

by chance. Thus, it is prudent to consider both the reliability score

of the pathway as well as its P-value to determine its reliability.

On a graph by graph basis, the mean correlation between s and the

reliability score across all 25 datasets was 0.992 (60.006), further

confirming the accuracy of the piMGM model for each individual

dataset.

3.2.2 Identifying gene pathways associated with breast cancer

subtypes

As a first application of piMGM on biological data, we used it to

identify de-regulated pathways in breast cancer patients from TCGA.

In this application, we used the pathways as ‘experts’ and we scored

their ‘reliability’ on tumor and normal samples. ‘Reliable’ pathways

are those that are active in the given sample dataset (low P-value;

Section 2.4.2), and ‘unreliable’ are those that are not. We selected 33

pathways from KEGG for this test, as we describe in the Section 2.

piMGM found eight of the 33 pathways to be differentially regu-

lated (FDR-corrected P-value<0.1) between receptor positive

(Luminal A and B subtypes) and receptor negative (HER2 and

Triple-Negative) subtypes (Table 1). Five of the eight pathways were

also found to be differentially expressed by a related method,

NetGSA, so we further examined the three remaining pathways to

understand what piMGM found mechanistically.

We found that both the T and B cell receptor signaling pathways

shared a common subnetwork that was driving their identification

by piMGM as significant. This network included genes AKT3,

PIK3CA, PIK3CD and PIK3R1 (Fig. 5, left), all of which are genes

of significance in cancer. Several studies have found changes in the

regulation of AKT3 in receptor negative breast cancer (Chin et al.,

2014; Nakatani et al., 1999) and one recent study has found changes

in expression of PI3K/Akt across receptor subtypes (Cizkova et al.,

2013), consistent with our identified subnetwork An interesting

finding from this pathway is that the direct connection between

PIK3CA and AKT3 is more present in receptor negative tumors.

PIK3CA is an oncogene whose aberrant activation results in AKT3

activation which can lead to uncontrolled cell proliferation and

tumorigenesis (Hernandez-Aya and Gonzalez-Angulo, 2011). It is

possible that this subnetwork elucidates distinct mechanisms of

AKT3 overactivation in different breast cancer subtypes. piMGM

also identified a NFATC1 subnetwork of T cell receptor pathway as

critical for breast cancer development (Fig. 5, right). NFAT1 is a nu-

clear factor that alters T-cell transcription in response to T-cell re-

ceptor stimulation, but NFAT1 mRNA is also found in breast tissue

Fig. 4. Association between the true reliability of priors (experts) and the devi-

ance (s) of the data from the priors as calculated by piMGM

Table 1. Differentially regulated pathways by receptor status (posi-

tive: Luminal A and B; negative: HER2, triple negative) in Breast

Cancer (FDR< 0.1)

Pathway P-value

(þ)

P-value

(�)

Reference

Glutathione metabolism 0.507 0.091 Lien et al. (2016)

Glycolysis 0.000 0.129 Schramm et al. (2010)

Neurotrophin signaling 0.702 0.074 Patani et al. (2011)

Notch signaling 0.000 0.223 Hossain et al. (2017)

Pentose phosphate 0.025 0.239 Cha et al. (2017)

B Cell Receptor signaling 0.141 0.004 Hill et al. (2011)

Insulin signaling 0.098 0.384 (see text)

T cell receptor signaling 0.507 0.058 (see text)

Note: Pathways in italics found by piMGM but not NetGSA. The signifi-

cance of the bold values is an FDR< 0.1.
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(Safran et al., 2010). A recent study found that the NFAT1 pathway

was active in triple negative breast cancer but not in other subtypes,

and that the pathway was critical for metastasis and tumorigenesis

(Quang et al., 2015). Though KEGG labels these pathways as

lymphocyte related pathways (T and B cells), the reason these

pathways were found to be differentially regulated was due to the

subcomponents critical to breast cancer progression in different

subtypes.

The third pathway not corroborated by NetGSA was the insulin

signaling pathway. Studies have shown that estrogen receptor posi-

tive cells can have increased proliferation in the presence of estrogen

due to upregulation of the insulin receptor (IRS1), which binds insu-

lin growth factor (IGF) (Molloy et al., 2000). Several of the most di-

vergent connections found by piMGM involve IRS1 in the insulin

signaling pathway (Supplementary Material).

All eight differentially regulated pathways appear to have an

established relationship to breast tumor subtype. piMGM not only

identified them as significant, but it also identified which parts of

them are the most significant in breast cancer subtyping (Fig. 5),

thus pointing to the mechanisms that influence this subtyping.

Follow up studies can further investigate the specific mechanisms

implied by piMGM networks. We should also note that piMGM

tends to identify fewer differentially regulated pathways than con-

ventional analysis techniques, but this is largely because piMGM

uses stronger conditions than typical pathway enrichment methods.

piMGM uses independence changes between genes while conven-

tional enrichment methods ignore network connectivity and focus

on gene expression changes. Individual gene expression changes

may be related to established pathways, but independence relation-

ships query the precise network information stored in KEGG path-

ways to determine differential regulation.

3.3 piMGM for full network inference
Next, we present piMGM results on simulated and biological data

for inference of the full network structure on datasets with mixed

continuous and categorical variables. Again, the prior information

sets (i.e. ‘experts’) can have different degrees of reliability.

3.3.1 piMGM learns accurate networks despite unreliable priors

To evaluate the ability of piMGM to incorporate prior information,

we compared piMGM with several baseline approaches on simu-

lated data we generated as described in Section 2. We used four

baseline methods for comparison (Fig. 6, left columns, 0% prior).

STARS (Liu, 2010) is a network stability approach that tunes a sin-

gle regularization parameter for MGM without prior information.

STEPS is an extension of this approach that uses three regularization

parameters, one for each edge type (Continuous-Continuous,

Continuous-Discrete, Discrete-Discrete). The Oracle graph is MGM

run with the set of three regularization parameters that maximize

accuracy, and Oracle One k is an equivalent approach using only

one regularization parameter for the whole network.

We compared the baseline results with piMGM runs with five

prior information sources, varying both the percent of edges with

prior information (10%, 30%, 60%) and the number of reliable

experts among those 5 (reliable experts: 1, 3 or all 5). Figure 6 dis-

plays the amount of prior information (x axis) vs. the F1 score of the

learned graph compared to the ground truth (moralized) graph. As

expected, increase in the ratio of reliable to unreliable priors

increases overall accuracy (F1 score) for all percentages of edges

with prior information. We also see that in most cases the F1 score

is not affected by unreliable priors even when 4 out of 5 experts are

unreliable (Fig. 6, yellow bars; compared to STARS and STEPS

methods with no prior). Interestingly, if prior information is avail-

able for 10% of edges, piMGM is equivalent to approaches with no

priors, regardless of the reliability of the information sources.

However, if 60% of edges have prior information, piMGM outper-

forms even the Oracle graph given that the prior information is

somewhat reliable (P<0.01). If the prior information is highly unre-

liable, with 30% prior, piMGM does not have degrading perform-

ance, and it maintains at least the quality that it would have had

without any prior (P>0.05). This is desirable in cases where

prior information may or may not be well represented in the system

under study. When ‘experts’ provide priors for edges that are

not in the data generating graph the results are nearly identical

(Supplementary Material).

3.3.2 Prior knowledge helps stabilize predictive models

Our final experiment evaluates the ability of piMGM to recover net-

work structure from biomedical mixed data. Since ground truth for

the whole network is difficult to come by in biological systems due

to incomplete understanding of them, we evaluated our approach

by determining how well the learned network can be used for a clas-

sification task. One of the advantages of graphical models is that

you can use the variables that are connected to a target variable in

Fig. 6. Accuracy of piMGM inferred networks vs. other approaches on simu-

lated data with 100 variables, 500 samples and 5 prior sources. The datasets

differ in the percent of edges with prior information (0, 10, 30, 60%) and the

number of reliable priors (1, 3, 5 out of 5). The blue bars represent the F1

score accuracy of the baseline networks (no prior)

Fig. 5. Edge differences between receptor positive (luminal A and B) and re-

ceptor negative (HER2, triple negative) breast tumor samples for a common

sub-network of the T cell and B cell receptor signaling pathways (left) and the

T cell receptor signaling pathway (right). Red edges are those that are more

stable in receptor positive breast cancer, while green refers to receptor nega-

tive breast cancer. AKT3 and NFATC1 regulation appear to be driving the

change between these phenotypic groups
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the network (the Markov blanket, if the network is directed) to pre-

dict the target variable. Breast cancer consists of four subtypes with

varying prognoses: triple negative, Luminal A, Luminal B and

HER2. Using nested 10X cross validation, we tested the ability of

our piMGM graphs to correctly classify the four subtypes. We com-

pared classification accuracies on networks learned using four sets

of priors: No prior information, five random sets of fifty genes each

connected to the Subtype variable (Random Prior—unreliable), the

PAM50 set of genes (PAM 50 Prior) and the same five random sets

along with the PAM50 gene set (Both Priors). We ran piMGM with

each of these sources as prior information and inferred a full net-

work from data consisting of the 50 genes in PAM50 along with the

genes used in Section 3.2.2. We then used the genes connected to the

subtype variable as features in a multiclass logistic regression

model.

We found that there is no significant difference in classification

accuracy between each of the four models (Fig. 7, left columns).

This means that piMGM is not affected by random (unreliable) pri-

ors even when they are the only source of information piMGM gets.

On the other hand, incorporating appropriate prior information

results into models that require significantly fewer features to

achieve the same accuracy (Fig. 7, right columns). In addition,

piMGM found the PAM50 gene set to be active in the BRCA dataset

of tumor samples (P<0.01) unlike the random gene sets (P>0.1).

piMGM does not have a reduction in classification performance

when given a random prior source, further proving that this method

is resilient to unreliable prior information sources on real data.

4 Discussion

We have presented a novel method to incorporate prior knowledge

for learning mixed graphical models; and two applications of this

method to genomic and clinical data. Our method, piMGM, which

can incorporate multiple priors with varying degrees of reliability,

consists of three steps, each of which presents a new algorithmic

novelty. Step-1, we developed a novel reliability score [Equation

(12)] that quantifies how well the prior information from a given ex-

pert fits the data. The reliability score has an interesting application:

it can be used to assess whether a gene pathway is active in the data.

Our analysis on TCGA data identified several previously known and

novel pathways implicated in breast cancer. Step-2, we developed a

novel method that uses the reliability score to weight and merge

prior information from multiple experts into a single prior distribu-

tion for each edge. Step-3, we presented a new approach to incorp-

orate prior information in the learning of probabilistic graphs over

mixed data types. This method uses separate regularization parame-

ters for edges with and without priors. The regularization parame-

ters are also edge type specific to allow more flexibility and reduce

false positive edges as we have shown in (Sedgewick et al., 2016). In

simulated data we showed that piMGM is not affected by unreliable

priors, and its performance increases with increasing amounts of

prior information. When 60% of edges have informative (i.e. rela-

tively reliable) priors, piMGM outperforms the Oracle graph with-

out prior. The efficiency of piMGM in analyzing omics and clinical

data was demonstrated in a classification example, where the varia-

bles surrounding the breast subtype variable in the learned graph

were used in classification. We compared classification efficiencies

of graphs learned with no priors, PAM50 genes, random priors and

combination of PAM50 and random priors. We showed that the

classification accuracy of piMGM is not affected by the inclusion of

random priors (Fig. 7), but including PAM50 priors reduces the

number of variables required for efficient classification. All parame-

ters of piMGM can be ‘best’ selected using a subsampling procedure

presented in Section 2.3, thus eliminating arbitrary choices.

Furthermore, this procedure is parallelizable for increased

efficiency.

To the best of our knowledge, this is the first method to incorp-

orate unreliable prior information sources to infer a full network

from mixed data and the first method to analyze pathway activation

in single phenotype samples. We believe that piMGM is a valuable

method that will help future analyses of datasets with mixed data

types (continuous and discrete variables). In systems biology re-

search, it will not only identify deregulated pathways, but it will

also generate hypotheses about specific edges that are deregulated to

guide intervention experiments.
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