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Abstract

Motivation: Inferring a gene regulatory network from time-series gene expression data is a funda-

mental problem in systems biology, and many methods have been proposed. However, most of

them were not efficient in inferring regulatory relations involved by a large number of genes be-

cause they limited the number of regulatory genes or computed an approximated reliability of

multivariate relations. Therefore, an improved method is needed to efficiently search more gener-

alized and scalable regulatory relations.

Results: In this study, we propose a genetic algorithm-based Boolean network inference (GABNI)

method which can search an optimal Boolean regulatory function of a large number of regulatory

genes. For an efficient search, it solves the problem in two stages. GABNI first exploits an existing

method, a mutual information-based Boolean network inference (MIBNI), because it can quickly

find an optimal solution in a small-scale inference problem. When MIBNI fails to find an optimal so-

lution, a genetic algorithm (GA) is applied to search an optimal set of regulatory genes in a wider

solution space. In particular, we modified a typical GA framework to efficiently reduce a search

space. We compared GABNI with four well-known inference methods through extensive simula-

tions on both the artificial and the real gene expression datasets. Our results demonstrated that

GABNI significantly outperformed them in both structural and dynamics accuracies.

Conclusion: The proposed method is an efficient and scalable tool to infer a Boolean network from

time-series gene expression data.

Contact: kwonyk@ulsan.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A gene regulatory network (GRN) is represented by a directed graph

consisting of sets of nodes and directed edges, which represent

genes/proteins and regulatory interactions among them, respectively.

It is a fundamental problem in systems biology to infer a GRN from

gene expression data as accurately as possible, because it helps us to

understand complex biological processes through network-level

analyses. As more time-series gene expression data is available due

to recent advances in high-throughput microarray technology and

RNA-Seq, a number of inference approaches have been developed

using a variety of computational models such as a Boolean network

(Kauffman, 1969), a Bayesian network (Imoto et al., 2002) and a

differential equation model (Chen et al., 1999). Among them, a

Boolean network where a state of a gene is represented by a Boolean

value, 1 (ON) or 0 (OFF), and a regulatory interaction is represented

by a Boolean function, is most efficient to represent a very large-

scale network due to the simplest representation. However, most

previous Boolean network inference methods still have a limitation

in scalable representation of regulatory interactions. For example,

the feasible number of regulatory genes was limited to only one to

three in the well-known methods such as the reverse engineering al-

gorithm (REVEAL) (Liang et al., 1998), Best-Fit (Lähdesmäki et al.,

2003) and Bayesian inference approach for a Boolean network

(BIBN) (Han et al., 2014). In addition, some other methods in the

literature (Haider and Pal, 2012) are applicable only when some pri-

ori knowledge such as connectivity of regulator genes and state tran-

sition pairs are available.

To resolve the scalability problem, the mutual information (MI)

was considered to efficiently identify the regulatory relations. For

example, the relevance networks (RN) (Butte and Kohane, 2000)

inferred a large number of regulatory genes by computing the pair-

wise MI values and discarding the genes with the lowest MI values,

and the context likelihood of relatedness (CLR) (Faith et al., 2007)

extended the relevance network using an adaptive background
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correction step. The algorithm for the reconstruction of accurate cel-

lular networks (ARACNE) (Margolin et al., 2006) is another MI-

based method which determines a significant dependency among

genes using an inequality to filter out the weakest connections from

every gene triplets. Despite a successful performance in each study,

they cannot represent a real multivariate regulatory function be-

cause they examined only pairwise relations. In this regard, the mu-

tual information-based Boolean network inference (MIBNI)

(Barman and Kwon, 2017) to compute an approximated multivari-

ate MI value was proposed in our previous study. Although it

showed a better performance than the existing methods, there is a

room for improvement because MIBNI was still a greedy algorithm

based on the approximation metric. Alternatively, several ensemble

methods to provide a set of solutions instead of a single solution

were proposed by formulating a feature selection problem. For ex-

ample, the gene network inference with ensemble of trees (GENIE3)

(Irrthum et al., 2010) selects a set of features for random forests or

extra trees learning models. Another method is the trustful inference

of gene regulation using stability selection (TIGRESS) (Haury et al.,

2012) which conducts a feature selection using the least angle regres-

sion integrated with a stability selection. Although both methods

showed interesting performances, they eventually ranked linear rela-

tions of pairs of regulator and target genes. Considering that nonlin-

ear regulatory relations are ubiquitously found in real biological

networks, a method which can infer more generalized regulatory

relations is required. To this end, we propose a novel genetic

algorithm-based Boolean network inference (GABNI) method.

Basically, it exploits MIBNI in the first stage to utilize the excellent

performance in identifying regulatory rules of a small size. In case

that MIBNI fails to find optimal solutions, a genetic algorithm is

applied to search an optimal set of regulatory genes in a relatively

huge problem space. GAs run for every target gene and all results

are integrated into a final Boolean network. We validated the per-

formance of GABNI with both the artificial and the real gene ex-

pression datasets through comparisons with four existing methods,

MIBNI, ARACNE, GENIE3 and TIGRESS. Our method outper-

formed them in terms of both structural and dynamics accuracies,

and this suggests that GABNI is a state of the art in Boolean network

inference from a time-series gene expression dataset.

2 Materials and methods

2.1 A Boolean network model
In this study, we employed a Boolean network model to investigate

the complex dynamics of gene regulatory network. A Boolean

network (Kauffman, 1969) is represented by a directed graph G(V,

A) where V ¼ fv1; v2; . . . ; vNg is a set of nodes and A ¼ fðvi; vjÞg �
V � V is a set of interactions. The value of a node vi 2 V at

time-step tþ1 denoted by viðt þ 1Þ is updated by a Boolean function

fi : f0;1gki ! f0; 1g of the values of ki regulatory genes

vi1 ; vi2 ; . . . ; viki
at time t. Hence, the update scheme of vi can be writ-

ten as

viðt þ 1Þ ¼ fiðvi1 ðtÞ; vi2 ðtÞ; . . . ; viki
ðtÞÞ:

We note that a total of 22ki Boolean functions are possible for fi,

and the update time lag is one.

2.2 The Boolean network inference problem
The Boolean network inference problem is a problem to infer not

only a set of interactions but also a set of update functions from a

time-series gene expression data. The inference performance can be

assessed by comparing the trajectory generated by the inferred net-

work and the observed time-series gene expression. Let v0ðtÞ the esti-

mated value of gene v at time t in the inferred Boolean network. We

define the gene-wise dynamics consistency Cðv; v0Þ as the similarity

between the Boolean trajectories of the observed gene expression

v(t) and the estimated gene expression v0ðtÞ, as follows:

Cðv; v0Þ ¼
PT

t¼2 IðvðtÞ ¼ v0ðtÞÞ
T � 1

; (1)

where T is the total number of time-steps, and Ið�Þ is an indicator

function that returns 1 if the condition is true, otherwise 0. In add-

ition, the comparison starts at t¼2 by the assumed update time lag

in this study. We finally define the dynamics accuracy of an inferred

network as the average of gene-wise dynamics over all genes as

follows:

Dynamics Accuracy ¼
PN

i¼1 Cðvi; v
0
iÞ

N
:

2.3 Structural performance metrics
When the structure of a gold standard or correct network is known,

we can further evaluate the inference performance with respect to

the network structure. To this end, we used three measures, preci-

sion, recall and structural accuracy. Precision is the ratio of correctly

inferred connections over the total number of predictions as follows:

Precision ¼ TP

TPþ FP
;

where TP (true positive) and FP (false positive) denote the numbers

of correctly and incorrectly predicted connections, respectively.

Recall is the ratio of true predicted connections over the total num-

ber of actual connections:

Recall ¼ TP

TPþ FN
;

where FN (false negative) means the number of non-inferred connec-

tions in G(V, A). Structural accuracy is the ratio of correct predic-

tions out of all predictions as follows:

Structural Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN
;

where TN (true negative) is the number of correct negative

predictions.

2.4 MIBNI method
In this study, we propose a new inference algorithm which utilizes

the strength of MIBNI (see Barman and Kwon, 2017 for details),

which is a mutual information-based Boolean network inference al-

gorithm with a limited update scheme. It has two subroutines, MIFS

and SWAP. The MIFS subroutine returns an initial set of regulatory

genes Sv � V for each target gene v by computing an approximated

multivariate mutual information. Then, the SWAP subroutine is

applied to improve the dynamics accuracy by swapping between a

selected regulatory genes Sv and the set of unselected genes V n Sv. It

is repeated until there is no improvement in terms of the gene-wise

dynamics consistency. MIBNI showed a superior performance for a

relatively small number of regulatory genes with a small running

time in the previous study. However, it has a limitation that only

conjunction or disjunction Boolean functions are considered for rep-

resentation of regulatory relations.
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3 Our proposed method

In this paper, we propose a novel method called GABNI for a

Boolean network inference from gene expression data. Figure 1 illus-

trates the overall framework of it. A time-series gene expression

dataset is given as an input and it is converted into a binarized

gene expression dataset using a K-means discretization method

(MacQueen et al., 1967). It divides all expression values of each

gene into two clusters, marked by 1(ON) and 0(OFF), which denote

higher and lower than the average expression level, respectively.

Given a target gene, MIBNI is first applied to infer an optimal up-

date rule with a limited function scheme. If it fails to find the opti-

mal rule (i.e. the gene-wise dynamics consistency is not equivalent to

1.0), our genetic algorithm is applied. The reason for this hybrid ap-

proach is that MIBNI can rapidly find an optimal solution in the

case of a small-size problem as shown in the previous study (Barman

and Kwon, 2017). We repeat this process for all target genes and

eventually construct a final inferred network by integrating all found

regulatory rules. In the following subsections, we describe the pro-

posed GA in detail.

3.1 Our GA
The GA framework we used in this paper is shown in Figure 2. A

chromosome represents a set of regulatory genes for a given target

gene. The GA starts by randomly initializing the population P which

is a set of chromosomes. Two parent chromosomes p1 and p2 are

chosen by a roulette wheel selection, and then generate two off-

spring chromosomes x1 and x2 by a crossover operator. Each off-

spring can be mutated with a small probability. If the offspring is

better than the parent, the former replaces the latter in the next gen-

eration. This process continues until a stopping criterion is met.

3.1.1 Chromosome representation

In our problem, the GA is used to select an optimal set of regulatory

genes. Given a target gene v 2 V ¼ fv1; . . . ; vNg, a chromosome is

represented by a binary vector of length N where i-th element value

(either 1 or 0) means that vi is included or not in the set of regulatory

genes. To reduce the search space of the GA, we set two constraints

about the feasible solutions, the maximum number of regulatory

genes and the minimum mutual information with the target gene. In

other words, the GA does not consider a chromosome representing

too many regulatory genes by the first constraint. In addition, the

second constraint excludes the genes which are mostly uncorrelated

to the target gene from the candidate solutions.

3.1.2 Fitness evaluation

A chromosome in the GA represents only the set of selected regulatory

genes. Thus, we need to specify a regulatory rule from the chromo-

some to evaluate its fitness. Let v a target gene and u1; u2; . . . ;uk a set

of selected regulatory genes in a chromosome. For simplicity,

we denote a vector of values of genes u1ðtÞ; u2ðtÞ; . . . ; ukðtÞ by uðtÞ.
To specify the regulatory rule of the chromosome, we estimate the

value of v at time tþ1, denoted by v0ðt þ 1Þ, given a condition

uðtÞ ¼ b for every bit string b ¼ b1b2 � � �bk 2 f0;1gk. Let

R ¼ ft 2 f1; . . . ;T � 1gjuðtÞ ¼ bg. If jRj ¼ 0 in the binary gene ex-

pression dataset, we set v0ðt þ 1Þ ¼ � (don’t care symbol). Otherwise,

we specify it as v0ðt þ 1Þ ¼ arg maxb2f0;1g Prðvðt þ 1Þ ¼ bjuðtÞ ¼ bÞ
in the binary gene expression dataset. In this way, we can specify

v0ðt þ 1Þ for all bit strings b ¼ b1b2 � � � bk and eventually compute the

gene-wise dynamics consistency [see Equation (1) in Section 2]. We

note that v0ðt þ 1Þ is the optimal estimation given a set of input varia-

bles, u1;u2; . . . ; and uk; with respect to the binary gene expression

dataset. Figure 3 shows an example of the binary gene expression

dataset with 10 genes measured for five time-steps. Given a target

gene v3, the example chromosome 0101000010 means that v2, v4 and

v9 are selected for regulatory genes. In the case of v2ðtÞv4ðtÞv9ðtÞ
¼ 001 (or 111), v03ðt þ 1Þ is specified to 0 (resp. 1) because v03ðt þ 1Þ
is more likely to turn off (resp. on) in the binary gene expression data-

set. On the other hand, v03ðt þ 1Þ is not specified in the case of v2ðtÞv4

ðtÞv9ðtÞ ¼ 100 because there is a tie (we denote it by “� ” symbol).

In addition, v03ðt þ 1Þ is not determined in the rest cases because the

bit string was not observed in the dataset (we denote it by “ � ”

symbol). We note that these non-deterministic cases marked by either

“ � ” or “� ” symbol do not affect the gene-wise dynamics consist-

ency. Next, we define the fitness function of a chromosome using the

gene-wise dynamics consistency as follows:

Fitness ¼ 1

ð1� Cðv; v0ÞÞ � cþ k

where c is a weight factor and k is the number of regulatory genes

chosen by a chromosome. In other words, the fitness of a chromo-

some is larger as Cðv; v0Þ is larger and k is smaller. We set c such that

ð1� Cðv; v0ÞÞ � c� k, which implies that Cðv; v0Þ and k are consid-

ered as the primary and secondary factors for the fitness function,

respectively.

3.1.3 Selection, crossover and mutation

Our GA chooses two parent solutions among the population using a

variant roulette wheel selection. The selection probability of a

Fig. 1. Overall framework of GABNI. A time-series gene expression data is

converted into binary values. If MIBNI finds an optimal regulatory rule, it is

included in the final inferred network. Otherwise, GA is applied to find a bet-

ter solution. This process is executed for every target gene. All inference

results are collected to construct the final inferred Boolean network

Fig. 2. The framework of our GA
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chromosome is proportional to the adjusted fitness defined as

follows:

Adjusted Fitness ¼ a� Fitnessþ b

where a ¼ H
FMAX�FMIN and b ¼ 1� a � FMIN. Herein, FMAX (and

FMIN) means the maximum (resp. minimum) fitness value in the

population, and H is an adjustment parameter. We note that this lin-

ear adjustment assigns the selection probability of the best chromo-

some to H times of that of the worst chromosome in the population.

It helps the GA to avoid a premature convergence.

Once two parent chromosomes are selected, a crossover is

applied to produce two offspring chromosomes as shown in

Figure 4. Unlike most general crossovers such as multi-point cross-

over, we devised a new crossover which can more properly inherit

the membership information of genes in parents. If a binary gene

value is common in both parents, it is copied to an offspring (the

white or gray gene in Fig. 4). Otherwise, a value selected between

two parents uniformly at random is copied to an offspring (the yel-

low or blue gene in Fig. 4). Each offspring chromosome can be

modified by a bitwise uniform mutation operator, which flips every

bit value with a small probability.

3.1.4 Replacement and stopping criterion

If the offspring is superior to the parent, the former replaces the

latter in the population at the next generation. The GA repeats

the evolution of new solutions and stops after a fixed number of

generations.

3.2 Identification of an interaction type
Most previous inference methods focus on the inference of interac-

tions between a target and a regulator gene. However, it is also im-

portant to identify the interaction type, i.e. a positive (activating) or

negative (inhibitory) interaction. To this end, GABNI infers the

interaction type by examining the binary expression values of a tar-

get gene and a regulatory gene in the binary gene expression data.

Let v and u be a target and a regulatory gene, respectively, in the in-

ference result by GABNI. In addition, let Cij ¼ jft 2 f1; . . . ;T � 1gj

vðt þ 1Þ ¼ i and uðtÞ ¼ jgj in the binary gene expression dataset. If

C00 þ C11 � C01 þ C10, u activates v. Otherwise, u inhibits v.

4 Results

To validate our approach, we tested GABNI with two kinds of data-

sets, the artificial and the real time-series gene expression datasets,

and showed the results in Sections 4.1 and 4.2, respectively. Table 1

shows the parameter values of the GA we specified in this work.

4.1 Performance on the artificial gene expression

dataset
We used two kinds of random network generation models to

create artificial gene expression datasets, the Barabasi-Albert (BA)

model (Barabasi and Albert, 1999) and the GeneNetWeaver (GNW)

tool-based model (Schaffter et al., 2011). In the BA model, we

first generated 10 random networks with different network sizes

(jVj ¼ 10;20; . . . ; 100 and jAj ¼ 2 � jVj) using a preferential attach-

ment mechanism (see Supplementary Fig. S1 for the pseudo-code).

Then we randomized a set of update functions and generated a time-

series trajectory starting with a random initial state. For a more sta-

ble test, we repeated it 30 times. As a result, we tested GABNI over

a total of 300 different datasets based on the BA model. In the

GNW model, the tool generates random network structures by

referring to a real E. coli or S. cerevisiae regulatory network. For

each jVj ¼ 10; 20; . . . ;100, we generated 30 networks with different

numbers of interactions (jAj 2 ½27;204	; see Supplementary Table

S1). The generated continuous expression values were converted

into Boolean values using K-means algorithm. The maximum

Fig. 3. An example of specifying the update rule from a chromosome.

Assume that the binary gene expressions of 10 genes are measured over five

time-steps. Let v3 a target gene and consider a chromosome 0101000010

where v2, v4 and v9 are selected as a set of regulatory genes. The best esti-

mated value of the target gene, v
0

3ðt þ 1Þ, is determined for every 23 bit

strings of regulatory genes from the binary gene expression dataset. The

symbol ‘*’ means that the given bit string was not observed in the gene ex-

pression dataset. The symbol ‘–’ means that the best estimation value is a tie

between 0 and 1. We note that these unspecified symbols do not affect the

gene-wise dynamics consistency

Fig. 4. The crossover operator used in this study. Parent 1 and 2 include

fv2; v4; v7; v9g and fv2; v4; v8; v9g for regulatory gene sets, respectively. A bit

value common to both parents is copied to an offspring (white or gray color).

Otherwise, a bit value between two parents is selected at uniform random

(yellow or blue color)

Table 1. GA parameter values in this study

Parameters Value

Population size N þ 10

Maximum number of regulatory genes 0:6 �N
Minimum mutual information with the target gene 0.05

c in fitness function 28

H in adjusted fitness 3

Number of GA iterations 1000

Mutation probability 0.01
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time-step (T) was set to jVj þ 10 for both BA and GNW models.

We compared GABNI with four previous methods MIBNI,

ARACNE, GENIE3 and TIGRESS.

4.1.1 Structural accuracy comparison

As explained before, we tested five inference methods over two sets

of 300 random gene expression datasets generated by BA and GNW

models. The results with respect to the structural inference accuracy

are shown in Figure 5 (BA model) and Supplementary Figures S2–S4

(GNW model). For more detailed analysis, we classified the target

genes into nine classes according to the incoming links (D) which

was ranged from 1 to 9. As shown in Figure 5, the structural per-

formance of all methods decreases as the incoming links increases.

This is because the number of incoming links eventually represents

the degree of difficulty of an inference problem. GABNI and MIBNI

showed perfect performances in the case of D¼1. This is not sur-

prising because the GA operates only when MIBNI fails to find an

optimal solution. On the other hand, GABNI more significantly out-

performs other methods as D increases. This implies that our GA

dramatically improved the structural inference performance over the

other methods. These results are consistently observed irrespective

of a specific network size (see Supplementary Figs S5–S7 for details),

and in GNW random networks (See Supplementary Figs S2–S4 for

details).

4.1.2 Dynamics accuracy comparison

In this subsection, we analyzed the performance with respect to the

dynamics accuracy in Figure 6 (BA model) and Supplementary

Figure S8 (GNW model). As shown in Figure 6a, we computed

the average dynamics accuracy against the network sizes, jVj ¼
10;20; . . . ;100. Interestingly, the dynamic accuracy of GABNI was

1.0 (perfect accuracy) for all network sizes whereas that of MIBNI,

ARACNE, GENIE3 and TIGRESS methods decreased as the net-

work size increased. This implies that our GA always found the op-

timal solutions in terms of the fitness value. We observed a

consistent result in the case of GNW random networks (see

Supplementary Fig. S8). We further examined the change of dynam-

ics accuracy of the best solutions in GA against the number of gen-

erations (Fig. 6b). As expected, the dynamics accuracy of the best

solution in GA gets lower as the number of incoming links is larger.

However, it almost finds the optimal solution around 600 genera-

tions regardless of the number of incoming links. This implies that

our GA is considerably robust against the degree of difficulty of the

inference problem.

(a) (b) (c)

Fig. 5. Comparison of precision, recall and structural accuracy between GABNI and other methods in BA random networks. Results of (a) precision, (b) recall and

(c) structural accuracy, respectively. Ten random networks with different network sizes jV j ¼ 10; 20; . . . ; 100 were created and 30 random trajectories for each net-

work were generated. A total of 16 500 nodes in those networks were classified into nine groups according to the number of incoming links. Y-axis values show

the average precision, recall and structural accuracy values in each group. GABNI showed the best performance in terms of precision, recall and structural

accuracy

(a) (b)

Fig. 6. Dynamics accuracy analysis in BA random networks. (a) Comparison of dynamic accuracies between GABNI and other methods in BA random networks.

Ten random networks with different network sizes jV j ¼ 10; 20; . . . ; 100 were created and 30 random trajectories for each network were generated. Therefore,

each point means the average dynamics accuracy of a method over 30 datasets. (b) Change of dynamics accuracy against the number of generations in GA. BA

random networks with jV j ¼ 100 were analysed. We classified the target genes according to the number of incoming links (D) and examined the change of the

average dynamics accuracy of the best solutions for every 200 generation in GA
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D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i927/5093222 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty584#supplementary-data


4.1.3 Computation time comparisons

The comparative result of the running time among GABNI,

MIBNI, ARACNE, GENIE3 and TIGRESS over 300 BA random

networks is shown in Figure 7. All simulations were executed on

a PC with Intel Core i7 3.4 GHz CPU and 8GB memory using a

single processor core. As shown in the figure, MIBNI was fastest

whereas GABNI was slowest among them, because GA is a global

optimization method to search a wide range of candidate

solutions. This implies that our method finds a high-quality solu-

tion by sacrificing the search time. In addition, we note that the

usage of MIBNI in the first stage of the GABNI framework

is beneficial to not only the accuracy performance but also the

running time.

4.2 Performance on the real gene expression dataset
4.2.1 Case study 1: DREAM challenge dataset

We applied GABNI to infer signaling networks from DREAM

challenge datasets (Marbach et al., 2010; Prill et al., 2010;

Stolovitzky et al., 2007). There are five datasets of two E. coli and

three Yeast networks, and every gold standard network consists of

10 genes. In addition, they have 10, 15, 15, 22 and 25 interactions,

respectively, and each dataset was measured over 21 time points.

Tables 2 and 3 summarize the structural and the dynamics accura-

cies, respectively. Both accuracies of GABNI were significantly

higher than those of the other methods in all datasets. In addition,

GABNI greatly improved the performance of MIBNI in all datasets,

which implies that our genetic search was efficient and robust.

4.2.2 Case study 2: Budding yeast cell cycle

In the second case study, we applied GABNI to infer a budding

yeast cell cycle network consisting of jVj ¼ 11 nodes and jAj ¼ 29

interactions (Li et al., 2004; Fig. 8). In the previous study, a Boolean

time-series gene expression dataset was given (see Supplementary

Table S2). As shown in Figure 8b, our method correctly inferred 18

true connections out of 29 connections. On the other hand, MIBNI,

ARACNE, GENIE3 and TIGRESS correctly identified 14, 11, 14

and 14 connections, respectively. Specifically, the structural

accuracies of GABNI, MIBNI, ARACNE, GENIE3 and TIGRESS

are 0.8843, 0.8240, 0.8125, 0.8080 and 0.8080, respectively.

Fig. 7. Comparison of the running time among the network inference meth-

ods. The Y-axis values represent the average log-scaled running time of

GABNI, MIBNI, ARACNE, TIGRESS and GENIE3. MIBNI was fastest among

them. On the other hand, GABNI was slowest because it searches a larger

problem space. The time unit is measured in millisecond

Table 2. Structural accuracies in DREAM3 challenge

Methods E. coli 1 E. coli 2 Yeast 1 Yeast 2 Yeast 3

GABNI 0.9042 0.8762 0.9340 0.8252 0.8265

MIBNI 0.8437 0.7979 0.8315 0.7075 0.7102

ARACNE 0.7035 0.7800 0.7034 0.6247 0.5637

GENIE3 0.8144 0.7920 0.7567 0.6846 0.6296

TIGRESS 0.8063 0.7857 0.7319 0.6699 0.6017

Table 3. Dynamics accuracies in DREAM3 challenge

Methods E. coli 1 E. coli 2 Yeast 1 Yeast 2 Yeast 3

GABNI 1.0000 0.9800 0.9800 0.9700 1.0000

MIBNI 0.9400 0.9200 0.9200 0.9200 0.8900

ARACNE 0.8200 0.8900 0.8500 0.8800 0.7700

GENIE3 0.8800 0.9000 0.8900 0.9100 0.9000

TIGRESS 0.8500 0.9000 0.9000 0.9000 0.8600

Fig. 8. Application of GABNI to infer the budding yeast cell cycle network. (a) The gold standard of the budding yeast cell cycle network. It consists of 11 genes

and 29 interactions. (b) Inference result by GABNI. The green, red and blue interactions denote true positive, false positive and false negative predictions,

respectively. The inferred result shows 18 true positives, 3 false positives and 11 false negatives. The structural and dynamics accuracies were 0.8843 and 1.0

(perfect prediction), respectively
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In addition, the dynamics accuracy of GABNI was 1.0 (perfect ac-

curacy) whereas those of MIBNI, ARACNE, GENIE3 and TIGRESS

were approximately 0.9600, 0.9600, 0.9800 and 0.9500, respective-

ly (see Supplementary Fig. S9 for details). In other words, GABNI

showed significantly better performance than the other methods in

terms of both structural and dynamics accuracies. Furthermore, we

examined the performance sensitivity against the noise effect. We

flipped 5% and 10% binary gene expression values among the data-

set and observed GABNI robustly outperformed the other methods

(see Supplementary Table S3).

5 Conclusions and discussion

In this work, we proposed a novel Boolean network inference method

from time series gene expression data using a genetic algorithm, called

GABNI. Although many previous methods were suggested for net-

work inference, they were not efficient in inferring a regulatory rela-

tion involving a large number of genes. In addition, some of them

outputs only a set of regulatory genes without detailed specification

of a regulatory rule. Our proposed method exploited an existing

method, MIBNI, in the first stage because it can almost find an opti-

mal solution for a relatively less complex problem even with a very

short running time. If MIBNI fails to find an optimal solution due to

the degree of complexity of an underlying regulatory function, our

GA is applied. In particular, we modified a typical GA framework by

suggesting the representation constraints and a sort of membership

crossover for an efficient search. We validated our method through

extensive comparisons with four other methods, MIBNI, ARACNE,

GENIE3 and TIGRESS, over both the artificial and the real gene ex-

pression data. In particular, GABNI significantly outperformed the

other methods for larger-scale inference problems in terms of both the

structural and the dynamics accuracies. Although the running time of

GABNI was largest, it is possible to reduce the running time by paral-

lel implementation, which will be included in a future study.
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