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Abstract

Motivation: New technologies allow for the elaborate measurement of different traits of single cells

under genetic perturbations. These interventional data promise to elucidate intra-cellular networks

in unprecedented detail and further help to improve treatment of diseases like cancer. However,

cell populations can be very heterogeneous.

Results: We developed a mixture of Nested Effects Models (M&NEM) for single-cell data to simul-

taneously identify different cellular subpopulations and their corresponding causal networks to ex-

plain the heterogeneity in a cell population. For inference, we assign each cell to a network with a

certain probability and iteratively update the optimal networks and cell probabilities in an

Expectation Maximization scheme. We validate our method in the controlled setting of a simulation

study and apply it to three data sets of pooled CRISPR screens generated previously by two novel

experimental techniques, namely Crop-Seq and Perturb-Seq.

Availability and implementation: The mixture Nested Effects Model (M&NEM) is available as the

R-package mnem at https://github.com/cbg-ethz/mnem/.

Contact: martin.pirkl@bsse.ethz.ch or niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding heterogeneous diseases like cancer on the molecular

level is challenging, but also crucial for the development and im-

provement of therapies. Molecular intra-tumor heterogeneity is an

important factor for cancer treatment (Prasetyanti and Medema,

2017; Sun and Yu, 2015). Treatment strategies often assume cancer

to be homogeneous across cells. However, if different cell types are

resistant to different drugs, the success of current treatment strat-

egies is limited.

A key component of the molecular landscape are signaling path-

ways and how they are causally wired in healthy and diseased cells.

De-regulation of pathways in diseased cells is prevalent (Giancotti,

2014; Mao, 2012) and to study this de-regulation, different math-

ematical methods have been developed. Several different algorithms

have been proposed to analyze causal interactions of genes from dif-

ferent types of data (Friedman et al., 2000; Kalisch and Bühlmann,

2007; Margolin et al., 2006; Nachman et al., 2004). Nested Effects

Models (NEM, Markowetz et al., 2005, 2007) infer pathways from

perturbation data. In each experiment, one protein in the pathway is

knocked down and a multi-trait read-out is produced, e.g. gene ex-

pression or cell imaging data (Siebourg-Polster et al., 2015). If the

expression of a gene changes upon knock-down compared to the

unperturbed control, the knock-down has an effect on the gene and

the gene responds to the knock-down. If the genes responding to the

knock-down of protein B are a subset of the genes responding to

the knock-down of protein A, NEMs will place A upstream of B in

the pathway and a causal edge from A to B is inferred.

NEMs have been successfully applied to different biological data

sets to infer the causal network of signaling pathways (Fröhlich

et al., 2009; MacNeil et al., 2015; Markowetz et al., 2005). Several

extensions of NEMs have been developed, e.g. to account for hidden

variables (Sadeh et al., 2013). Epistatic Nested Effects Models (Pirkl

et al., 2017) systematically infer epistasis from double knock-down

screens. Boolean Nested Effects Models (Pirkl et al., 2016) make use

of arbitrary combinations of knock-downs and knock-ins per ex-

periment to infer a full boolean network and additionally integrate

literature knowledge. Dynamic Nested Effects Models (Anchang

et al., 2009; Fröhlich et al., 2011) infer the rate of the signal

flow within the network from time series data, while Hidden

Markov Nested Effects Models (Wang et al., 2014) model the evolu-

tion of the network itself over time. NEMix (Siebourg-Polster et al.,

2015) introduces a hidden variable to account for unobserved path-

way activation. Srivatsa et al. (2018) improve network reconstruc-

tion by exploiting off-target effects from siRNA knock-downs.
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Finally, Sverchkov et al. (2018) account for heterogeneous effects

by introducing different contexts for each knock-down. I.e.

each perturbed gene is allowed to be at several different places in the

network at once and regulate different sets of E-genes.

The arrival of single-cell technologies provides new opportunities

to improve resolution and account for heterogeneity in a population

of cells. Pooled CRISPR screens enable gene expression measurements

for thousands of cells with each cell having been the target of a

CRISPR modification, i.e. a knock-down (Datlinger et al., 2017;

Dixit et al., 2016). However, the heterogeneity in cell populations

measured with single-cell technologies remains an open problem and

there is a need for methods tailored to this new type of data.

Motivated by evidence that causal signaling pathways can be dif-

ferently wired in subpopulations of cells (Gaudet and Miller-Jensen,

2016), we introduce a mixture model, which simultaneously infers

different subpopulations of cells across knock-downs and a causal

network of the perturbed genes (Fig. 1). Cells are not hard clustered,

but soft, such that each cell has a certain probability of being

generated by each network component. This probability defines

how much a cell contributes to the network inference for each

component.

We show that Mixture Nested Effects Models (M&NEMs) work

well in the controlled setting of a simulation study and apply our

method to three data sets from two different pooled CRISPR

screens based on Crop-Seq (Datlinger et al., 2017) and Perturb-Seq

(Dixit et al., 2016). In those screens, thousands of cells were pooled

and each transfected with a different sgRNA to knock-out a specific

gene. Gene expression data was generated by single-cell RNA-Seq.

For the Crop-Seq screen we concentrated on one data set investigat-

ing the T-cell receptor pathway in the T-Cell leukemia derived

Jurkat cell line and key regulators DOK2, EGR3, LAT, LCK,

PTPN6, PTPN11 and ZAP70. From the Perturb-Seq screen we

model the causal interplay of cell cycle genes in one data set and

transcription factors in another data set. Both data sets of the

Perturb-Seq screens are derived from K562 leukemia cells.

2 Model

In this section we review the original Nested Effects Model and ex-

tend it to a mixture of NEMs. Furthermore we discuss identifiability

and propose a method for model selection to prevent over fitting.

2.1 Nested Effects Model
A Nested Effects Model (NEM) is parametrized by an adjacency

matrix U 2Mn�nðf0;1gÞ for the directed acyclic graph (DAG)

representation of the signaling graph with perturbed genes as nodes

(S-genes) and an adjacency matrix H 2Mn�mðf0; 1gÞ for the attach-

ments of the different features from the data (E-genes), e.g. genes from

gene expression data. We have hij ¼ 1, if E-gene j is attached to S-gene

i. Each column of H has at most one non-zero entry, because NEMs

make the assumption that each E-gene can have at most one parent.

Similar to Tresch and Markowetz (2008) we add a null S-gene, which

predicts no effects to account for uninformative features.

We calculate the expected E-gene profiles for a given model

ðU;HÞ as the matrix product

F ¼ UH (1)

with fij the predicted state of E-gene i under knock-down of S-gene j.

Let D ¼ ðdijÞ 2Mm�lðRÞ be the raw data matrix of the perturb-

ation experiments and R ¼ ðrijÞ 2Mm�lðRÞ the log ratio matrix with

l perturbed cells or samples indexing the columns and m observed

genes indexing the rows,

rij ¼ log
Pðdijjeij ¼ 1Þ
Pðdijjeij ¼ 0Þ :

with eij the unknown state of E-gene i in knock-down j. As in

Tresch and Markowetz (2008) we can write the log likelihood ratio of a

given model ðU;HÞ and the null model N, which predicts no effects, as

logPðDjU;HÞ � logPðDjNÞ ¼ trðLÞ (2)

where tr denotes the trace of the quadratic matrix of log ratios for

all knock-downs and L¼FR. However, L is only quadratic if the

data includes only one sample per knock-down, i.e. l¼n. Hence, the

data has to be summarized beforehand, e.g. by taking the average

over all experiments with the same knock-down (replicates).

2.2 Mixture Nested Effects Model
Instead of inferring a single network U and E-gene attachments H
from the whole data set as in the previous section, we formulate a

mixture, which infers several networks with unique attachments and

different subpopulations of cells.

The model parameters for a mixture of K components are

ðU;HÞ ¼ ðUk;HkÞk¼1;...;K

and mixture weights p ¼ ðp1; . . . ; pKÞ.

Fig. 1. A schematic example of an M&NEM. Two dimensional projection of

single cells (A), labeled by known knock-outs of signalling genes S1, S2 and

S3 (B) and colored by their two clusters (C) on which the two different causal

networks are based. (D) Comparing two different networks (NEMs) according

to the clustering. S1, S2 and S3 are the perturbed genes and the edges denote

how they causally influence each other. (E) 20 noisy cells attached to each

NEM according to their responsibilities with their respective data patterns

(black for effect and white for no effect). Each row shows the effect pattern for

the respective S-gene, e.g. E_S1 shows the effects of S-gene S1 for different

cells. Each column shows the expected data pattern for a cell. The colors and

arrow transparencies depict the strength of attachment to the respective

NEM. For example the bright red cell to the far left is attached to NEM 1 with

responsibility 100%. Thus the pattern for the cell is the expected data pattern

according to NEM 1 without any noise. The cells in the center are a mix of

expected data patterns of cells for NEM 1 and NEM 2
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Given a component ðUk;HkÞ we calculate the expected knock-

down profiles for all single perturbations using Eq. 1 as

Fk ¼ ðfk;ijÞ ¼ UkHk

with fk;ij the expected value of E-gene j under the perturbation of

S-gene i in component k.

The log ratio profile of all cells given component k is

Lk ¼ ðlk;ijÞ ¼ FkR

and the log likelihood ratio of component k is

logPðDjFkÞ � logPðDjNÞ ¼ trðLkÞ:

However, instead of summarizing each knock-down over all cells

in R to make Lk quadratic, we use the known perturbation map q ¼
ð.ijÞ with .ij ¼ 1, if cell j has been perturbed by a knock-down of

S-gene i. We set

~Lk ¼ ð~lk;ijÞ ¼ qTLk: (3)

In this formulation, we have conveniently stored the likelihood

ratios for all cells in the diagonal of ~Lk.

Let Z 2MK�lðf0;1gÞ be the matrix of hidden cell attachments to

components. We have zki¼1, if cell i belongs to component k. Each

column of Z has exactly one non-zero entry. The distribution of Z is

defined by the mixing coefficients pk as

Pðzki ¼ 1Þ ¼ pk

for all i 2 f1; . . . ; lg with p ¼ ðp1; . . . ; pKÞ 2 ½0;1�K and
X

k
pk ¼ 1.

For model optimization we choose a maximum likelihood (ML)

approach using the log likelihood ratios similarly to the formulation

for a single mixture component, and maximize

L ¼ logPðDjU;HÞ � logPðDjNÞ

¼ tr
�

log
XK

k¼1

pkexpð ~LkÞ
�
:

(4)

The full derivation of the likelihood ratio is in Supplementary

Eq. S1 of the supplement.

2.3 Inference with an Expectation maximization

algorithm
We developed an Expected Maximization algorithm (Dempster

et al., 1977) for inference.

E step. Let ðp;U;HÞ be the current parametrization of our mix-

ture model. We calculate ~Lk from Eq. 3 and subsequently the

responsibilities (supplement, Supplementary Eq. S2)

cðzkiÞ ¼ Pðzki ¼ 1jdiÞ ¼
pkexpð~lk;iiÞXK

j¼1
pjexpð~l j;iiÞ

; (5)

which we summarize in

C ¼ ðckiÞ 2MK�lð½0; 1�Þ:

and the log likelihood ratio (Eq. 4).

MH step. We update p with

pk ¼

Xl

i¼1
ckiXK

j¼1

Xl

i¼1
cji

and compute

Rk ¼ ðrijckjÞ:

U remains fixed and we estimate H by their maximum a posteri-

ori attachment to each S-gene. We compute the fit of every E-gene

to every S-gene

Pk ¼ ðpk;ijÞ ¼ Rkq
T/k (6)

and set hk;ij ¼ 1, if pk;ji ¼ maxfpk;jl : l ¼ 1; . . . ;ng.
We alternate between the E step and the MH step until the log

likelihood ratio in Eq. 4 converges.

M step. Given C, we optimize each component ðUk;HkÞ with re-

spect to Rk. We maximize the log likelihood ratio defined in Eq. 2 to

find a new optimum ðUnew
k ;Hnew

k Þ in the following way.

We optimize each individual component with a natural extension

of the module network approach by Frohlich et al. (2008). We cluster

knock-downs, averaged over cells, into groups of size n (e.g. n¼5)

and perform a local neighborhood search on each group. In the local

neighborhood search we evaluate each edge for absence and presence

and check whether a change in status improves the log likelihood

ratio and change the edge which improves it most. We combine the

inferred sub-networks into one large network including all S-genes

and use it as the initial network for a local neighborhood search on

the full set of S-genes. During the optimization of Uk, we estimate Hk

using Pk (Eq. 6) before we calculate the log likelihood ratio.

We alternate between the E, MH and M steps until the log likeli-

hood ratio in Eq. 4 converges. To increase the probability of conver-

gence to a global optimum, the EM algorithm is initialized several

times with random responsibilities C between 0 and 1.

2.4 Model identifiability
In the case of the original NEMs, two NEMs U1 and U2 are identical

if and only if they have equal transitive closures, i.e. they produce

identical data. This identity still holds for each component of a mix-

ture of NEMs. However, like any mixture model, M&NEMs have

additional identifiability issues.

In general, two M&NEMs are not distinguishable, if they have

the same expected data pattern. Let F ¼ ðF1; . . . ;FmÞ be the expected

data pattern for M&NEM A and ~F ¼ ð~F1; . . . ; ~FnÞ the expected

data pattern for M&NEM B. If each column fv of F is included in ~F

and each column ~f w of ~F is included in F, A and B are not

distinguishable.

Figure 2 shows a schematic example for two different mixtures A

and B, which both have the exact same expected data pattern. Hence,

they also have the same likelihood ratio given any dataset. For con-

venience of this example we assume an a posteriori hard clustering of

the cells to the components and equal attachments H1 ¼ H2.

2.5 Model selection
In a typical situation for M&NEMs we do not know the correct

number of components K, i.e. the number of subpopulations with

different signaling networks. To prevent over fitting and enforce

sparsity to the solution, we choose the optimal K via a penalized

log likelihood ratio, penalizing complex and redundant network

structures in a similar fashion as Froehlich et al. (2007). For each

K 2 f1; . . . ; 5g we infer an optimal solution using the EM algorithm.

Then we score each of the five solutions with a penalized log likeli-

hood ratio, which we define as

~L ¼ logðnÞs� 2L (7)

with a complexity parameter s, model log likelihood ratio L (Eq. 4)
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and the sample size n (number of cells). We define s for a mixture of

K components as

s ¼
X

k

ðjUkj þ jHkjÞ þ K� 1 (8)

with number of edges of an adjacency matrix A denoted by jAj.
Thus the number of parameters s are all edges in the graphs of Uk

and Hk plus one less than the number of mixture weights, since the

last weight is determined by the others. Finally we choose the solu-

tion, which minimizes the penalized log likelihood ratio. Figure 3

shows the raw and the penalized log likelihood ratio as functions of

the number of components for the data sets in our applications.

2.6 Effect log-odds
We calculate log odds between the likelihood of observing an effect

and observing no effect given the data analogous to Siebourg-Polster

et al. (2015). Let dij be the normalized count value for gene i and cell

j. Cell j was perturbed by a knock-down of gene k. We estimate the

empirical distribution function F0 of the normalized control counts

for gene i and the empirical distribution function Fk of the normal-

ized counts from cells perturbed by k for gene i and calculate the log

odds by

rij ¼ log
PðdijjFkÞ
PðdijjF0Þ

: (9)

If the E-gene shows an effect in the cell, rij will be greater than

zero and if it shows no effect, it will be less than or equal to zero.

We remove E-genes with a standard deviation of log odds

smaller than the global standard deviation of log odds over the

whole data set, i.e. E-genes which have small log odds apart from

outliers.

3 Simulations

We show that M&NEMs work well in simulations under reasonable

conditions, i.e. medium noise levels, up to 20 S-genes and five com-

ponents. For n 2 f3; 5; 10; 20g S-genes and K 2 f1;2; 3; 4;5g net-

work components we drew random mixture weights p and

component(s) ðU;HÞ as the ground truth. We simulated 1000 cells

overall, two E-genes per S-gene and 10% uninformative E-genes.

The simulated data were log odds drawn from Gaussian distribu-

tions Nð�1;rÞ for no effect and Nð1; rÞ for effect. Figure 4 shows

the result of 100 runs and r 2 f1; 2:5; 5g. We applied M&NEM

to the data with K 2 f1; 2;3;4; 5g and chose the best K according to

the penalized log likelihood ratio (Eq. 7).

We computed accuracy from similarity of the ground truth UT ¼
ðUT

1 ; . . . ;UT
KÞ and the inferred optimum ~U

T ¼ ð~UT

1 ; . . . ; ~U
T
~K Þ. That is,

we check how accurately we find a column from the ground truth

UT in the inferred optimum ~U
T

and vice versa with the following

score,

AðUT ; ~U
TÞ ¼ min

(XK

k¼1

Xn

i¼1

max
j¼1;...; ~K

faccð/k;i;
~/ j;iÞg;

X~K

k¼1

Xn

i¼1

max
j¼1;...;K

faccð~/k;i;/j;iÞg
)

with /k;i as column i of UT
k ;

~/j;i as column i of ~U
T

j and

accðu; vÞ ¼ 1� hdðu; vÞ
hdðu; 1� uÞ

with the hamming distance hd.

We compared M&NEMs to the original NEM and a naive clus-

ter approach (cNEM). In cNEM we calculate the distance between

cells from correlation and use K-means (K 2 f2; . . . ; 5g) to cluster

the cells. We use the silhouette score to choose the optimal number

of clusters and learn a single NEM on each cluster. The distance

measure for two cells a, b is computed by

distða;bÞ ¼

�
1� corða;bÞ

�
2

:

The simulations show that M&NEMs can identify the ground

truth with high accuracy for reasonable noise levels and is still ro-

bust in settings with high noise over a varying number of compo-

nents and S-genes. For K¼1 M&NEM and NEM are equally

successful in recovering the ground truth except for very high noise

levels. For K>1 M&NEM achieves a higher accuracy than cNEM,

while the original NEM approach has the lowest accuracy especially

for larger K. The accuracy for K and the mixture weights are shown

in Supplementary Figures S1–S2.

4 Application to pooled single cell CRISPR
screens

In our application of M&NEM to real data we analyze three data

sets which combine pooled CRISPR screening with single cell RNA-

seq readouts. One data set was generated with Crop-Seq (Datlinger

et al., 2017) and the other two with Perturb-Seq (Dixit et al., 2016).

We preprocessed all data sets with Linnorm (Yip et al., 2017),

which was specifically designed to normalize gene expression data

Fig. 3. Penalized log likelihood ratio (red, left y-axis) in comparison with the

raw log likelihood ratio (blue, right y-axis) as functions of number of compo-

nents for the Crop-Seq regulators of the T-Cell receptor (A) and the Perturb-

Seq cell cycle genes (B) and transcription factors (C)

Fig. 2. Example for non-identifiability of two M&NEMs. (A) Mixture of two

components (blue, red) with their respective expected data patterns below.

Dark areas are effects and light areas are no effects. Each column of the data

is a cell and each row is the expected effect pattern for gene E_X attached to

S-gene X. (B) Mixture with different components than A, but overall the exact

same expected data profile

Mixture Nested Effects Models i967
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from single-cell RNAseq (scRNA-seq) experiments. Linnorm

accounts for typical noise expected in scRNA-seq data like random

drop out events and zero inflated counts. After normalization we

calculated the log odds (Eq. 9).

4.1 CRISPR droplet sequencing (Crop-Seq)
Datlinger et al. (2017) combined pooled CRISPR screening with

single-cell RNA sequencing to produce gene expression count data

on the single-cell level. They showed the validity of their method

with an analysis of T-cell receptor (TCR) activation in Jurkat cells.

We downloaded the processed CROP-seq data from the NCBI GEO

database (Edgar et al., 2002, GSE92872). Before our analysis we

reduced the data to stimulated cells.

As a set of knock-outs we concentrated on S-genes involved in

T-Cell receptor activity as in Figure 2h of Datlinger et al. (2017),

namely: DOK2, EGR3, LAT, LCK, PTPN6, PTPN11 and ZAP70.

This leaves us with a population of 535 unique cells and 711

E-genes. Figure 5 shows the result for the highest scoring model with

K¼2. Around 43% of cells are assigned to the red network and

57% to the blue one. M&NEM confirms key down-stream regula-

tors LCK, LAT and ZAP70 for the red network (Datlinger et al.,

2017, Fig. 2h). However, we never find LCK upstream of ZAP70.
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Fig. 4. Comparison of M&NEMs (red), cNEMs (blue) and NEMs (grey) in a simulation study. The rows show results for components K 2 f1; 2; 3; 4; 5g. The columns

show results for number of S-genes n 2 f3; 5; 10; 20g. Each box plot shows the accuracy of M&NEM (red), cNEM (blue) and NEM (grey) for three different noise

levels r. The y-axis is cutoff at 50% (¼random). In addition to the median we also added the average (red star in blue circle)

Fig. 5. Optimal mixture found for the Crop-Seq data set (K¼2) with mixture

weights 43.3% (A, red) and 56.7% (B, blue)
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While LAT remains downstream, LCK and especially ZAP70 are

placed more upstream in the blue network with ZAP70 as the only

source node. DOK2 on the other hand is correctly placed as an up-

stream regulator in the red network (Datlinger et al., 2017, Fig. 2h),

but placed downstream of everything else except LAT in the blue

one. This hints at an altered causal roles of DOK2, LCK and ZAP70

in the larger cell population. PTPN6 and PTPN11 switch places

and alternatively regulate each other and major parts of the other

S-genes.

A posteriori a majority of 303 cells are attached to the blue net-

work. However, for LCK, ZAP70 and PTPN6 the majority of cells

for each knock-out are attached to the red network, which explains

the relatively high mixture weight of 43%, The responsibilities for

each network are almost binary, 100% respectively 0% (Fig. 6A).

This is almost equivalent to a hard clustering of the cells, i.e. there is

virtually no uncertainty of the cell attachments.

A more detailed version of the network for the three highest

scoring models (K 2 f1; 2;3g) are shown in the supplement

(Supplementary Figs S3–S5).

4.2 Combining CRISPR-based perturbation and

RNA-seq (Perturb-Seq)
The data sets of Dixit et al. (2016) consist of RNA-seq

transcriptome read-outs for single cells. We downloaded them from

the BROAD single-cell portal (https://portals.broadinstitute.org/sin

gle_cell).

Cell Cycle Regulators. Dixit et al. (2016) performed knock-out

experiments for thirteen cell cycle regulators in K562 cells. After

preprocessing, the data set consists of 19 283 cells and 985 E-genes.

Figure 7 shows the highest scoring M&NEM result (K¼2) with

mixture weights 45.1% (red) and 54.9% (blue). However, a posteri-

ori only around 39% of cells are assigned to the red network.

Dixit et al. (2016) identified the perturbations of PTGER2,

CAB7 and CIT as advantageous for proliferation. We found

PTGER2 and CIT at stable positions downstream in both our net-

works, while CAB7 is placed a bit more upstream in the blue one.

However, Dixit et al. (2016) found a distinct transcriptional pheno-

type for CAB7, which can explain the different roles in the networks

in comparison to PTGER2 and CIT.

Reciprocally, perturbations of RACGAP1, TOR1AIP1 and

AURKA were identified by Dixit et al. (2016) as disadvantageous to

proliferation. However, while RACGAP1 stays almost right up-

stream in both, the other two are mostly placed in the middle.

AURKA is even placed almost downstream of all other nodes in the

blue network. This hints at much more diverse regulatory roles of

the latter two and a necessity for RACGAP1 to stay upstream in the

network as a key regulator (Imaoka et al., 2015).

Overall the networks differ also in their general shape. While the

blue network has a more linear shape, the red network is much

more inter-connected with two instead of one source node.

The histogram of responsibilities is shown in Figure 6B. The

posterior attachment of cells shows a much softer gradient than for

the Crop-Seq data set. While each S-gene in each component has at

least one cell with responsibility �98%, for many cells the responsi-

bilities are between 5% and 95%. We show a more detailed depic-

tions of the three highest scoring M&NEMs in the supplement

(Supplementary Figs S6–S8).

Transcription Factor Interplay. In a second data set, Dixit et al.

(2016) performed knock-out experiments for ten transcription fac-

tors in K562 cells. The preprocessed data set consists of 22 402 cells

and 710 E-genes. Figure 8 shows the optimal network inferred by

M&NEM (K¼2) with mixture weights of 45.2% (red) and 54.8%.

We identify YY1 as a major regulator for all other genes as it is

placed most upstream in both networks. YY1’s importance as a

major transcription factor has been shown before (Tastanova et al.,

2016). This is further confirmed as even M&NEM with more

components (K¼3, supplement, Supplementary Fig. S10) still place

Fig. 6. Histograms of responsibilities for Crop-Seq (A), Perturb-Seq cell cycle

regulators (B) and transcription factors (C)

Fig. 7. Optimal mixture found for the Perturb-Seq cell cycle regulators (K¼2)

with mixture weights 45.1% (A, red) and 54.9% (B, blue)

Fig. 8. Optimal mixture found for the Perturb-seq transcription factors (K¼2)

with mixture weights 45.2% (A, red) and 54.8% (B, blue)
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YY1 most upstream in all networks. Similarly, the upstream causal

relations of YY1 to NR2C2 and ETS1 is conserved as well. The pos-

ition of IRF1 as the sink node is equally well conserved in both net-

works. The other transcription factors mainly stay in the middle

part and only slightly switch places.

Again, the posterior attachment of cells shows a much softer

gradient than for the CROP-seq data set (Fig. 6A and C). While

each S-gene in each component has at least one cell with responsibil-

ity �98%, for many cells the responsibilities are between 20 and

80%. However, we observe a large bump at 50%, which means

many cells fit equally well to both networks. This agrees with our

observation, that the causal network of transcription factors seems

highly stable over all cells, compared to the other two applications

before. This is further confirmed by our penalized log likelihood,

which shows little support for K>2 (Fig. 3C).

A more detailed depictions of the three highest scoring M&NEMs

is shown in the supplement (Supplementary Figs S9–S11).

5 Discussion

We have introduced M&NEM, a novel method for the identifica-

tion of heterogeneous subpopulations of single cells with different

underlaying biological networks. M&NEM infers multiple net-

works from a heterogeneous cell population instead of a single one

averaged over the whole population. This additional flexibility

allows us to compensate model limitations of the original NEM.

M&NEM successfully infers subpopulations and the underlaying

mixture of networks.

In our application study, we have investigated three data sets

from single cell CRISPR experiments combined with full transcrip-

tomic read-outs. M&NEM confirms known causal interactions and

infers novel ambiguous roles for several key regulators (e.g. DOK2,

ZAP70), which might be differently regulated in a subpopulation of

cells. We also identify key players like RACGAP1 and YY1, which

seem to be necessary for upstream regulation.

Without the use of our model selection to enforce sparseness,

our model might lead to over fitting. However, this over fitting

might not always be due to noise or technical artifacts, but could

also be due to hidden players not perturbed in the data as proposed

by Sadeh et al. (2013). For example, if we look at the second highest

scoring M&NEM for the cell cycle regulators (K¼3, supplement,

Supplementary Fig. S7), we see that AURKA is placed downstream

of the blue network with no cells attached and the highest responsi-

bility for a cell at 10%, i.e. very little information for this placement

of the AURKA S-gene comes from a cell in which AURKA was

perturbed. Our hypothesis is that many E-genes react to PTGER2

and many E-genes react to CIT, but also many E-genes react to

both. Original NEMs cannot model this and it is the exact situation

for which Sadeh et al. (2013) introduced a hidden player (not per-

turbed) to account for the diversity of E-genes. In our blue network,

AURKA is placed to model the unknown hidden player and not the

actual AURKA S-gene (Fig. 9). However, Sadeh et al. (2013) use a

binomial test based on the binarized data to account for noise, while

our model does it in a greedy fashion, which we penalize with our

penalized log likelihood ratio. Hence, an integration of the method

of Sadeh et al. (2013) into our mixture model to identify hidden

players accounting for noise would be an interesting addition.

Like any mixture model M&NEM suffers from identifiability

issues. However, our simulations have shown that M&NEMs

can still accurately predict the causal edges within a mixture of

networks.
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