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Abstract

Motivation: Liquid Chromatography (LC) followed by tandem Mass Spectrometry (MS/MS) is one

of the predominant methods for metabolite identification. In recent years, machine learning has

started to transform the analysis of tandem mass spectra and the identification of small molecules.

In contrast, LC data is rarely used to improve metabolite identification, despite numerous published

methods for retention time prediction using machine learning.

Results: We present a machine learning method for predicting the retention order of molecules; that

is, the order in which molecules elute from the LC column. Our method has important advantages over

previous approaches: We show that retention order is much better conserved between instruments

than retention time. To this end, our method can be trained using retention time measurements from

different LC systems and configurations without tedious pre-processing, significantly increasing the

amount of available training data. Our experiments demonstrate that retention order prediction is an ef-

fective way to learn retention behaviour of molecules from heterogeneous retention time data. Finally,

we demonstrate how retention order prediction and MS/MS-based scores can be combined for more

accurate metabolite identifications when analyzing a complete LC-MS/MS run.

Availability and implementation: Implementation of the method is available at https://version.

aalto.fi/gitlab/bache1/retention_order_prediction.git.

Contact: eric.bach@aalto.fi

1 Introduction

In metabolomics, one of the most pressing challenges is the identifica-

tion of the metabolites present in a sample. At present, the vast major-

ity of metabolites in an untargeted metabolomics experiment are left

unidentified; this is sometimes called the ‘dark matter’ of metabolism

(Aksenov et al., 2017; da Silva et al., 2015). Liquid chromatography

(LC) is widely used in untargeted metabolomics studies in combin-

ation with tandem mass spectrometry (MS/MS), due to the outstand-

ing sensitivity of this combination and the applicability to a wide

range of molecules. In short, LC separates metabolites by their reten-

tion time, MS separates the metabolites by their mass (per charge,

m/z); finally, MS/MS selects a precursor mass, fragments the molecule

and records masses of its fragments (Fig. 1). Retention times can be

valuable orthogonal information (Hu et al., 2018; Ruttkies et al.,

2016) for metabolite identification, e.g. by restricting the set of candi-

date identifications (Aicheler et al., 2015; Creek et al., 2011) or the

distinction of diastereoisomers which have similar tandem mass spec-

tra but different retention times (Stanstrup et al., 2015).

In recent years, machine learning has arisen as a method to predict

the metabolite identities from MS/MS spectra Allen et al., 2014;

Brouard et al., 2016, 2017; Dührkop et al., 2015; Heinonen et al.,

2012; Shen et al., 2014 and produced a step-change in metabolite

identification accuracy (Schymanski et al., 2017). These methods are

trained with a large number of reference spectra of single compounds

and are effective in scoring and ranking the candidate molecular struc-

tures. However, these methods currently do not make use of retention

time information. This is partly explained by the challenges posed by

the available data: First, publicly available datasets are system specific

and relatively small. Secondly, retention times are poorly comparable

between different chromatographic systems and configurations, e.g.

systems operated by different laboratories. Translating retention times

of one system to another corresponds to a non-linear mapping, which

needs to be estimated for each pair of systems and configurations sep-

arately (Stanstrup et al., 2015).

Retention time prediction has been addressed in numerous publi-

cations over the last decades, see Heberger (2007); Kaliszan (2007)
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for reviews. Quantitative-Structure-Retention-Relationship (QSRR)

models use machine learning to predict retention times from molecu-

lar structures. Physicochemical properties derived from the structure

or molecular fingerprints are commonly used as features, and regres-

sion is commonly used as prediction model (Aicheler et al., 2015;

Creek et al., 2011; Falchi et al., 2016). QSRR models are mostly

trained for one particular target chromatographic system, and pre-

dictions can be made only for this system. Few approaches try to

overcome this problem, for example, by including descriptors of the

chromatographic system into the prediction model: D’Archivio et al.

(2012) used the retention behavior of standard compounds for this

purpose. However, this requires that in a particular target chroma-

tographic system those compounds have been measured as well. A

different approach are retention time projection methods, which es-

tablish mappings between the retention times of different chromato-

graphic system. Predictions for new molecules in a particular target

chromatographic system are restricted to those molecules which

have been measured with another chromatographic system already

(Stanstrup et al., 2015).

In this paper, we propose a new way to predict LC retention be-

haviour of molecules that overcomes the above limitations, and to

use the predictions to improve metabolite identification in combin-

ation with an MS/MS based predictor (Fig. 2). Our proposed reten-

tion order prediction method belongs to the so called preference

learning or learning to rank family (Elisseeff and Weston, 2002;

Fürnkranz and Hüllermeier, 2011), where the goal is to predict the

preference order or ranking of the objects. In our case, the prediction

target is the order in which different molecules elute from the LC

column. We learn from the retention time measurements of different

chromatographic systems how pairs of molecules are generally

ordered by the LC systems. Our framework predicts this retention

order directly from molecular structure, and these predictions can be

made for any chromatographic system without the need of first

mapping the retention time to a common time scale. In the subse-

quent phase, the predicted retention orders are combined with the

scored candidate lists output by an MS/MS-based predictor, in our

case, IOKR (Brouard et al., 2016). Computing the combined score

efficiently entails solving a shortest path problem using dynamic

programming in a graph defined by the IOKR candidate lists sorted

by the retention time and connected by edges reflecting the retention

order prediction. In summary, the contributions of the paper are as

follows:

i. We introduce the concept of retention order prediction for LC,

and provide a machine learning framework for learning reten-

tion orders of molecules.

ii. We introduce a dynamic programming methodology for

integrating retention order and MS/MS based scores to jointly

identify a set of metabolites arising, e.g. in a metabolomics

experiment and show that the approach can significantly im-

prove the metabolite identification accuracy.

iii. We show that counting fingerprints have superior performance

in retention order prediction over standard binary fingerprints.

iv. We demonstrate that the retention order framework is able to

benefit from retention time measurements arising from hetero-

geneous LC systems and configurations.

2 Materials and methods

In this section, we first describe the methods used to learn the reten-

tion order of molecules. Subsequently, we present our framework

for the integration of MS/MS based scores and predicted retention

orders.

2.1 Notation
In this paper, we use the following notations: m denotes a molecule

belonging to a setM; x denotes a tandem mass spectrum belonging

to a set X and t 2 Rþ denotes the retention time of a molecule. The

molecules have been measured using different chromatographic sys-

tems belonging to the set S. We define the set S � S as the subset of

chromatographic systems contained in our training data.

We consider two kernel functions km :M�M! R and

kx : X �X ! R that measure, respectively, the similarity between

molecules and similarity between MS/MS spectra. The kernel km

(resp. kx) is associated with a feature space Fm (resp. F x) and a fea-

ture map / :M! Fm (resp. u : X ! F x) that embeds molecules

into the feature space Fm (resp. F x). Through the next sections we

use the following shortcuts: /i ¼ /ðmiÞ and ui ¼ uðxiÞ.

Fig. 2. The flowchart showing the usage of retention time, MS/MS, and mo-

lecular property data sources to provide MS/MS based scores for candidate

molecules and retention order predictions for pairs of molecules, as well as

the dynamic programming module to integrate the two kind of predictors

into a joint identification for a set of metabolites

Fig. 1. Schematic representation of retention times, MS, and MS/MS data in a

metabolomics experiment. MS/MS spectra are measured at high-intensity

peaks in the (retention time, mass per charge) space
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2.2 Predicting retention behaviour of molecules with

machine learning
In this section, we describe two methods that can be used to predict

the retention behaviour (retention time or retention order) of mole-

cules in the LC column. For retention order prediction, we introduce

the use of RankSVM (Elisseeff and Weston, 2002; Joachims, 2002)

method and for retention time prediction we apply the Support

Vector Regression method (SVR; Smola and Schölkopf, 2004;

Vapnik, 1995) which has already been used in that application by

Aicheler et al. (2015).

2.2.1 Predicting retention order with ranking support vector

machine (RankSVM)

RankSVM (Elisseeff and Weston, 2002) can be used to predict pair-

wise preferences between different objects and has been successfully

applied in many order learning applications, e.g. in document rank-

ing for search engines (Joachims, 2002). We use RankSVM to pre-

dict pairwise preferences between molecules. We define a molecule

mi as preferred over mj if its retention time ti is smaller than tj, i.e. it

mi elutes before mj from the chromatographic system. The set of

pairwise preferences between molecules for each chromatographic

system s 2 S can be defined as:

PðsÞ ¼ fði; jÞjsi ¼ sj ¼ s; ti < tjg;

where si and sj denote the systems used to, respectively, measure the

molecules mi and mj. The union of pairwise preferences extracted

from the whole training dataset is defined as:

P ¼ [
s2S
PðsÞ; (1)

and p is defined as p ¼ jPj.
RankSVM learns a function f :M�M! f�1; 1g that predicts

whether ti< tj given two molecules mi and mj. The values of this

function f can be written as: f ðmi;mjÞ ¼ signðwTð/ðmjÞ � /ðmiÞÞÞ,
where / is a feature map embedding molecules to the feature space

Fm and w contains the feature weights to be learned.

The RankSVM solves the following optimization problem:

min
w;n

1

2
wTwþ C

X
ði;jÞ2P

nij

s:t: wTð/j � /iÞ�1� nij; 8ði; jÞ 2 P

nij�0; 8ði; jÞ 2 P;

(2)

with C>0 being a regularization parameter controlling the trade-

off between fitting and regularization. By solving the Problem (2) we

learn w such that:

wT/i < wT/j; ifði; jÞ 2 P:

The dual formulation of the optimization problem (2) is the

following:

max
a
� 1

2
aTQaþ 1Ta

s:t: 0� aij�C;8ði; jÞ 2 P;

with a 2 R
p; Q 2 R

p�p and 1 2 R
p being a vector of ones. Q is a

pairwise kernel matrix defined as:

½Q�ði;jÞ;ðu;vÞ ¼ ð/j � /iÞTð/v � /uÞ

¼ /T
j /v � /T

j /u � /T
i /v þ /T

i /u:

During the optimization we do not need to keep the whole Q

matrix in the memory. Instead, we can decompose the matrix as fol-

lows (Kuo et al., 2014):

Q ¼ AKmAT ;

where Km 2 R
‘�‘ is the kernel matrix associated with the kernel

function km and is defined as: ½Km�i;j ¼ /T
i /j, and ‘ corresponds to

the number of molecular structures in the training dataset. The ma-

trix A 2 R
p�‘ is defined as:

½A�ði;jÞ;� ¼ ð0; . . . ; 0; �1|{z}
i:

; 0; . . . ; 0; þ1|{z}
j:

; 0; . . . ; 0Þ;

and can be represented as sparse matrix during the optimization.

2.2.2 Predicting retention times with support vector regression (SVR)

We compare the RankSVM order prediction with the known

retention time prediction approach. The two tasks are related in the

sense that retention time predictions can be easily mapped to reten-

tion order predictions (but not vice versa): Given a regression model

f ðmÞ ¼ t̂ we can infer the predicted order of two molecules mi and

mj by comparing their predicted retention times t̂ i and t̂ j. In this

paper we use a supervised machine learning approach called

Support Vector Regression (SVR; Smola and Schölkopf, 2004;

Vapnik, 1995) to learn a retention time predictor. The prediction

model of this model is given as f ðmÞ ¼ wT/ðmÞ þ b, where b is the

bias-term of the regression model. SVR has been already successfully

applied in this application by Aicheler et al. (2015). The SVR solves

the following optimization problem:

min
w;n;n	 ;b

1

2
wTwþ C

X‘

i¼1

ðni þ n	i Þ

s:t: ti �wT/i � b� �þ ni

wT/i þ b� ti� �þ n	i

ni; n
	
i �0;

where C>0 is a parameter controlling the trade-off between fitting and

regularization and � defines the width of a tube around the prediction

function in which prediction errors do not contribute to the cost.

2.2.3 Kernels for molecular structures

The kernels we use as similarity measure should take the inherent

structure of molecules into account. Here, we use binary and count-

ing molecular fingerprints to represent molecules. Fingerprints are

vectors whose components correspond to sub-structures of mole-

cules, e.g. rings or bonds. When binary fingerprints are used,

only the presence or absence of a sub-structure is encoded. In this

paper, we have also implemented counting fingerprints, which are

integer vectors encoding the number of occurrences of a sub-

structure.

In the experiments, we consider two different kernels depending

on which fingerprint type we use. For binary fingerprints, we use the

Tanimoto kernel (Ralaivola et al., 2005):

kmðmi;mjÞ ¼
bðmiÞTbðmjÞ

bðmiÞTbðmiÞ þ bðmjÞTbðmjÞ � bðmiÞTbðmjÞ
;

where bðmiÞ and bðmjÞ are the binary fingerprints of the molecules

mi and mj. For counting fingerprints we use the MinMax kernel

(Ralaivola et al., 2005):
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kmðmi;mjÞ ¼

XNsub

s¼1
min ðcsðmiÞ; csðmjÞÞXNsub

s¼1
max ðcsðmiÞ; csðmjÞÞ

;

where cðmiÞ and cðmjÞ are the counting fingerprints of the molecules

mi and mj, and Nsub is the number of represented sub-structures.

2.3 Metabolite identification through integration of

MS/MS and retention order scores
In this section we present an overall framework for metabolite iden-

tification (2), assuming multiple MS/MS measurements taken at dif-

ferent retention times, arising e.g. from a metabolomics experiment

using LC combined with MS/MS. The task in metabolite identifica-

tion is to find the correct molecular structure given an unidentified

MS/MS spectrum. Current state-of-the-art methods are using ma-

chine learning to learn the dependencies between MS/MS spectra

and molecular properties (Brouard et al., 2016; Dührkop et al.,

2015). Subsequently they predict a score for a set of so called mo-

lecular candidates and rank those candidates accordingly. The set of

molecular candidates can be for example defined by either using the

mass of the unknown structure or its predicted molecular formula

(Dührkop et al., 2015) to query a molecular structure database like

PubChem (Kim et al., 2015) for all the molecules matching those

criteria.

2.3.1 Predicting molecular scores based on MS/MS spectra: input

output kernel regression

We use an existing metabolite identification approach, called Input

Output Kernel Regression (IOKR; Brouard et al., 2016), to predict

the molecular scores. This approach considers an input kernel

kx : X �X ! R measuring the similarity between MS/MS spectra,

as well as an output kernel km :M�M! R measuring the similar-

ity between molecules. The input kernel is associated with a feature

map u : X ! F x and the output kernel is associated with a feature

map / :M! Fm. The metabolite identification problem is

decomposed in two tasks. In the first task, the output feature map /
is approximated by learning a mapping h between the set X of

MS/MS spectra and the output feature space Fm. This mapping

writes as hðxÞ ¼WuðxÞ. Given a set of training examples

fðxi;miÞ 2 X �Mg‘i¼1, it is learned by solving the following regres-

sion problem:

min
W

X‘

i¼1

jjWuðxiÞ � /ðmiÞjj2Fm
þ kjjWjj2; k�0:

In the second task, the molecule corresponding to a MS/MS spec-

trum xi is predicted by comparing the predicted feature vector hðxiÞ
with a set of candidate molecules: Mi ¼ fmi;jg. These candidate

molecules are extracted from a large molecular database such as

PubChem. A score yi;j is computed for each candidate molecule mi;j

by computing the inner product between its feature vector /ðmi;jÞ
and the predicted feature vector of xi:

yi;j ¼ /ðmi;jÞTWuðxiÞ:

The predicted molecule m̂i is then chosen as the candidate mol-

ecule with the highest score:

mi ¼ argmax
mi;j2Mi

yi;j:

2.3.2 Finding the optimal set of identifications: shortest path

through dynamic programming

In this section, we present a method for integrating the scores arising

from MS/MS based metabolite identification, here the IOKR model

and the retention order predictions arising from RankSVM. Here we

assume that a LC-MS/MS experiment has been conducted so that set

of (MS/MS spectrum, retention time) is available as the data, scored

candidate lists of molecules have been obtained for each spectrum

and pairwise retention order predictions are available for each pair

of molecules appearing in the candidate lists.

We apply dynamic programming, an optimization technique

introduced by Bellman (1957), to improve the metabolite identifica-

tion performance by exploiting the predicted retention orders of

metabolites. The dynamic programming technique can be applied

when an optimization problem can be decomposed into a sequence

of sub-problems where the optimum solution of the entire problem

could be constructed as the sum of the optimum solutions taken

from the sub-problems (Bertsekas, 2005, 2007). One of the most

well known applications of dynamic programming is to find the

shortest path in a graph between two nodes. Our system follows the

logic of this type of an application.

In our framework (Fig. 3), we have a directed graph G whose

nodes are organized into layers, one layer per a measured MS/MS

spectrum at a specific retention time. Each layer is composed of the

candidate molecular structures for one measured MS/MS spectrum.

The layers are sorted into an increasing order of the retention time

of the measured MS/MS spectrum. Within each layer the candidates

are sorted into decreasing order of the score provided by the IOKR,

thus the candidates of the highest score are on the top of the layers.

Weighted edges connect the nodes between two consecutive layers.

Given the graph G, a path though the graph connects the layers

1; . . . ;N by picking one candidate structure for each measured

MS/MS spectrum, and thus defines a sequence of molecular struc-

tures, taken as the identifications of the molecules generating the

measurement data. Given a predefined weight for each edge, our dy-

namic programming algorithm efficiently finds a optimal path (one

with smallest weight) among all possible paths connecting the nodes

in the first layer to the nodes in the last layer.

Below, we define a edge weight function that combines the

MS/MS based scores for candidate molecules from IOKR and the re-

tention order scores from RankSVM in such a way that the dynamic

programming solution jointly optimizes the total of MS/MS based

scores and the retention order scores for all MS/MS measurements

in the experiment and outputs an optimal sequence of candidate mo-

lecular structures, listed in their retention order.

In the construction of the graph G, the nodes are denoted by ni;j

where i ¼ 1; . . . ;N shows the layer containing the node and j ¼ 1;

. . . ;ni gives the score related position within the column. Each node

has the IOKR score denoted by yi;j. Two nodes are connected by a

directed edge between two consecutive layers, thus there is an edge

between any two nodes ni;j and nr;s if r ¼ iþ 1. To each edge a

weight dði;jÞ;ðr;sÞ is assigned, and it is equal to

dði;jÞ;ðr;sÞ ¼ � yr;s|{z}
IOKR score

þDmax ð0;wTð/ðmi;jÞ � /ðmr;sÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
penalty on order conflict

;

where w is provided by the RankSVM, and /ðmi;jÞ is the feature vec-

tor of the candidate molecule mi;j associated with kernel km.

The max ð0; :Þ means that only the rank differences contradicting

the order based on the retention time, as penalties, are considered

in the edge weights. The constant D balances between the score and

penalty term. We set the penalty term to zero, if the observed
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retention times of layer i and r are equal. The length of a path is

defined by summing up the weight of the edges covered by that

path. The main concepts of the optimization model are presented in

Figure 3. The red arrows indicate two possible paths, corresponding

to two sequences of candidate structures.

The dynamic programming algorithm (Table 1) goes through the

graph sequentially from first layer to last layer. In each layer, for each

node, the smallest weight path from the first layer to that node is stored

along with the weight of the path. At the last layer, the optimal path is

retrieved by finding the node with minimum weight path leading to it.

The time complexity of the algorithm is OðNK2Þ where N is the num-

ber of layers and K ¼ max N
i¼1ðniÞ is the maximum size of a layer.

3 Results

In this section, we describe the datasets and protocols we use for the

evaluation of the retention order prediction and metabolite identifi-

cation. We present the results of our experiments and start with the

analysis of the performance difference between binary and counting

molecular fingerprints (Section 2.2.3) for the retention order predic-

tion using RankSVM (Section 2.2.1). Subsequently we compare the

RankSVM with the SVR (Section 2.2.2) in terms of order prediction

performance. We close this section by an experiment using retention

order prediction as additional source of information for the metab-

olite identification (Sections 2.3.1 and 2.3.2).

3.1 Retention order prediction
In this section, we evaluate the retention order prediction perform-

ance using RankSVM and SVR.

3.1.1 Dataset

We evaluate and compare our approach on five datasets extracted

from the publicly available retention time database provided by

Stanstrup et al. (2015). We used their R-package PredRetR to

download the data and only considered measurements added before

July 2015. The datasets contain retention time measurements from

different reversed-phase chromatographic systems. Table 2 contains

information about these datasets. The set S contains all those sys-

tems (Section 2.2.1). For compounds with multiple retention time

measurements reported within one dataset we keep only the lowest

retention time and remove the molecule completely when the lowest

and the largest retention time differs by more than 5%.

Furthermore, for each system we remove molecules with very small

Table 1. Dynamic programming algorithm for finding the smallest

weight path through a layered directed graph G

Algorithm 1 Dynamic programming to find the smallest weight path.

Input: Graph G with edge weights d
Output: Optimal node sequence from each layer ðj1; j2; . . . ; jNÞ
## Initialize the shortest path length, and parent node at each node

## First layer

For j¼ 1 to n1

k1;j ¼ �y1;j # shortest path

p1;j ¼ �1 # parent node

## Other layers

For i¼ 2 to N

For j¼ 1 to ni

ki;j ¼ 1
pi;j ¼ �1

## Roll out the dynamic programming updates

For i¼ 1 to N – 1

For j¼ 1 to ni

For s¼ 1 to niþ1

If kiþ1;s > ki;j þ dði;jÞ;ðiþ1;sÞ
kiþ1;s ¼ ki;j þ dði;jÞ;ðiþ1;sÞ
piþ1;s ¼ i

## Roll back the path from the last layer to the first one

jN ¼ arg min jkNj
# End node of the optimum path

Path¼ [jN]

Parent ¼ pN;jN

For i¼N – 1 to 1 step – 1

Path¼ ½Parent� þ Path

Parent ¼ pi;Parent

Fig. 3. The scheme of the dynamic programming applied to find a set of identifications that maximize the combined score from IOKR and RankSVM for a set of

(MS/MS, retention time) measurements. The layers correspond to candidate sets of molecules for a given MS/MS observed at given retention time. In each layer

the candidate molecules are ordered by decreasing IOKR score, yi;j . The weight dði ;jÞ;ðr ;sÞ of the edge going from the node ni ;j to nr ;s is defined by the negative

score of IOKR assigned to nr ;s , and the score difference provided by the Rank SVM, i.e. dði;jÞ;ðr ;sÞ ¼ �yr ;s þ Dmax ð0;wT ð/ðmi ;j Þ � /ðmr ;sÞÞÞ. Some possible paths

are shown by red arrows, potential optimum, the shortest path is denoted by the thick red arrows
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retention times from the dataset to avoid molecules that are not

interacting with this chromatographic system. After the pre-

processing the dataset contains 1098 retention time measurements

of 946 unique molecular structures. We represent the molecular

structure using MACCS fingerprints, which we calculate using the

rcdk (Guha, 2007) R-package given the InChI representation of the

molecular structures. We extended the current version of the CDK

library (Willighagen et al., 2017), that is the back-end of rcdk, to

support counting MACCS fingerprints. The similarity between mol-

ecules is measured using the Tanimoto kernel for binary and the

MinMax kernel for counting fingerprints (Section 2.2.3). We use the

same kernels for the RankSVM and the SVR.

3.1.2 Evaluation protocol

The evaluation is performed using 10-fold cross-validation (10-CV)

produced such that no molecular structure of the training set is within

the test set. For the hyper-parameter estimation, e.g. C parameter of

the RankSVM, we use a nested 10-CV on the training set. As perform-

ance measure we use the pairwise prediction accuracy, that is the frac-

tion of correctly classified molecule pairs, in a particular system s 2 S:

Pairwise accuracy 

jfði; jÞ 2 PðsÞjwT/i < wT/jgj

jPðsÞj ;

where w is the prediction model obtained by the RankSVM respect-

ively the SVR. In the following, we call the system s that we use the

access the pairwise prediction accuracy as target system. We average

the pairwise prediction accuracy over 10 repetitions of 10-CV.

3.1.3 Accuracy of binary versus counting fingerprints

We train RankSVM separately for each target s using only the target

systems training preferences PðsÞ. The results in Table 3 show that the

counting fingerprints outperform the binary ones. This indicates that

the knowledge of the abundance of certain molecular sub-structures

carries additional information, over binary fingerprints, about the re-

tention behavior of a molecule. For the subsequent experiments, we

therefore use the counting fingerprints with the MinMax kernel.

3.1.4 Retention order prediction: RankSVM versus SVR

We compare the RankSVM and SVR performance in two experi-

mental settings. In the first setting, the RankSVM or SVR model of

one system s is trained using only the training preferences PðsÞ of

this target system. In the second setting, a set P n PðsÞ [Equation (1)]

of preferences originating from other chromatographic systems is

used in addition to PðsÞ to train the model of the system s. This se-

cond experiment is motivated by the fact that large sets of retention

times can be available, but those might be measured with different

chromatographic systems. Then in both settings we vary the percent-

age of target system retention time measurements used for training

from 0% (10% in the first setting) to 100%. This simulates the ap-

plication case, where no or only a few retention time measurements

are available in the target system s.

Single system for training: In Table 4 first pair of columns, Single

system, target data only, we show the pairwise prediction accuracy

for the RankSVM and SVR when we train using only training data of

the target system s. RankSVM and SVR perform almost equally good

in retention order prediction when using only target system training

data. In Figure 4 (dashed lines) we plot the pairwise prediction accur-

acy as a function of the percentage of target system data used for

training. Adding more data improves the accuracy of the models. Also

in this case, RankSVM and SVR have almost the same behavior.

Multiple systems for training: In Table 4, the last two pairs of

columns summarize the pairwise prediction accuracies when we

train the RankSVM and SVR using the data from other chromato-

graphic systems than the target system (preference set P n PðsÞ) in

addition or in place of the data from the target system itself (prefer-

ence set PðsÞ). In the columns Multiple systems, no target data, for

the RankSVM it can be seen, that for three out of five target systems

the prediction performance when we train only with the retention

time information of the other chromatographic systems (preference

set P n PðsÞ) performs at least as good as training with the single tar-

get system. When we include all the target system information (col-

umns Multiple systems, all data) into the learning (preference set P)

then we always outperform the baseline using a single system. That

means that we can use the retention time information from different

chromatographic systems to train a model for a single target system,

that outperforms the one training only on the target system. The

results furthermore show that the SVR do not benefit from retention

time data that comes from different chromatographic systems.

Training a model on the single target system always outperforms the

model with more data. An explanation for this behavior is that the

retention times across different chromatographic systems can be

very different, e.g. the same molecule can have different retention

times in different systems. In Figure 4, we plot the pairwise predic-

tion accuracy as a function of the percentage of target system data

used for training. For the RankSVM model, we observe that adding

more data from the target system can improve the model. For the

SVR the performance improvement is smaller and as the models

starts of at low accuracy it cannot outperform the SVR model

trained on the single target system.

Table 2. Summary of the retention time datasets used in our

experiments

Dataset / System Column # of

Measurements

Eawag_

XBridgeC18

XBridge C18 3.5u 2.1x50 mm 317

FEM_long Waters ACQUITY UPLC HSS T3

C18

281

RIKEN Waters ACQUITY UPLC BEH C18 181

UFZ_

Phenomenex

Kinetex Core-Shell C18 2.6 um, 3.0

x 100 mm, Phenomenex

192

LIFE_old Waters ACQUITY UPLC BEH C18 127

Impact Acclaim RSLC C18 2.2um,

2.1x100mm, Thermo

342

Notes: The number of molecules corresponds to the one after the pre-processing.

The Impact dataset is only used for our metabolite identification experiment.

Table 3. Pairwise prediction accuracy (62r) for the different target

systems (datasets) comparing binary and counting MACCS

fingerprints

Target system s Binary MACCS Counting MACCS

Eawag_XBridgeC18 0:796ð60:015Þ 0:844ð60:011Þ
FEM_long 0:882ð60:016Þ 0:905ð60:015Þ
RIKEN 0:826ð60:024Þ 0:848ð60:017Þ
UFZ_Phenomenex 0:790ð60:027Þ 0:802ð60:017Þ
LIFE_old 0:842ð60:050Þ 0:862ð60:035Þ

Boldface denotes the method achieving the highest pairwise prediction ac-

curacy.

Note: Models were trained using PðsÞ.
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3.2 Metabolite identification
In this section, we describe the evaluation of our proposed method to

combine MS/MS based scores and predicted retention orders for me-

tabolite identification. For that we use LC-MS/MS data from

MassBank arising from a single system, where a set of MS/MS spectra

and the corresponding retention times are given, to construct an artifi-

cial dataset that could arise in a single LC-MS/MS run. The task is to

identify the correct molecular structures for each MS/MS spectrum by

utilizing the observed retention times of the unknown compounds.

3.2.1 Dataset

We extracted retention times for molecules measured with the same

reversed-phase chromatographic system (Table 2, Impact) from

Massbank (Horai et al., 2010). In the following, we will refer to this

dataset as Impact. All measurements are provided by the

Department of Chemistry of the University of Athens (record prefix:

AU). After the pre-processing (Section 3.1.1) retention time meas-

urements of 342 different molecular structures remained. For each

compound, we searched for a corresponding MS/MS spectrum in

the GNPS (Wang et al., 2016) spectra database. This resulted in MS/

MS spectra for 120 compounds. For each compound mi in this set,

we obtained a set of molecular candidatesMi ¼ fmi;jg by querying

the molecules in the structure database Pubchem (Kim et al., 2015)

with the same molecule formula as mi. The resulting dataset is used

in our experiments as a model of data that can arise in a LC-MS/MS

experiment, however, equipped with ground truth identifications

due to the above construction. To calculate the IOKR score for each

candidate mi;j as described in Section 2.3.1, we use the same MS/MS

spectra kernels and molecular fingerprints as Dührkop et al. (2015).

As the output kernel km we use a Gaussian kernel in which

distances are derived from the Tanimoto kernel (Section 2.2.3):

kmðmi;mjÞ ¼ exp ð�cjjwi � wjjj
2Þ, where wi and wj are the feature

vectors associated with the Tanimoto kernel, and c > 0 is a scaling

parameter. The 222 compounds without MS/MS spectra, are used

as training data for the RankSVM.

3.2.2 Evaluation protocol

The metabolite identification performance is measured by the per-

centage of correct molecular structures along the shortest path

found by dynamic programming approach presented in Section

2.3.2. In the following, we refer to this performance measure as

identification accuracy. We compare our approach to integrate the

MS/MS based (IOKR) scores and the predicted retention orders

(D>0) with the baseline performance, when only the IOKR scores

are used (D¼0) for the identification. We randomly sample 1000

times 80 MS/MS spectra and calculate the average identification ac-

curacy separately for different values of D.

3.2.3 Integrating IOKR scores and predicted orders

The target system in this experiment refers to Impact, as the system

that provides the retention times for the MS/MS spectra. We train

three different RankSVM models, the order predictor, using

MACCS counting fingerprints and three different retention time

training sets:

i. Target, PðsImpactÞ: Retention times for 222 compounds meas-

ured with the Impact system. None of these compounds is part

of the LS-MS/MS dataset.

ii. Others, P: Retention times for 946 unique compounds meas-

ured with different chromatographic systems (Sections 3.1.1).

iii. Others & target, P [ PðsImpactÞ: Retention time measurements

from the target and other chromatographic systems.

Figure 5 shows the average identification accuracy from 1000

random samples of 80 MS/MS spectra for different values of D. The

baseline performance when D¼0, i.e. only the IOKR scores are

used, is 22.7% (shown as black solid line). When the RankSVM is

trained using retention times from the target system and other chro-

matographic systems (Others & target) the metabolite identification

accuracy can be improved up to 24.8% at D¼0.0075. This is an

significant improvement over the baseline (P-value smaller 2:2e�16

using the one-sample t-test). With 23.9% at D¼0.01 the perform-

ance improvement is smaller when only retention times from other

chromatographic systems (Others) are used, but still significant

(P-value smaller 2:2e�16). Using only target system retention times is

not sufficient to improve the metabolite identification performance.

The overall trend in the results is that the larger the training set for

the RankSVM the larger improvement in metabolite identification

Table 4. Pairwise prediction accuracy (62r) comparing the different prediction methods and experimental settings for each target systems

s individually

Single system, target data only Multiple systems, no target data Multiple systems, all data

Training pref. (% of target) PðsÞ (100%Þ PðsÞ (100%Þ P n PðsÞ (0%Þ P n PðsÞ (0%Þ P (100%) P (100%)

Target system s RankSVM SVR RankSVM SVR RankSVM SVR

Eawag_XBridgeC18 0:844ð60:011Þ 0:846ð60:011Þ 0:776ð60:012Þ 0:719ð60:006Þ 0:867ð60:011Þ 0:736ð60:014Þ
FEM_long 0:905ð60:015Þ 0:904ð60:014Þ 0:864ð60:010Þ 0:717ð60:020Þ 0:913ð60:009Þ 0:819ð60:011Þ
RIKEN 0:848ð60:017Þ 0:842ð60:020Þ 0:852ð60:010Þ 0:755ð60:018Þ 0:867ð60:012Þ 0:742ð60:015Þ
UFZ_Phenomenex 0:802ð60:017Þ 0:796ð60:023Þ 0:836ð60:013Þ 0:702ð60:021Þ 0:848ð60:009Þ 0:731ð60:017Þ
LIFE_old 0:862ð60:035Þ 0:860ð60:028Þ 0:873ð60:019Þ 0:748ð60:029Þ 0:899ð60:018Þ 0:704ð60:046Þ

Boldface denotes the method achieving the highest pairwise prediction accuracy.

Fig. 4. Pairwise prediction accuracy as a function of percentage of the target

systems data used for training. Here we average the curves over the different

target systems. The dashed lines correspond to the setting, where we use

only a single system to train the order prediction. This curve starts at 10% as

less data would be not sufficient for the learning. The solid lines show the be-

havior in the case where multiple systems are used for training
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accuracy. This observation is consistent with the results form the

experiments evaluating the pairwise prediction performance of the

RankSVM for different training sets (Section 3.1.4). The more reten-

tion time information is used to train the RankSVM, the more accur-

ate the pairwise orders are predicted.

4 Discussion

In this paper, we have put forward a new framework for predicting

the retention order of molecules in liquid chromatography, and the

integration of the retention order predictions to tandem MS based

metabolite identification.

The methodology is based on ranking support vector machine

(RankSVM) that uses molecular fingerprints of two molecules as in-

put and the retention order as output. For input description, we

found that so called counting fingerprints provide more accurate

results than the more standard binary fingerprints. It thus seems that

not only the presence of certain chemical groups but also their

counts is important for the retention behaviour in LC.

We explored different settings for training retention time and re-

tention order predictors. In particular, we found out that the

RankSVM model is able to use retention order data from other chro-

matographic systems than the current target system to arrive at

more accurate predictions. The support vector regression (SVR)

method for predicting retention times, on the other hand, was lim-

ited in this capacity and required a much larger library of measure-

ments conducted with the target system before the accuracy reached

a reasonable level, after which point the data form the other systems

provided no benefit. On contrast, the RankSVM model proved to

benefit from the other systems without similar threshold point.

Furthermore, we proposed a method for integrating the retention

order predictions to MS/MS based metabolite identification model

IOKR. The method constructs a directed graph with edges linking

molecules in the candidate lists of MS/MS spectra measured at adja-

cent retention times and assigns the IOKR scores as node weights,

the retention order scores as edge weights and searcher for shortest

path across this graph to find the highest scoring combination of

metabolites. This approach was shown to have the capability to im-

prove the number of correctly identified metabolites.
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Fürnkranz,J. and Hüllermeier,E. (2011) Preference learning. In: Encyclopedia

of Machine Learning. Springer, Boston, MA, pp. 789–795.

Guha,R. (2007) Chemical informatics functionality in. J. Stat. Software,

18, 6.

Heberger,K. (2007) Quantitative structure-(chromatographic) retention rela-

tionships. Data analysis in chromatography. J. Chromatography A, 1158,

273–305.

Heinonen,M. et al. (2012) Metabolite identification and molecular fingerprint

prediction through machine learning. Bioinformatics, 28, 2333–2341.

Horai,H. et al. (2010) Massbank: a public repository for sharing mass spectral

data for life sciences. J. Mass Spectrometry, 45, 703–714.

Hu,M. et al. (2018) Performance of combined fragmentation and retention

prediction for the identification of organic micropollutants by lc-hrms.

Anal. Bioanal. Chem., 410, 1931–1941.

Joachims,T. (2002) Optimizing search engines using clickthrough data. In:

Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ‘02, ACM, New York, NY,

USA, pp. 133–142.

Kaliszan,R. (2007) Qsrr: quantitative structure-(chromatographic) retention

relationships. Chem. Rev., 107, 3212–3246.

Kim,S. et al. (2015) Pubchem substance and compound databases. Nucleic

Acids Res., 44, D1202–D1213.

Fig. 5. Average percentage of correctly identified molecular structures for dif-

ferent values of D. The baseline accuracy, when only the MS/MS based IOKR

scores are used (D¼ 0) is shown as black solid line. We plot the accuracy for

three different RankSVM training sets: Target, retention time data from target

system, Others, retention time data only from other systems, Others & target,

both previous sets together

i882 E.Bach et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i875/5093227 by guest on 17 April 2024

Deleted Text: see 
Deleted Text: ,


Kuo,T.-M. et al. (2014) Large-scale kernel ranksvm. In: Proceedings of the

2014 SIAM International Conference on Data Mining, Philadelphia,

Pennsylvania, USA. SIAM, pp. 812–820.

Ralaivola,L. et al. (2005) Graph kernels for chemical informatics. Neural

Networks, 18, 1093–1110.

Ruttkies,C. et al. (2016) Metfrag relaunched: incorporating strategies beyond

in silico fragmentation. J. Cheminform., 8, 3.

Schymanski,E.L. et al. (2017) Critical assessment of small molecule identifica-

tion 2016: automated methods. J. Cheminform., 9, 22.

Shen,H. et al. (2014) Metabolite identification through multiple kernel learn-

ing on fragmentation trees. Bioinformatics, 30, i157–i164.

Smola,A.J. and Schölkopf,B. (2004) A tutorial on support vector regression.

Stat. Comput., 14, 199–222.

Stanstrup,J. et al. (2015) Predret: prediction of retention time by direct map-

ping between multiple chromatographic systems. Anal. Chem., 87,

9421–9428. PMID: 26289378.

Vapnik,V.N. (1995) The Nature of Statistical Learning Theory. Springer-Verlag,

New York.

Wang,M. et al. (2016) Sharing and community curation of mass spectrometry

data with global natural products social molecular networking. Nat.

Biotechnol., 34, 828–837.

Willighagen,E.L. et al. (2017) The chemistry development kit (cdk) v2.0: atom

typing, depiction, molecular formulas, and substructure searching. J.

Cheminform., 9, 33.

Retention order prediction i883

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i875/5093227 by guest on 17 April 2024


	bty590-TF1
	bty590-TF2
	bty590-TF3

