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Abstract

Motivation: Computational methods that predict differential gene expression from histone modifi-

cation signals are highly desirable for understanding how histone modifications control the func-

tional heterogeneity of cells through influencing differential gene regulation. Recent studies either

failed to capture combinatorial effects on differential prediction or primarily only focused on cell

type-specific analysis. In this paper we develop a novel attention-based deep learning architecture,

DeepDiff, that provides a unified and end-to-end solution to model and to interpret how dependen-

cies among histone modifications control the differential patterns of gene regulation. DeepDiff

uses a hierarchy of multiple Long Short-Term Memory (LSTM) modules to encode the spatial struc-

ture of input signals and to model how various histone modifications cooperate automatically. We

introduce and train two levels of attention jointly with the target prediction, enabling DeepDiff to at-

tend differentially to relevant modifications and to locate important genome positions for each

modification. Additionally, DeepDiff introduces a novel deep-learning based multi-task formulation

to use the cell-type-specific gene expression predictions as auxiliary tasks, encouraging richer fea-

ture embeddings in our primary task of differential expression prediction.

Results: Using data from Roadmap Epigenomics Project (REMC) for ten different pairs of cell types,

we show that DeepDiff significantly outperforms the state-of-the-art baselines for differential gene

expression prediction. The learned attention weights are validated by observations from previous

studies about how epigenetic mechanisms connect to differential gene expression.

Availability and implementation: Codes and results are available at deepchrome.org.

Contact: yanjun@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulation is the process of controlling gene expression. The

human body contains hundreds of different cell types. Although

these cells include the same set of DNA information, their functions

are different. Cells resort to a host of mechanisms to regulate genes

differently. Many factors, especially those in the epigenome, can af-

fect how cells express genes differently. As reviewed in Egger et al.

(2004) and Meisner and Reif (2015), epigenomics studies how gene

expression is altered by a set of chemical reactions over the chroma-

tin that do not alter the DNA sequence.

Histone modification (HM) is one set of critical chemical reactions

over the chromatin that plays a crucial role in regulating gene tran-

scription. DNA strings are wrapped around ‘bead’-like structures

called nucleosomes that are composed of histone proteins. These his-

tone proteins are prone to a variety of modifications (e.g. methylation,

acetylation, phosphorylation, etc.) that can modify the spatial orienta-

tion of the DNA structure. Such modifications impact the binding be-

havior of transcription factor proteins (to DNA) and thus generate

different forms of gene regulation. The significant role of histone modi-

fications in influencing gene regulation was evidenced in studies like

connecting anomalous histone modification profiles to cancer occur-

rences (Bannister and Kouzarides, 2011). Contrary to DNA mutations,

such epigenetic changes are potentially reversible (Bannister and

Kouzarides, 2011). This vital feature has brought histone modifica-

tions to the center stage of epigenetic therapy.

Recent advances in next-generation sequencing have allowed

researchers to measure gene expression and genome-wide histone

modification patterns as read counts across many cell types. These

datasets have been made available through large-scale repositories,

one latest being the Roadmap Epigenome Project (REMC, publicly
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available) (Kundaje et al., 2015). REMC has released thousands of

genome-wide datasets including gene expression reads (RNA-Seq

datasets), and HM reads across 100 different human cells/tissues

(Kundaje et al., 2015). Multiple recent papers tried to understand

gene regulation by predicting gene expression from large-scale HM

signals. Related studies (summarized in Supplementary Table S2)

have mostly focused on the formulation under a single cell condi-

tion, even though gene regulation undergoes differential changes by

environmental triggers, from one tissue type to another, or under

different cell development stages.

Differential gene expression, or difference in expression levels of the

same gene in two cell conditions, controls functional and structural het-

erogeneity of cells and has also been implicated in a number of diseases,

providing valuable tools for the discovery of therapeutic targets and

diagnostic markers. Differential gene expression has been linked to ab-

errant HM profiles in the literature. For example, Gjoneska et al.

(2015) showed the correlation between differential gene expression in

different stages of Alzheimer’s disease-like neurodegeneration in mice.

Further, the authors observed that the changes in HM patterns associ-

ate with the differentially regulated genes. Koch et al. (2007) reported

coordinated changes between HM profiles and differential gene expres-

sion across the lymphoblastoid cell line GM06990, K562 and HeLa-S3

cell lines. As another example, Weng et al. (2012) showed links be-

tween differential expression of naive T cells versus memory T cells,

ascribed mainly to changes in histone modifications.

This paper proposes an attention-based deep learning architec-

ture to learn from datasets like REMC, how different histone modi-

fications work together to influence genes’ differential expression

pattern between two different cell-types. We argue that such differ-

ential analysis and differential understanding of gene regulation

from HMs can enable new insights into principles of life and dis-

eases, will allow for the interrogation of previously unexplored regu-

lation spaces, and will become an important mode of epigenomics

analysis in the future. Four fundamental data challenges exist when

modeling such tasks through machine-learning:

1. Genome-wide HM signals are spatially structured and may have

long-range dependency. For instance, to quantify the influence

of a histone modification mark, learning methods typically need

to use as input features all of the signals covering a DNA region

of length 10 000 base pair (bp) centered at the transcription start

site (TSS) of each gene. These signals are sequentially ordered

along the genome direction. To develop ‘epigenetic’ drugs, it is

important to recognize how an HM mark’s influence varies over

different genomic locations.

2. The core aim is to understand what the relevant HM factors are

and how they work together to control differential expression.

Various types of HM marks exist in human chromatin that can

influence gene regulation. For example, each of the five standard

histone proteins can be simultaneously modified with various

kinds of chemical modifications, resulting in a large number of

varying histone modification marks. As shown in Figure 1, we

build a feature vector representing signals of each HM mark sur-

rounding a gene’s TSS position. When modeling genome-wide

signal reads from multiple marks, learning algorithms should

take into account the modular nature of such feature inputs,

where each mark functions as a module. We want to understand

how the interactions among these modules influence the predic-

tion (differential gene expression).

3. Since the fundamental goal of such analysis is to understand

how HMs affect gene regulation, it requires the modeling

techniques to provide a degree of interpretability and allowing

for automatically discovering what features are essential for

predictions.

4. There exist a small number of genes exhibiting a significant

change of gene expression (differential patterns) across two

human cell types like A and B. This makes the prediction task

using differential gene expression as outputs much harder than

predicting gene expression directly in a single condition like A

alone or B alone.

In this paper, we propose an attention-based deep learning

model, DeepDiff, that learns to predict the log-fold change of a

gene’s expression across two different cell conditions (assuming cell

type A and cell type B in the rest of the paper). Here, XA 2 R
M�T

and XB 2 R
M�T , where M represents the number of HM signals and

T represents the number of bins. For each gene, its input signals con-

sist of XA (the histone modification signals from A), XB (the histone

modification signals from B) and ðXA � XBÞ (the difference matrix

between HM signals of these two conditions). All three cover the

gene’s neighboring 10 000 base pair regions centered at the tran-

scription start site (TSS). (i) To tackle the first challenge of modeling

spatially structured input signals, we use the Long Short-term

Memory (LSTM) (Section 3.4) deep-learning module that can repre-

sent interactions among signals at the different positions of a chro-

matin mark. Because we model multiple HM marks, resulting in

multiple LSTMs learning to embed various HM marks. (ii) To han-

dle the second challenge of modeling how HM marks work together,

we use a second-level LSTM to learn complex dependencies among

different marks. (iii) For the third challenge of interpretability, we

borrow ideas from the AttentiveChrome (Singh et al., 2017) that

focuses on cell-specific predictions. We train two levels of ‘soft’ at-

tention weights, to attend to the most relevant regions of a chroma-

tin mark, and to recognize and attend to the critical marks for each

differential expression prediction. Through predicting and attending

in one unified architecture, DeepDiff allows users to understand

how chromatin marks control differential gene regulation between

two cell types. (iv) For the last challenge of difficult label situation

for differential expression prediction, we design a novel multi-task

framework to use the cell-type-specific prediction network as auxil-

iary tasks to regularize our primary task of differential expression

prediction. The cell-type specific system (one for cell A and another

one for cell B) also uses attention plus the hierarchical LSTMs for-

mulation. Further, we introduce an additional auxiliary loss term

that encourages the learned embeddings of HM inputs XA and XB to

be far apart for differentially expressed genes.

In summary, DeepDiff provides the following technical

contributions:

• DeepDiff uses a hierarchy of two levels of gene-specific attention

mechanisms to identify salient features at both the bin level and the

HM levels. It can model highly modular inputs where each module

is highly structured. Attention weights enable our model to explain

its decisions naturally by providing ‘what’ and ‘where’ in HM signal

inputs is important for the differential gene expression output. This

flexibility and interpretability make this model an ideal technique

for handling large-scale epigenomic data analysis.

• We introduce an auxiliary task and auxiliary loss formulation

to aid the main task of differential gene expression prediction.

The proposed multitasking framework couples the two related

tasks of cell-type-specific predictions and the main task of

differential expression prediction. This auxiliary formulation

provides the model with additional information from the auxiliary

evidence, encouraging richer feature embeddings compared to
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only difference HM features. It helps DeepDiff to build on top of

the state-of-the-art AttentiveChrome (Singh et al., 2017) and can

borrow auxiliary features from AttentiveChrome tasks. Further,

we introduce a novel auxiliary loss term inspired by the contrastive

loss (Hadsell et al., 2006) of the Siamese architecture formulation.

This loss term encourages the model to learn embeddings whose

neighborhood structures in the model’s representation space are

more consistent with the differential gene expression pattern.
• To the authors’ best knowledge, DeepDiff is the first deep learn-

ing based architecture for relating histone modification and dif-

ferential gene expression patterns. DeepDiff provides more

accurate predictions than state-of-the-art baselines. Using data-

sets from REMC, we evaluate DeepDiff on ten different pairs of

cell types. We validate the learned attention weights using previ-

ous observations obtained from HM enrichment analysis across

differentially regulated genes.

2 Previous works

Multiple computational methods have been proposed to employ HMs

for predicting gene expression using large-scale histone modification

datasets. Recent methods in the literature can be roughly grouped

into three categories with respect to the formulation of outputs: re-

gression, classification or ranking. (i) The regression-based models in-

clude linear regression (Costa et al., 2011; Karli�c et al., 2010) and

Support Vector Regression (SVR) (Cheng and Gerstein, 2012). Cheng

and Gerstein (2012) divided the DNA regions around TSS (transcrip-

tion start site) and TTS (transcription terminal site) into small bins of

100 base pairs and used a multiple bin-specific Support Vector

Regression (SVR) to model HM signals for gene expression predic-

tion. They extended this SVR model to predict differential gene ex-

pression between mouse embryonic stem cell and neural progenitor

cell using the difference of the HM signals as features/inputs. This

study also uses a two-layer SVR model to integrate information from

multiple bins. The first layer is a bin-specific SVR model for histone

modification features. A second layer takes as input the predictions

from the first layer across all bin positions and predicts a single

regression output for differential gene expression. (ii) Frasca and

Pavesi (2013) proposed a ranking based cell type-specific model

that formulates gene expression prediction as a ranking task such

that high ranks correspond to high levels of gene expression and low

rank corresponds to low expression. (iii) Multiple studies used

classification-based formulation to model the gene expression predic-

tion from HM inputs. This includes support vector machines (Cheng

and Gerstein, 2012), random forests (Dong et al., 2012; Li et al.,

2015a), rule-based learning (Ho et al., 2015) and deep

learning frameworks like DeepChrome (Singh et al., 2016) and

AttentiveChrome (Singh et al., 2017). (Dong et al., 2012) used a ran-

dom forest classifier to predict genes as silent or transcribed, while the

authors also used linear and multivariate regression to predict gene

expression values. Li et al. (2015a) presented a two-step process—fea-

ture selection, then followed by prediction for differential gene expres-

sion. It used the so-called ReliefF (Kononenko et al., 1997) based

feature selection and Random Forest Classification. DeepChrome

(Singh et al., 2016) and Attentive Chrome (Singh et al., 2017) are

deep learning based frameworks for cell-type specific gene expression

prediction. DeepChrome (Singh et al., 2016) used Convolution

Neural Nets (CNN). Differently, AttentiveChrome (Singh et al.,

2017) used a hierarchical attention-based deep learning architecture

to predict gene expression from HM reads. Supplementary Table S2

compares all the aforementioned related studies for gene expression

prediction.

3 Materials and methods

3.1 Background: Recurrent Neural Networks and Long

Short-Term Memory (LSTM)
Recurrent neural networks (RNNs) have achieved remarkable suc-

cess in sequential modeling applications like translation, image cap-

tioning, video segmentation, etc. A sequential input of RNN is

normally represented by an input matrix X of size nin � T, where T

represents the time steps and nin represents the dimension of the fea-

tures describing each time-step of the input. For an input X, an

RNN produces a matrix H of size D�T as output, where D is

the RNN embedding size. More concretely, at each timestep

t 2 f1; . . . ;Tg, an RNN takes an input column vector xt 2 R
nin and

the previous hidden state vector ht�1 2 R
d to produce the next hid-

den state ht by applying the following recursive operation:

ht ¼ rðWxt þUht�1 þ bÞ ¼ LSTM
�!
ðxtÞ; (1)

where W;U; b are the trainable parameters of the model, and r is an

element-wise nonlinearity function. Due to the recursive nature, in

theory, RNNs can capture the complete set of dependencies among

all time steps without having to learn different parameters for each

time step, like all spatial positions in a sequential sample.

A variant of the RNN, LSTM (Hochreiter and Schmidhuber,

1997), further improves upon the basic RNN [Eq. (1)] to model

long-term dependencies. In addition to the hidden state-to-state

(a) (b)

Fig. 1. (a) Feature input generation for a gene in a cell-type and (b) Raw input feature variations to DeepDiff model for differential expression: difference and con-

catenated HM signals of both cell-types
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recurrent component in an RNN, an LSTM layer has a recurrent

cell state updating function and gating functions. The gating func-

tions control what information needs to be added or removed from

the cell state. This combination of cell state and gating functions

allows the LSTM to learn long-term dependencies while avoiding

vanishing and exploding gradients. Similar to a basic RNN, when

given input vector xt and the state ht�1 from previous time step

t � 1, an LSTM module also produces a new state vector ht. For

our task, we call each bin position on the genome coordinate a

‘time step’.

3.2 Attention-based deep-learning models
Deep neural networks augmented with attention mechanisms have

obtained great success on multiple artificial intelligence topics such

as machine translation (Dzmitry et al., 2014), object recognition

(Jimmy et al., 2014; Volodymyr et al., 2014), image caption gener-

ation (Xu et al., 2015), question answering (Ilya et al., 2014), text

document classification (Zichao et al., 2016), video description gen-

eration (Li et al., 2015b), visual question answering (Huijuan and

Kate, 2016), or solving discrete optimization (Oriol et al., 2015).

The idea of attention in deep learning is inspired by the properties of

the human visual system. When perceiving a scene, the human vision

fixates more on some areas over others, depending on the task at

hand (Corbetta and Shulman, 2002). Augmenting deep learning

models with attention allows them to focus selectively on only rele-

vant features for a prediction. Different attention mechanisms have

been proposed in the literature, including ‘soft’ attention (Dzmitry

et al., 2014), ‘hard attention’ (Xu et al., 2015; Minh-Thang et al.,

2015), or ‘location-aware attention’ (Chorowski et al., 2015). Soft

attention (Dzmitry et al., 2014) calculates a ‘soft’ weighting scheme

over all the components of an input. These weights indicate the rela-

tive importance of each feature component for a given prediction.

The weights are then used to compute a summary representation of

the input as a weighted combination of the components. The magni-

tude of an attention weight correlates highly with the degree of sig-

nificance of the corresponding component to the prediction. This

property is particularly ideal for adapting deep learning to biology

tasks, as it gives users interpretable information regarding how

features contribute to a prediction. Recently, AttentiveChrome

(Singh et al., 2017) introduced two levels of attention at the bin and

the histone-modification level, enabling the user to get information

about which features were responsible for each prediction at the

sample level.

3.3 Input generation
We focus on the predictive modeling of differential gene expression

given the histone modification profiles of a gene in two cell-types.

We formulate the output as the log fold change in expression

given the histone modification profiles for the two cell-types under

consideration. Similar to DeepChrome (Singh et al., 2016) and

AttentiveChrome (Singh et al., 2017), we divided the 20 000 base-

pair (bp) DNA region (610 000 bp) around the transcription start

site (TSS) of each gene into bins of length 100 bp. Each bin includes

100 bp long adjacent positions flanking the TSS of a gene.We con-

sider five core histone modification marks that have been uniformly

profiled across multiple cell types in the REMC database (Kundaje

et al., 2015). Supplementary Table S4 summarizes the 5 HMs we

use and their associated functional regions on the genome. Figure

1(a) summarizes our input matrix generation strategy. More con-

cretely, our input for each gene includes two 5�200 matrices, each

matrix corresponding to each of the two cell types under consider-

ation [depicted in Fig. 1(b)]. Columns and rows in each matrix rep-

resent bins and histone modifications, respectively. Thanks to the

capability of neural networks for learning meaningful representa-

tions, we do not perform any feature selection before feeding the

matrices in Figure 1(b) to the proposed DeepDiff model variations, a

hierarchical attention-based DNN. Compared to previous studies

(Supplementary Table S2), DeepDiff does not need to explore the

best-bin, averaged or other feature selection strategies. As an end-to-

end strategy (raw features to predictions), DeepDiff eliminates the

need to evaluate different feature selection strategies.

3.4 DeepDiff: learning meaningful representations

through two levels of embedding and attention

modules
Notations: Our training set consists of Nsamp gene samples in the

form of ðXðnÞ; yðnÞÞ pairs, where n 2 f1:; ::;Nsampg. Given two cell-

types A and B, and a gene g under consideration, the HM profile of

gene g in A and B is denoted as XA and XB, respectively. We con-

sider M¼5 HM marks for each gene. Each HM signal across the

T¼200 bins in cell-type A is represented by a row vector in XA.

Similarly, for cell-type B, each HM signal is represented by a row

vector in XB.

We do not perform any feature selection on the raw histone

modification features. Instead, we use deep learning modules to

learn sensible features. Our raw features have two important prop-

erties (as depicted in Fig. 1): (i) In addition to the raw HM signals

from the two cell types under consideration, we use difference and

concatenation of the raw HM signals. This results in modular raw

input features with four possible input matrices, rows corresponding

to HM vectors [as shown in Fig. 1(b)]. (ii) These HM vectors are

spatially structured along the genome coordinate. Considering the

spatially structured raw features and their modular property, we use

two levels of basic embedding modules: Level I and Level II embed-

ding units coupled with two levels of attention modules. These basic

modules used in DeepDiff variations are illustrated in Figure 2.

Now, we explain how we use deep learning to learn the representa-

tion of each matrix in Figure 1(b).

Level I embedding (f1): The Level I Embedding module consists

of a bin-level LSTM for learning the embedding of every HM, fol-

lowed by a bin level attention mechanism. The bin level LSTM se-

quentially models the signal at each bin position. We name LSTMs,

for all input HMs, put together, as the Level I Embedding module.

The Level I Embedding module f1 consists of multiple bidirectional

LSTMs, one for each input HM. The LSTMj corresponding to HM

j, takes as input the jth HM, i.e, jth row vector in matrix X,

X j ¼ ½xj1; . . . ;xjt; . . . ;xjT �. A bidirectional LSTM has one LSTM in

each direction. The forward LSTM models dependencies in xj in the

direction 1 to T, i.e. h
!

jt ¼ LSTM
�!

jðxjtÞ where h
!

jt is of hidden state

size D. The backward LSTM models the dependencies from T to 1:

that is ½xjT ; . . . ; xjt; . . . ; xj1�. Hence, h
 

jt ¼ LSTM
 �

jðxjtÞ. The output of

the bidirectional LSTM is a concatenation of the hidden state output

of the forward and backward LSTMs at each t position:

hjt ¼ ½h
!

jt; h
 

jt�, where hjt is of size 2�D.

Bin level attention: Attention in Deep Learning is a powerful

tool used to highlight features that are important for a given predic-

tion. The hidden state at each step of the LSTM produces an embed-

ding for that bin position hjt. To get a cumulative embedding to

represent all the bin positions, one strategy could be to sum the

embeddings across all bin positions. However, not all the bin
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positions are equally relevant. For example, in certain HM patterns,

bin positions near the transcription start site are more important

than the ones away from it. To learn and encode such important in-

formation into the embeddings, we use a soft attention mechanism

that automatically discovers which are the important bin positions

as part of the training process. The attention-augmented LSTMs re-

sult in learning a weighting representation for the bin embeddings,

such that more important bin positions get a higher weight. In de-

tail, this is done using a context weight vector, denoted by Wbj of

dimension 2�D for each HM j. An attention weight ajt, corre-

sponding to bin position t for the jth HM is obtained by

ajt ¼
expðhjt �WbjÞ

RT
k¼1ðexpðhjk �WbkÞÞ

(2)

where Wbj is learned through training and � indicates dot product.

These attention weights are then used to weigh the embedding vec-

tors of all bins to get a summary embedding: hj ¼ RT
t¼1ðajt � hjtÞ.

Essentially, this ‘summary’ representation for each HM represents a

bin importance weighted sum of all bins in the HM under consider-

ation. The attention tells us where in this HM is important for

prediction.

Level II embedding (f2): To efficiently represent the combinator-

ial dependencies between the various HMs, we use another LSTM

as a second level embedding module. This LSTM takes as input the

Level I Embedding output hj where j 2 f1; . . . ;Mg. In detail, the jth

HM embedding from Level I Embedding module hj is used as input

to the jth time step in a bidirectional LSTM. The LSTM will gener-

ate an embedding vector for jth time step: sj ¼ LSTMðhjÞ.
HM level attention: To combine the outputs from all M HMs

in an informative way, we use a second level attention mechanism

to learn attention weights bj, representing the importance of the

jth HM. To get these HM level attention scores bj where

fj 2 1; . . . ;Mg, we learn an HM-level context vector Wh to calculate

an attention score as

bj ¼
expðsj �WhÞ

RM
l¼1ðexpðsl �WhÞÞ

(3)

This attention weight bj intuitively represents the relative contri-

bution of the HM xj to the summary representation of the whole

matrix X. To get a summarized embedding of the HMs, we use the

outputs at all time steps of the HM level LSTM weighted by its

attention score as the final embedding of describing X i.e.

v ¼ RM
j¼1ðbj � sjÞ. Including the bin level as well as HM-level atten-

tion weights representing X allows us to interpret which bins in

which HMs were relatively more important for the current

prediction.

3.5 DeepDiff main task: an end-to-end deep-learning

architecture for regression
We formulate the differential gene expression prediction (our main

task) as a regression task. The target label for a gene is the log fold

change of its expression in Cell-type A versus its expression in Cell-

type B. In DeepDiff, the learned representation vector v from Level

II Embedding is fed into a multi-layer perceptron (MLP) module to

learn a regression function, a mapping from HM profiles to the tar-

get real value representing differential pattern. In detail, this predic-

tion module fmlpð:Þ comprises a standard, fully connected multi-

layer perceptron network with multiple alternating linear and non-

linear layers. Each layer learns to map its input to a hidden feature

space, and the last output layer learns the mapping from the hidden

space to the output label space.

We use f ðXÞ to denote the whole end-to-end network in

DeepDiff mapping raw HM profile to differential output. The

parameters learned during training of function f ð:Þ will be denoted

as H. H consists of all learnable parameters of the LSTMs as well as

the context vectors in both Level I and Level II Embedding modules,

and the parameters of the aforementioned fmlp. When training this

deep model, parameters are randomly initialized first and input sam-

ples are fed through the network. The output of this network is a

prediction associated with each sample. The difference between

each prediction output f ðXÞ and true label y is fed back into the net-

work through a ‘back-propagation’ step. The parameters (H) are

updated in order to minimize a loss function which captures the dif-

ference between true labels and predicted values. The loss function

‘Diff , on the entire training set of size Nsamp, is defined as:

‘Diff ¼
1

Nsamp

XNsamp

n¼1

lossðf ðXðnÞÞ; yðnÞÞ (4)

To train our regression function for the main differential task,

we select the squared error loss as the loss function which is defined

per-sample as:

lossðf ðXðnÞÞ; yðnÞÞ ¼ ðyðnÞ � f ðXðnÞ;HÞÞ2 (5)

Fig. 2. Two level attention mechanism used in DeepDiff variations for meaningful feature representation: ajt represents the bin level attention for HM j and bin t

obtained from the Level I Embedding module attention mechanism, indicating the relative importance for bin t in HM j. bj represents the HM-level attention for

HM j obtained from the Level II Embedding module’s attention mechanism, representing the relative importance of HM j
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This means we use mean squared error (MSE) ‘Diff for training.

The back-propagation step essentially uses stochastic gradient descent

(SGD) method to train parameters (Léon, 2004). For a set of training

samples, instead of calculating true gradient of the objective on all

training samples, SGD calculates gradient and updates accordingly on

each training sample. This means a gradient descent step is applied to

update network parameters H as follows:

H H� g
@lossðf ðXðnÞÞ; yðnÞÞ

@H
(6)

where g is the learning rate parameter and @lossðf ðXðnÞÞ;yðnÞÞ
@H is the gradi-

ent. We use the optimizer Adaptive Moment Estimation (ADAM)

(Omony, 2014) to train our models. In comparison to SGD in Eq.

(7), ADAM computes adaptive learning rates g, instead of fixed g
during training, using estimates of the first and second moments of

the gradients. Details of ADAM optimizer are in Supplementary

Section S1.1.

3.6 DeepDiff with multitasking: learning better

representations with auxiliary tasks
We then extend the basic DeepDiff mentioned above into a multi-

task learning formulation, in order to learn better joint representa-

tions informed by auxiliary tasks (details below). Multi-task learn-

ing (Multitasking) was initially proposed by Caruana (1997) to find

common feature representations across multiple relevant tasks.

Most of the multitasking studies have focused on neural networks

(Caruana, 1997), where some hidden layers are shared between vari-

ous tasks. If different tasks are sufficiently related, multitasking can

lead to better generalization. In this paper, we consider two such

related tasks as auxiliary tasks for multi-task learning with our

DeepDiff main task:

Cell-Specific Auxiliary – (Auxiliary-Task-AþAuxiliary-Task-B):

We posit the cell-type specific gene expression prediction in each of

the two cell-types (A and B) as the Cell-Specific Auxiliary tasks to

regulate the main DeepDiff in the training phase. We call these two

tasks in cell-types A and B as Auxiliary-Task-A and Auxiliary-Task-

B, respectively. Since our main DeepDiff task uses the log-fold

change of the counts of gene expression as the target y, we use the

log of counts of gene expression in cell-type A and cell-type B as the

target value in Auxiliary-Task-A and Auxiliary-Task-B, respectively.

To handle zero values of expression (log 0 gives NA), we add 1 to

all counts. Besides, we also evaluate using binarized cell-type specific

gene expression as the label for the auxiliary tasks (i.e. as classifica-

tion as opposed to regression. See details in Supplementary

Material). For Auxiliary-Task-A, XA is passed through two levels of

embedding and attention modules that are specific for cell-type A.

The output embedding of the Level II Embedding unit vA is passed

through an MLP layer f A
mlpðvAÞ. f A

mlpðvAÞ is used to map vA (from

XA) to the target value for the gene in Cell-type A. Similarly, for the

Auxiliary-Task-B, vB, obtained by passing XB through two levels of

embedding modules, is passed through an MLP layer f B
mlpðvBÞ for

Cell-type B specific gene expression prediction. By jointly training

cell-type specific gene expression with differential gene expression,

we can improve the main DeepDiff task performance (see section 4

for experimental results). We train both of these auxiliary tasks

using the sum of the MSE loss averaged over the training set (Eq.

(6)) between the gene expression target and predicted values for

both cell-types. We denote this cumulative Cell-Specific Auxiliary

loss for both cell-types as ‘CellAux.

Siamese Auxiliary – with Contrastive Siamese loss: We use a

second type of auxiliary task to regulate the neighborhood structure

of the learned embedding space. This auxiliary task encourages the

model to learn embeddings whose neighborhood structures in the

model representation space are more consistent with the differential

gene expression pattern. It is achieved through a contrastive loss

term inspired by the Siamese architecture formulation (Hadsell

et al., 2006). In detail, a Siamese architecture consists of two identi-

cal networks with shared parameters which accept distinct inputs

but are joined by a similarity metric at the output. This similarity

metric, used in the output loss of the Siamese network, coupled with

shared weights encourages ‘similar’ inputs to map to nearby points

in the output representation space and ‘dissimilar’ inputs to map to

distant points in the representation space. We extend this notion of

similarity and dissimilarity to the differential gene expression case.

We consider the histone modification profiles XA and XB of two dif-

ferentially expressed genes (upregulated or downregulated) to be

‘different’ and ‘similar’ for genes not differentially expressed. We de-

note ‘dissimilar’ with label S¼1 and ‘similar’ with label S¼0. If the

log change of differential gene expression ��2 (downregulated) or

�2 (upregulated), we label it as (S¼1). Otherwise, we label the

training sample with S¼0. For this auxiliary task, we use Level I

Embedding modules as the twin networks of Siamese module (see

Figure 3 describing DeepDiff variations). XA is passed through two

levels of embedding and attention modules specific to cell-type A.

Similarly, XB is passed through two levels of embedding and atten-

tion modules. In the Siamese contrastive loss, we use the Level I

embeddings for Cell-type A and B: f A
1 and f B

1 . The siamese contrast-

ive loss (Hadsell et al., 2006), denoted as ‘Siamese, uses the following

Eqn. 7, at the output of the Level I Embedding units f A
1 and f B

1 to

train this auxiliary task:

‘Siamese ¼ ð1� SÞ � 1

2
� Rþ S� 1

2
maxð0;m� RÞ2 (7)

Here, R represents:

R ¼ jjðf A
1 ðXAÞ � f B

1 ðXBÞÞjj2 (8)

Many possible variations of DeepDiff exist through the various

combinations of the auxiliary tasks in the multi-tasking framework

as well as the variations of raw HM features. For example, we can

use all auxiliary tasks to multi-task with the main task. This means

the sum of the main and auxiliary task losses is used as part of the

training objective: (i) Differential expression prediction loss for the

main task (‘Diff ), (ii) Auxiliary task loss (‘CellAux) from the Cell-

specific prediction tasks and (iii) Contrastive Siamese Loss (‘Siamese)

from the Siamese-Auxiliary Task. The network is trained using simi-

lar steps outlined in the main DeepDiff task with the sum of these

losses as training objective.

In our experiments, we have evaluated the following DeepDiff

variations:

• (Raw: d) Raw Difference Features;
• (Raw: c) Concatenation of Raw HM features;
• (Raw) Concatenation and difference of raw HM features;
• (Aux) Auxiliary Embeddings as Features;
• (Raw1Aux) Concatenation and Difference of HMs þ

Embeddings from Auxiliary tasks;
• (Aux1Siamese) Auxiliary Features with Siamese Contrastive

Loss;
• (Raw1Aux1Siamese) Raw and Auxiliary Features with Siamese

Contrastive Loss

Figure 3 and Supplementary Table S1 show the different

auxiliary tasks and resulting different DeepDiff variations through
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various combinations with the raw HM features. Due to space

limitation, we have the detailed description of each variation in

Supplementary Section S1.3. In the rest of the paper, we use the

short names enclosed in parantheses above to refer to each

variation.

4 Experimental setup and results

4.1 Dataset
We downloaded gene expression and HM signal data of five core

histone modification signals for ten different cell types from the

REMC database (Kundaje et al., 2015). Supplementary Table S5

summarizes the IDs and information of the ten cell-types we use that

have been extensively profiled by the Roadmap Epigenomics

Project. Supplementary Table S4 describes the five core histone

modifications marks we use along with their known important roles

in gene regulation. For the regression labels, we use the log fold

change of raw counts in the two cell-types under consideration as

the target label for the main task and the log of the raw counts in

each cell type for the two cell-specific auxiliary tasks. In total, we

apply DeepDiff variations and baselines (see Section 4.2) on ten

pairs of cell-types from REMC. Supplementary Table S6 provides a

list of the ten cell-type pairs. For each cell type pair, we have a sam-

ple set of total 18 460 genes. This set was divided into 3 separate

folds: training (10 000 genes), validation (2360 genes) and test

(6100 genes) folds.

4.2 Baselines
We compare DeepDiff to two variations of the Support Vector

Regression (SVR) (Cheng and Gerstein, 2012), the ReliefF based fea-

ture selection followed by Random Forest Regression (Li et al.,

2015a) and the AttentiveChrome (Singh et al., 2017). In details:

• Single Layer SVR (Cheng and Gerstein, 2012): The authors

selected 160 bins from regions flanking each gene TSS and TTS.

Each bin uses a separate SVR, resulting in 160 different bin-

specific SVR models. The radial basis kernel is used for the SVR.

Cheng and Gerstein (2012) proposed to use the best-bin strategy.

Therefore, by using cross-validation, we pick the best bin based

on Pearson Correlation Coefficient (PCC) used by Cheng and

Gerstein (2012). The best bin model is then used for prediction

on the test set.
• Two Layer SVR (Cheng and Gerstein, 2012): The two-layer

model in Cheng and Gerstein (2012) seeked to combine the sig-

nals of all HMs across all the 160 bins. In the first layer, it pre-

dicts expression levels in each of the bins using a bin-specific

SVR model in each individual bin. Then the expression levels

predicted by each bin are combined in the second layer using an-

other SVR model to make a final prediction. The radial basis ker-

nel is used for both layers of the SVR.
• ReliefF Feature Selection þ Random Forest (Li et al., 2015a): We

implement the best performing combination in Li et al. (2015a):

ReliefF algorithm for feature selection followed by random for-

est. While Li et al. (2015a) treat the problem as a binary classifi-

cation with two classes of upregulated versus downregulated

genes, we used this baseline for our regression formulation. The

number of features for ReliefF is selected from the set of {50, 70,

100}. The number of trees for Random Forest is selected from

the set of f10;50;100; 150; 200g.
• AttentiveChrome (Singh et al., 2017): We also compare our

models to the differential patterns derived from predictions made

by AttentiveChrome. We train AttentiveChrome for cell type

specific gene expression as a regression task. Then we calculate

the differential gene expression prediction as the log fold change

between the predicted expression from the two trained models

that are specific to the two cell-types under consideration. In

detail, for each pair of cell-types, we train two cell-specific

AttentiveChrome models independently from each other.

We then use the cell type specific predictions of each model to

calculate differential gene expression. Clearly, this baseline is

not an end-to-end solution for differential gene expression

prediction.

We implemented SVR and Random Forest baselines using the

scikit-learn (Pedregosa et al., 2011) package. We implemented

AttentiveChrome and DeepDiff models in Pytorch. We use Pearson

Correlation Coefficient to evaluate our models. We train all the

variations of DeepDiff (summarized in Supplementary Table S1)

were trained using our training set and tune the hyperparameter

on the validation set. The best performing models were then

Fig. 3. We implement multiple variations of DeepDiff through deep learning based multitasking. Our system includes a set of auxiliary tasks shown as units in

this Figure. In details, we use two types of auxiliary tasks coupled with the main DeepDiff task of differential gene expression. The Cell-specific Auxiliary tasks,

denoted by Auxiliary-Task-A and Auxiliary-Task-B cell-type specific gene expression prediction. The second Siamese-Auxiliary task uses the siamese contrastive

loss at the Level I Embedding outputs. The DeepDiff variations are indicated as combinations of the main task, auxiliary tasks and variations of the input
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evaluated on the test set. The details about evaluation metric and

hyperparameters for DeepDiff and baselines are in the

Supplementary Section S1.5.

4.3 Performance evaluation
Figure 4 shows the Pearson Correlation Coefficient (y-axis) for all

DeepDiff variations versus the baselines. The x-axis shows the ten

cases (cell-type pairs) in our experiments. The deep learning based

models outperform both the SVR as well as Random Forest base-

lines. The two-layer SVR model performs better than one layer SVR.

When comparing DeepDiff variations to the AttentiveChrome base-

line, DeepDiff also outperforms, indicating the need for modeling

differential gene expression prediction. Among the DeepDiff varia-

tions, the Raw: d model performs the worst in 9 out of the 10 cases.

This indicates that simply taking the difference of the HM signals is

not enough to model the combinatorial interactions of HMs for dif-

ferential regulation. Instead, using all HM features, instead of only

the difference, is clearly helpful, as indicated by the higher PCC of

Raw: c in comparison to Raw: d across all 10 cases. The results of

RawþAux show that adding cell-type specific gene expression pre-

diction in the two cell-types as auxiliary tasks clearly helps in

improving the prediction performance. Combining Aux and Raw

features gives better performance than only Aux and Raw in 7 and 6

out of the 10 cell type pairs, respectively. AuxþSiamese is the best

performing model in 5 out of the 10 cases. This shows that adding

the Siamese-based contrastive loss improves the prediction perform-

ance. Table 1 shows the mean and median of the relative perform-

ance (%) with respect to PCC when being compared to the best

performing baselines: two-layer SVR and AttentiveChrome. For ex-

ample, as shown in Table 1, when averaged across the 10 cases,

combining the raw and auxiliary features (RawþAux variation)

results in a relative PCC with respect to the two-layer SVR baseline

of 162.23%.

4.4 Interpreting differential regulation using attention
Finally, we analyze the attention weights of Level II Embedding for

one of the best performing case: cell type pair E116 and E123. Here,

E116 represents ‘normal’ blood cell (GM12878) whereas E123 rep-

resents the leukemia cell (K562). We aim to validate that the learned

attention weights can provide some insights into the differential

gene regulation across these two selected cell types: a normal and a

diseased (cancer) cell state. We only use the attention weights

obtained on the test set for this analysis. First, we get a list of

down-regulated genes (with log fold change < �8:0) and a list of

up-regulated genes (with log fold change >8.0) from the test set.

Figure 5 plots the average attention weights of each of the 5 HMs

when considering all of our selected up-regulated (black bars) and

down-regulated genes (gray bars). We observe that for the top

upregulated genes, H3K4me1 (enhancer associated) and H3K4me3

(promoter associated) get the highest weights (i.e. contributing more

importance). This is consistent with observations by Grégoire et al.

(2016) that upregulated genes are more enriched for H3K4me1 and

H3K4me3 when under cancer condition.

For top down-regulated genes (Fig. 5), H3K27me3 (Polycomb

Repression associated) gets a comparatively higher weight (the second

highest attention weight). Grégoire et al. (2016) also reported this

trend showing that down-regulated genes are more enriched with the

repressive H3K27me3 under the cancer condition whereas up-

regulated genes do not show variation of this HM between normal

and cancer conditions. Figure 5 shows that H3K9me3 (heterochroma-

tin linked) gets low attention weights for both up-regulated and

down-regulated genes. Grégoire et al. (2016) also reported this trend

0

0.2

0.4

0.6

0.8

1

E
12

3-
E

00
3

E
11

6-
E

00
3

E
12

3-
E

11
6

E
00

3-
E

00
5

E
00

3-
E

00
6

E
00

6-
E

00
7

E
00

5-
E

00
6

E
00

3-
E

00
4

E
00

4-
E

00
6

E
03

7-
E

03
8

P
ea

rs
on

C
or

re
la

tio
n

C
oe

ff
ci

en
t (

P
C

C
)

Celltype Pairs

Single-SVR
Double-SVR

RandomForest
AttentiveChrome

Raw:d
Raw:c

Raw
Aux

Raw+Aux
Aux+Siamese

Raw+Aux+Siamese

Aux+Siamese

Aux+Siamese
Aux+Siamese

Raw+Aux+Siamese

Raw Aux+Siamese

Raw+Aux
Raw:c

Aux+Siamese

Raw:c

Fig. 4. Pearson Correlation Coefficient (PCC) for all DeepDiff variations along with the baselines for each cell-type pair (x-axis). The best performing DeepDiff
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that the divergence of expression is less likely due to this HM. We

want to emphasize again that our model learns the importance of

HMs for the differentially expressed genes in an end-to-end manner.

5 Conclusion

We have presented DeepDiff, a deep learning framework for differ-

ential gene expression prediction using histone modifications

(HMs). DeepDiff is an attention-based deep learning architecture

designed to understand how different HMs work together to influ-

ence changes in expression patterns of a gene between two different

cell types. DeepDiff uses a modular architecture to represent the

spatially structured and long-range HM signals. It incorporates a

two-level attention mechanism that gives it the ability to find salient

features at the bin level as well as the HM level. Additionally, to

deal with fewer differentially expressed genes between two cell

types, we design a novel multi-task framework to use the cell-type-

specific prediction network as auxiliary tasks to regularize our

primary task of differential expression prediction. We also incorpor-

ate a Siamese contrastive loss term to further improve the learned

representations. For the future work, we will evaluate the perform-

ance and the attention scores of DeepDiff on more cell type pairs.

We will incorporate additional epigenomic signals that may relate to

differential gene expression. We would also like to explore different

ways to interpret and validate the attention weights. In summary,

leveraging deep learning’s ability to extract rich representations

from data can enhance our understanding of gene regulation by

HMs, thus enabling insights into principles of gene regulation

through epigenetic factors.

Conflict of Interest: none declared.

Funding

This work was partly supported by the National Science Foundation under

NSF CAREER award No. 1453580. Any Opinions, findings and conclusions

or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect those of the National Science Foundation.

References

Bannister,A.J. and Kouzarides,T. (2011) Regulation of chromatin by histone

modifications. Cell Res., 21, 381–395.

Caruana,R. (1997) Multitask learning. Mach. Learn., 28, 41–75.

Cheng,C. and Gerstein,M. (2012) Modeling the relative relationship

of transcription factor binding and histone modifications to gene

expression levels in mouse embryonic stem cells. Nucleic Acids Res., 40,

553–568.

Chorowski,J.K. et al. (2015) Attention-based models for speech recognition.

In: Advances in Neural Information Processing Systems, Proceeding

NIPS’15 Proceedings of the 28th International Conference on Neural

Information Processing Systems, vol. 1. Montreal, Canada, December

07–12, 2015, pp. 577–585.

Corbetta,M. and Shulman,G.L. (2002) Control of goal-directed and stimulus-

driven attention in the brain. Nat. Rev. Neurosci., 3, 201–215.

Costa,I.G. et al. (2011) Predicting gene expression in t cell differentiation from

histone modifications and transcription factor binding affinities by linear

mixture models. BMC Bioinformatics, 12, S29–S21.

Dong,X. et al. (2012) Modeling gene expression using chromatin features in

various cellular contexts. Genome Biol., 13, R53.

Dzmitry,B. et al. (2014) Neural machine translation by jointly learning to align

and translate. arXiv Preprint arXiv, 1409, 0473.

Egger,G. et al. (2004) Epigenetics in human disease and prospects for epigenet-

ic therapy. Nature, 429, 457.

Frasca,M. and Pavesi,G. (2013) A neural network based algorithm for gene

expression prediction from chromatin structure. In: The 2013 International

Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8.

Gjoneska,E. et al. (2015) Conserved epigenomic signals in mice and humans

reveal immune basis of Alzheimer’s disease. Nature, 518, 365.
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