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Abstract

Motivation: The analysis of high-dimensional ‘omics data is often informed by the use of biological

interaction networks. For example, protein–protein interaction networks have been used to analyze

gene expression data, to prioritize germline variants, and to identify somatic driver mutations

in cancer. In these and other applications, the underlying computational problem is to identify

altered subnetworks containing genes that are both highly altered in an ‘omics dataset and are

topologically close (e.g. connected) on an interaction network.

Results: We introduce Hierarchical HotNet, an algorithm that finds a hierarchy of altered subnet-

works. Hierarchical HotNet assesses the statistical significance of the resulting subnetworks over a

range of biological scales and explicitly controls for ascertainment bias in the network. We evaluate

the performance of Hierarchical HotNet and several other algorithms that identify altered subnet-

works on the problem of predicting cancer genes and significantly mutated subnetworks. On som-

atic mutation data from The Cancer Genome Atlas, Hierarchical HotNet outperforms other methods

and identifies significantly mutated subnetworks containing both well-known cancer genes and

candidate cancer genes that are rarely mutated in the cohort. Hierarchical HotNet is a robust algo-

rithm for identifying altered subnetworks across different ‘omics datasets.

Availability and implementation: http://github.com/raphael-group/hierarchical-hotnet.

Contact: braphael@princeton.edu

Supplementary information: Supplementary material are available at Bioinformatics online.

1 Introduction

Many cellular processes involve interactions between different mole-

cules. Therefore, the analysis and interpretation of large-scale ‘omics

data is often informed by biological interaction networks. For ex-

ample, the expression of genes in the same protein complex or path-

way is often correlated (Ge et al., 2001), so physical interaction

networks can be used to study gene expression data (Luscombe

et al., 2004). Similarly, genetic variants associated with a disease

often cluster in a small number of biological processes, and therefore

networks can be used to analyze germline variants from genome-

wide association studies (GWAS) (Califano et al., 2012; Lee et al.,

2011; Leiserson et al., 2013) or somatic mutations in cancer

(Leiserson et al., 2015; Vandin et al., 2011). In these applications,

one has a measurement, or score, on each of the vertices in a net-

work, and the goal is to identify altered subnetworks, or sets of ver-

tices that are both close on the network and have high scores.

A specific example of the general problem of identifying altered

subnetworks arises in cancer genomics. In this case, one obtains

measurements of somatic mutations from a cohort of cancer patients

and aims to distinguish the small number of driver mutations that

are typically responsible for tumor initiation and development from

the much larger number of random passenger mutations. Tests for

recurrence of individual mutations or genes (Kandoth et al., 2013;

Lawrence et al., 2013; Mularoni et al., 2016) are often challenged

by the ‘long tail’ phenomenon, where most driver mutations are ex-

tremely rare in the cohort. By taking advantage of the observation

that driver mutations tend to cluster in a few key biological proc-

esses (e.g. cell cycle or apoptosis) (Hanahan and Weinberg, 2011;

Vogelstein et al., 2013), one can use protein–protein interaction

(PPI) networks to identify significantly mutated sets of interacting

genes (Cowen et al., 2017; Raphael et al., 2014). These gene sets

may span multiple biological scales, from interacting gene pairs

through protein complexes and pathways to entire biological sys-

tems (Fig. 1). Hierarchies are commonly used to describe relation-

ships between gene sets across different scales; gene ontologies (GO)

(Ashburner et al., 2000) are one such example.

A number of methods have been developed to address the prob-

lem of identifying altered subnetworks. We broadly classify these
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methods into three groups. The first group of methods defines a

restricted class of candidate subnetworks and then select high-

weight subnetworks from these candidates according to their

vertex scores. Examples of these methods include jActiveModules

(Ideker et al., 2002) and heinz/BioNet (Beisser et al., 2010; Dittrich

et al., 2008) which solve the maximum-weight connected subgraph

(MWCS) problem. Other methods, such as MUFFINN (Cho et al.,

2016) and NetSig (Horn et al., 2018) examine only the nearest

neighbors of each vertex, thus assigning a score to ‘star sub-

networks’ centered on every vertex. A related approach is used in

Omics Integrator (Tuncbag et al., 2013, 2016), which solves a vari-

ation of the prize-collecting Steiner forest (PCSF) problem.

The second group of computational methods search for high-weight

subnetworks by jointly examining vertex scores and network topology.

These methods are able to identify subnetworks that would not be con-

sidered using vertex scores or topology alone. Many such methods use

a diffusion process or random walk to measure the similarity of pairs of

nodes using the paths between them (Cowen et al., 2017). Heat diffu-

sion and random walks are common tools for biological network ana-

lysis (e.g. Cao et al., 2013; Cho et al., 2015; Chung and Zhao, 2010;

Hofree et al., 2013; Komurov et al., 2012; Paull et al., 2013; Shnaps

et al., 2016). PRINCE (Vanunu et al., 2010), HotNet (Vandin et al.,

2011, 2012), HotNet2 (Leiserson et al., 2015) and Ruffalo et al. (2015)

are examples of this group of methods.

The third group of computational methods is similar to the first

and second groups, but these methods incorporate additional infor-

mation, including predefined pathways [e.g. PARADIGM (Vaske

et al., 2010) and DEGraph (Jacob et al., 2012)], mutual exclusivity

and/or co-occurrence of mutations among genes/proteins [e.g. MEMo

(Ciriello et al., 2012), MEMCover (Kim et al., 2015) and BeWith

(Dao et al., 2017)], or connections between mutations and expression

(e.g. Kim et al., 2011 and HIT’nDRIVE (Shrestha et al., 2017)). These

methods leverage additional hypotheses and/or data in their applica-

tion domains, often improving their predictions for specific applica-

tions but potentially limiting their extension to other areas.

In this article, we introduce a novel computational method,

Hierarchical HotNet, to identify altered subnetworks. Hierarchical

HotNet addresses several limitations with existing approaches.

Key features of Hierarchical HotNet include integration of both net-

work topology and vertex scores; robustness to new and complex

datasets; combating ascertainment bias in data, e.g. recurrently

mutated genes tend to be better studied with more known interac-

tions; and evaluating the statistical significance of results. Table 1

compares features for several state-of-the-art approaches.

Hierarchical HotNet jointly considers network topology and ver-

tex scores (i.e. it belongs to the second of the above groups of meth-

ods) to construct a hierarchy of topologically close and high-scoring

subnetworks. It uses a rigorous approach to identify statistically sig-

nificant subnetworks across different regions of its hierarchy, pro-

viding relationships between subnetworks. Applied to cancer

genomics data, Hierarchical HotNet identifies significantly mutated

subnetworks across biological scales.

We evaluate the performance of Hierarchical HotNet on the

problem of finding mutated subnetworks in cancer using two recent

pan-cancer somatic mutation datasets and three interaction net-

works. We compare Hierarchical HotNet to heinz, MUFFINN,

NetSig and HotNet2 as representative methods from the above

groups. Hierarchical HotNet outperforms these other methods in

identifying known and candidate cancer genes. Hierarchical HotNet

also prioritizes many putative cancer genes that are not statistically

significant by single-gene tests.

2 Materials and methods

Given a network or graph G ¼ ðV;E;wÞ with n ¼ jVj vertices,

m ¼ jEj edges and scores/weights wðv1Þ; . . .;wðvnÞ on the vertices,

Hierarchical HotNet aims to hierarchically cluster high-weight verti-

ces that are topologically close on the network and identify statistic-

ally significant subnetworks in the hierarchy. More specifically,

Hierarchical HotNet (i) combines network topology and vertex

scores, (ii) defines a similarity matrix S from G using a random

walk-based approach as described in Section 2.1, (iii) constructs a

hierarchy of clusters consisting of strongly connected components

(SCCs) as described in Section 2.2, (iv) assesses the statistical signifi-

cance of clusters in the hierarchy as described in Section 2.3, (v)

identifies altered clusters from statistically significant regions of the

hierarchy and (vi) combines these clusters from multiple networks

and sets of vertex scores as described in Section 2.4. Figure 2 shows

an overview of the Hierarchical HotNet method in the context of

biological data.
Fig. 1. Illustration of a hierarchy of gene sets, which vary in size across differ-

ent biological scales

Table 1. Features of several methods for identification of altered subnetworks

Feature/Method heinz MUFFINN NetSig HotNet2 Hierarchical

HotNet

Candidate subnetworks Connected subnetworks Nearest neighbor

subnetworks

Nearest neighbor

subnetworks

Unrestricted Unrestricted

Evaluates statistical

significance

No No Yes, network

permutations

Yes, multiple

options

Yes, multiple

options

Addresses ascertainment

bias in network

No No Degree-aware

statistical test

Penalizes high-

degree nodes

Penalizes high-

degree nodes;

degree-aware

statistical test

Model selection Yes, on data No Yes, on results No Yes, on results

Consensus across datasets No No No Yes Yes

Supported interaction

types

Unweighted and

undirected

Weighted and

undirected

Unweighted and

undirected

Unweighted and

undirected

Weighted and

directed
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2.1 Similarity matrix S for vertex-weighted graph G
In order to characterize groups of related vertices in the vertex-

weighted graph G, we define a similarity measure between pairs of

vertices. Any such measure yields a similarity matrix S ¼ ½sij�, where

sij measures how similar a vertex vj is to a vertex vi according to

both network topology and the vertex scores. By incorporating both

topology and scores, this measure allows us to quantify proximity in

a vertex-weighted graph beyond the topological structure of the

graph or the weights on the vertices.

The network itself describes a particularly simple similarity measure

that is given by the adjacency matrix of the graph, where two vertices

are defined to be similar if and only if they share an edge. Beyond nearest

neighbors (Eppstein et al., 1997), diffusion kernels (Kondor and

Lafferty, 2002; Schölkopf et al., 2004; Vandin et al., 2011, 2012), ran-

dom walks (Chung, 2007; Chung and Zhao, 2010; Leiserson et al.,

2015) and other measures (Yip and Horvath, 2006) define similarity be-

yond the presence or absence of direct interactions. These similarity

measures capture network topology or use network topology to

‘smooth’ or reprioritize the scores over the network (Ruffalo et al., 2015;

Vanunu et al., 2010), resulting in network-adjusted vertex weights.

In contrast, Hierarchical HotNet defines a similarity measure using

both network topology and vertex scores. HotNet (Vandin et al., 2011,

2012) uses a diffusion kernel to model heat diffusion over the edges of

a graph, while HotNet2 Leiserson et al. (2015) and Hierarchical

HotNet use a random walk, which is a stochastic process describing

evolving distributions on the vertices of a graph. In a common version

of the random walk with restart, a random walker traverses the graph

in a series of discrete steps, transitioning to one of its neighbors at each

step with probability b and returning to its initial position with prob-

ability 1� b, leading to a non-trivial stationary distribution. We use

this stationary distribution to define the following similarity matrix.

We now derive the similarity matrix for a simple vertex-weighted

graph. Details for directed and weighted edges are in the Supplementary

Material. Let A be an adjacency matrix for a vertex-weighted graph G

and let D ¼ diagðdeg ðGÞÞ ¼ diagðd1; . . . ; dnÞ be the corresponding di-

agonal degree matrix. We define a topological similarity matrix

P ¼ bðI � ð1� bÞAD�1Þ�1 (1)

using the stationary distribution of the random walk with restart.

This matrix is a stochastic matrix whose columns are probability vec-

tors. We scale the columns of P with the vertex weights w to define a

joint similarity matrix S ¼ ½sij� ¼ P� diag
�

wðv1Þ; . . . ;wðvnÞ
�

, where

sij ¼ wðvjÞ bð1� bÞ aij

dj
þ bð1� bÞ2

Xn

k¼1

aik

dk

akj

dj
þ � � �

 !
: (2)

Note that (2) explicitly addresses network ascertainment bias by

penalizing high-degree vertices. Note, too, that both P and S are

asymmetric, allowing these matrices to capture potentially asymmet-

ric relationships.

See the Supplementary Material for a more detailed discussion of

S, including a procedure for choosing the restart probability b that

preserves the locality of the random walk with restart.

2.2 Hierarchy T for similarity matrix S
We identify subnetworks in the graph G by finding clusters

using the similarity matrix S. Most clustering algorithms rely, either

explicitly or implicitly, on one or more parameters and a variety of

clustering algorithms, including k-means clustering, network modu-

larity, density-based clustering and spectral clustering, give rise to

parameterized families of vertex clusterings. Often, the resulting

clusters are sensitive to the values of these parameters. Procedures

for selecting parameter values may be sensitive to the chosen train-

ing datasets or computationally expensive and the recommended

parameter values may reflect unstated assumptions about the data.

Applying a clustering algorithm over all parameter values of poten-

tial interest may be computationally or statistically infeasible.

Hierarchical clustering algorithms provide parameterized families

of vertex clusterings in the form of a hierarchy or dendrogram, where

the height of a dendrogram corresponds to the choice of a clustering

parameter. Hierarchical clustering reduces the need for clustering par-

ameter selection, providing clusters over all possible parameter values

as well as relationships between the clusters themselves.

Given a similarity matrix S, a hierarchical clustering method can

produce a parameterized family fCdgd of clusterings, where the rela-

tionships between the clusters can be described with a dendrogram

T. The clustering parameter d corresponds to a height of the dendro-

gram T and a cut of T at d corresponds to a clustering, or partition-

ing, Cd of the vertices. Since S is a similarity matrix, smaller values

of d produce larger clusters Cd and larger values of produce smaller

clusters. Each vertex of T is a cluster C � V and the height d of a

vertex in T is the largest value of d for which C 2 Cd. There is a leaf

vertex in T for each vertex v 2 V and there is a single root vertex in

T for the set V. The relationships between the leaf vertices, the inner

vertices and the root vertex of T produce a substructure of clusters.

Single-, average- and complete-linkage clustering are common

examples of hierarchical clustering algorithms for symmetric simi-

larity or dissimilarity matrices (see Defays, 1977; Sibson 1973).

Hierarchical clustering algorithms for asymmetric matrices are less

common (Malliaros and Vazirgiannis, 2013).

In particular, we perform the following hierarchical clustering

procedure, which preserves asymmetric relationships between

genes. For d�0, let Hd ¼ ðV;EdÞ be a directed graph with

Ed ¼ fðvj; viÞ 2 V � V : sij� dg and let Cd be the SCCs of Hd. This

Fig. 2. Overview of the Hierarchical HotNet method. (1) A biological interaction network and gene scores are paired to form a vertex-weighted graph

G ¼ ðV ;E;wÞ. (2) A joint similarity matrix S is derived from both network topology and vertex weights using a random walk-based approach. (3) A dendrogram T

of vertex sets is constructed from S using asymmetric hierarchical clustering. (4) The statistical significance p of T is evaluated (test statistic and null model for G

not shown). (5) Representative altered subnetworks Cd are provided from the dendrogram T

i974 M.A.Reyna et al.
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parameterized family fCdgd induces a dendrogram T, where smaller

values of d correspond to larger clusters Cd higher in T. Hubert

(1973) first discussed using SCCs for hierarchical clustering with asym-

metric similarity matrices, which is equivalent to single linkage cluster-

ing when S is symmetric. Tarjan (1983) described an Oðn2log nÞ-time

algorithm for this procedure, which we used for Hierarchical HotNet.

To the authors’ knowledge, hierarchical clustering with SCCs has not

been widely used; see Slater (1984) for one example.

2.3 Statistical significance for hierarchy T
Given a dendrogram T describing a parameterized family fCdgd of

vertex clusters for a vertex-weighted graph G, we want to evaluate

whether there are clusters in T (corresponding to altered subnet-

works in G) whose vertices have higher scores/weights than

expected by chance. For such a test, we require a null hypothesis

and a test statistic. A natural and commonly used null hypothesis is

that the vertex weights are independent of network topology.

However, this is not a well-formed null hypothesis as the notion of

independence needs to be defined more precisely. We describe three

null distributions that preserve different features of the vertex

weights and/or network topology.

2.3.1 Random vertex-weighted graphs

Graphs with prescribed vertex weights. We define an ensemble of

vertex-weighted graphs with the same vertices and edges as the

observed graph G. Formally, we define

Gw ¼ fG0 ¼ ðV;E;w0Þ : w0 ¼ pðwÞ for p 2 Pg; (3)

where P is the collection of all permutations of vertex weights.

We consider the uniform distribution on Gw, and we sample uni-

formly from Gw by permuting the assignment of weights to vertices.

Note that HotNet2 uses this permutation scheme as part of its statis-

tical test.

Graphs with prescribed vertex weights correlated with degree. In

many biological applications, vertex weights are correlated with ver-

tex degree. This is often due to ascertainment bias, as high-scoring

genes are frequently better studied and thus more of their interactions

tend to be known and represented in networks. We define an ensem-

ble of vertex-weighted graphs to preserve a correlation between vertex

weights and degree. To preserve the exact correlation between the

observed vertex weights and vertex degree, one might permute

weights only among vertices with the same degree. However, in most

biological networks, most degrees are unique or shared by few nodes.

Thus, we partition vertices into bins according to their degree and pre-

serve the vertex weights within each bin to define an ensemble

G‘w � Gw. In particular, we partition V into bins V1, . . ., Vk such that

(i) vertices with the same degree belong to the same bin, i.e. if

deg ðuÞ ¼ deg ðvÞ, then u; v 2 Vi for some i; (ii) each bin has at least ‘

vertices; and (iii) the following quantity is minimized:

min
jV1 j;...;jVk j � ‘

Xk

i¼1

�
max
v2Vi

deg ðvÞ �min
v2Vi

deg ðvÞ
�
: (4)

This partition minimizes the differences in vertex degrees within

bins while enforcing a minimum number ‘ of permuted vertex

weights within each bin. Formally, we define

G‘w ¼ fG0 ¼ ðV;E;w0Þ : w0 ¼ pðwÞ for p 2 P‘g; (5)

where P‘ is the collection of all degree-restricted permutations of

vertex weights within the bins V1; . . . ;Vk.

We consider the uniform distribution on G‘w, and we sample uni-

formly from G‘w by permuting the vertex weight assignments among

the vertices in the same bin.

Graphs with prescribed degree sequence. We define an ensemble

of vertex-weighted graphs with the same vertices, vertex weights,

and vertex degree sequence d ¼ deg ðGÞ as the observed graph G.

Formally, we define

Gd ¼ fG0 ¼ ðV;E0;wÞ : deg ðG0Þ ¼ dg: (6)

This ensemble preserves the exact correlation between vertex

weight and vertex degree but alters the topology of the observed

graph by permuting its edges.

We consider the uniform distribution on Gd. There are various

strategies for sampling uniformly from Gd, such as the double edge

swap algorithm by Milo et al. (2003) and an importance sampling

algorithm by Blitzstein and Diaconis (2011). Note that HotNet2

and NetSig use variations of this permutation scheme as parts of

their statistical tests.

Altogether, these random graphs models correspond to different

null hypotheses regarding the relationships between vertex weights

and edges. The second and third null models help to address issues

of ascertainment bias; these null models may be especially important

for methods that do not penalize or otherwise account for high-

degree nodes. Figure 3 illustrates an observed vertex-weighted graph

and two instances of random vertex-weighted graphs. In practice,

sampling from Gw and G‘w is considerably faster than sampling from

Gd. In Section 3, we use the null model G1000
w so that Hierarchical

HotNet not only penalizes high-degree nodes in (2) but also condi-

tions on degree in its statistical significance test.

2.3.2 Statistical test on dendrograms

We evaluate the statistical significance of our observed dendrogram

T by comparing it to dendrograms from a null distribution T of den-

drograms that we obtain by sampling from Gw; G‘w or Gd. Classic

approaches to comparing dendrograms include the cophenetic dis-

tance (Sokal and Rohlf, 1962) and the Fowlkes-Mallows index

(Fowlkes and Mallows, 1983). Both measures compare two cluster-

ings by measuring how many objects are grouped together in both

clusterings. However, in our application of altered subnetwork iden-

tification, we are typically interested in cuts of the dendrogram

where most vertices are singletons, i.e. clusters of size 1. Neither of

these two classic measures is appropriate in this case; therefore, we

compare clusterings by comparing cluster sizes.

For a dendrogram T, we define

Xd ¼ max
C2Cd

jCj (7)

as the size of the largest cluster C 2 Cd at a similarity threshold d.

We quantify the deviation of the observed dendrogram T from a

null distribution T of dendrograms at a similarity threshold d as the

Fig. 3. Left: Observed vertex-weighted graph G ¼ ðV ;E ;wÞ with vertex

colors indicating vertex weights. Center: A random vertex-weighted graph

Gw ¼ ðV ;E;w 0Þ with edges identical to G and permuted vertex weights.

Right: A random vertex-weighted graph Gd ¼ ðV ;E 0;wÞ with vertex weights

and degrees identical to G and permuted edges
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ratio of the observed size of the largest cluster to the expected size of

the largest cluster at d. Let

Yd ¼
Xd

E½Xd�
(8)

be a random variable for this ratio, where the expected value is com-

puted over an appropriate null distribution T of dendrograms. Let

Ymax ¼ maxdYd be the largest deviation, and let ymax be the observed

value of Ymax on the observed dendrogram T. Note that while the

maximum cluster size Xd occurs at the root of the dendrogram, the

maximum ratio Ymax typically occurs at an intermediate value of d
between the root and the leaves.

We define

p ¼ PrðYmax� ymax j T Þ (9)

as the P-value for the largest ratio of the observed and expected clus-

ter sizes across all similarity thresholds d. Furthermore, we specify a

representative clustering Cmax for the similarity threshold

dmax ¼ argmax
d

yd (10)

that achieves the maximum observed ratio ymax. Figure 4 illustrates

this statistical test.

2.4 Consensus summarization for multiple datasets
In many biological applications, one may want to combine informa-

tion from multiple vertex scores and multiple interaction networks.

Vertices may be weighted with different statistical measures on indi-

vidual genes, and interaction networks may be defined by different

interactions (e.g. physical versus genetic) with the cancer sequencing

application in Section 3 as one such example. Although one may

build a single consensus network and consensus scores in advance,

an alternative and useful approach (Leiserson et al., 2015) is to form

a consensus of the resulting subnetworks, which can reduce network

and score artifacts. We now define one such procedure.

Let G1; . . . ;Gt be a collection of vertex-weighted graphs corre-

sponding to different combinations of interaction networks and vertex

scores. For each such vertex-weighted graph G ¼ ðV;E;wÞ, we find

the clusters Cd for a specific value of d, e.g. Cmax, where d may differ

for each combination of network and scores. Let kGðvÞ ¼ 1 if v belongs

to one of the non-singleton clusters of Cd and kGðvÞ ¼ 0 otherwise. Let

lGðu; vÞ ¼ 1 if both u and v belong to the same non-singleton cluster

of Cd with u; v 2 E and lGðu; vÞ ¼ 0 otherwise. Given a threshold ‘,

we define a consensus graph G‘ ¼ ðV ‘;E‘Þ, where

V ‘ ¼ fv 2 V̂ :
Xt

i¼1

kGi
ðvÞ� ‘g; (11)

E‘ ¼ fðu; vÞ 2 V̂ � V̂ :
Xt

i¼1

lGi
ðu; vÞ� ‘g (12)

with V̂ ¼ [t
i¼1Vi. This procedure extends to directed and weighted

interactions with minor changes.

Many methods, including heinz, MUFFINN and NetSig, do not

provide consensus procedures. HotNet2’s consensus procedure

begins with ‘core’ sets of nodes found in the results for all networks

and extends these sets iteratively with nodes found with fewer net-

works. In contrast, Hierarchical HotNet’s consensus procedure

more simply considers the nodes and edges found in the results for

multiple vertex-weighted graphs, further reducing artifacts by

requiring more support for each prediction.

2.5 Implementation
We provide an implementation of Hierarchical HotNet in Python,

where parts of Hierarchical HotNet are also implemented in Fortran

to provide optional but significant performance improvements.

Hierarchical HotNet is highly parallelizable and can be used with

single-core machines, many-core machines and compute clusters.

Our code, along with examples and experiments from this article, is

available online at http://github.com/raphael-group/hierarchical-

hotnet.

3 Results

We apply Hierarchical HotNet and other state-of-the-art methods

to the problem of identifying significantly mutated subnetworks in

cancer. In this application, each gene is assigned a score according

to the frequency, or statistical significance, of the somatic mutations

in the gene across a cohort of tumors. Methods for identifying

altered subnetworks exploit the observation that driver mutations

alter a limited number of biological functions and aim to identify

significantly mutated subnetworks that might include both frequent-

ly and rarely mutated genes.

3.1 Data
We used two recent somatic mutation datasets and the most recent

versions of several publicly available interaction networks.

3.1.1 Somatic mutation data

We used gene mutation scores derived from two sources: (i) frequen-

cies of non-synonymous somatic mutations in genes across 10 206

tumors from 33 tumor types in the The Cancer Genome Atlas

(TCGA) PanCanAtlas project (Ellrott et al., 2018; Weinstein et al.,

2013); (ii) MutSig q-values (Lawrence et al., 2014) from 4 742

tumors across 21 tumor types. MutSig, like other statistical driver

gene prediction methods, corrects for biases in somatic mutation fre-

quencies due to gene length, regional variation in background muta-

tion rate etc.

When computing mutation frequency scores, we removed hyper-

mutated samples and genes such as TTN that are mutated in large

numbers of samples but not identified as significantly mutated by

MutSig. Table 2 summarizes the resulting datasets, and the supple-

ment describes the complete sources and processing steps for each

dataset.

3.1.2 Interaction network data

We created a HINTþHI interaction network by combining binary

and co-complex interactions in HINT (Das and Yu, 2012) with

high-throughput derived interactions from the HI network (Rolland

et al., 2014). We also used the iRefIndex 15.0 (Razick et al., 2008)

and ReactomeFI 2016 (Croft et al., 2014; Fabregat et al., 2016)

interaction networks. We treated each network as undirected and

unweighted (only Hierarchical HotNet is able to consider both

directed and weighted interactions) and analyzed the largest

Fig. 4. Left: Dendrogram T with similarity threshold d of maximum deviation ymax.

Right: Maximum deviation ymax between observed and expected largest cluster sizes
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connected subgraph in each network. Table 3 summarizes the result-

ing datasets, and the Supplementary Material describes the complete

sources and processing steps for each dataset.

The high overlap of high-degree and high-scoring genes in each

combination of gene scores and interaction network (see Table 4)

reflects network ascertainment bias, where genes that are recurrently

mutated in cancer are likely to have been studied more intensively,

and thus have higher degree in interaction networks. This observa-

tion highlights the need to penalize or otherwise condition on degree

for high-degree vertices.

3.2 Comparison of network methods on mutation data
We compared heinz, MUFFINN (DNmax and DNsum), NetSig,

HotNet2 and Hierarchical HotNet using MutSig gene scores across

three interaction networks: HINTþHI, iRefIndex and ReactomeFI

interaction networks. When possible, we ran methods as prescribed

in the published paper introducing the method; the Supplementary

Material more fully describes these steps.

For such a comparison, one needs ground truth or a gold stand-

ard, but there is no gold standard list of cancer genes. There are vari-

ous lists of known cancer genes, such as the COSMIC Cancer Gene

Census (CGC) (Forbes et al., 2017; Futreal et al., 2004), but these

lists are incomplete. Also, while a method’s ability to recover known

cancer genes is suggestive of its ability to recover novel cancer genes,

it is not a guarantee. In some cases, high recall of known cancer

genes may reflect a method’s preference for well-studied (high-de-

gree) genes and provide no assurance that the method’s novel dis-

coveries are interesting. To address these issues in our comparison,

we defined two complementary lists of cancer genes. First, we defined

a list of known cancer genes using 676 genes from Tiers 1 and 2 of the

COSMIC CGC. Second, we defined a list of candidate cancer genes as

the set of non-CGC genes with below median degree in a network

and MutSig gene scores q<1. There are 519, 544 and 439 such can-

didate cancer genes in the HINTþHI, iRefIndex and ReactomeFI

interaction networks, respectively. By definition, these candidate can-

cer genes are not known cancer genes, they are generally less studied

because they have fewer known interactions, and they have some sup-

port as driver genes because they have MutSig gene scores q<1.

We evaluated each method by computing its precision on the list

of known cancer genes as well as its precision on the list of candidate

cancer genes. Known and candidate cancer genes dominate the

results of methods that score highly by both measures, and since

these sets are necessarily disjoint, there is an inherent trade-off

between them. Figure 5 shows the performance of each method

according to these complementary measures. As an additional

benchmark, we also computed the measures for genes with signifi-

cant (q<0.1) MutSig scores to show how network methods com-

pare with gene scores alone.

Hierarchical HotNet recovers larger proportions of both known

and candidate cancer genes compared with other methods. All other

network methods perform worse that the MutSig gene scores alone in

identifying candidate cancer genes. HotNet2 identifies larger fractions

of known cancer genes than MutSig but smaller fractions of candidate

cancer genes. Like Hierarchical HotNet, HotNet2 also consider top-

ology and scores jointly and penalizes high-degree genes. However,

HotNet2 is less robust to complex network topology than

Hierarchical HotNet and therefore less able to predict novel cancer

genes, which we further describe in the following section.

heinz finds a slightly larger proportion of known cancer genes

than MutSig but a much smaller fraction of candidate cancer genes.

Its connectivity constraint provides modest improvements for

known cancer genes by removing a few high-scoring genes that do

not interact with other high-scoring genes, but this constraint intro-

duces a bias toward high-degree nodes (see Table 5) that reduces its

ability to identify less studied genes.

MUFFINN identifies similar fractions of known cancer genes as

MutSig but smaller numbers of candidate cancer genes, demonstrating an

even stronger preference for high-degree nodes. MUFFINN’s DNmax

and DNsum scores take the maximum and sum, respectively, of the scores

of their neighbors, favoring genes with large network neighborhoods.

We created a degree-biased version of MutSig (see the

Supplementary Material for details) that reprioritizes genes using a

weighted combination of MutSig score and degree, which modeled

Table 2. Summary of the gene scores used in the analysis

Gene mutation scores Number of

scored genes

Number of

samples
Number of

tumor types

PanCanAtlas

mutation frequency

19 057 9326 33

MutSig q-value 18 388 4742 21

Table 3. Summary of the interaction networks used in the analysis

Interaction network Vertices Edges Density M.D. A.S.P. Diameter

HINTþHI 15 074 182 088 0.00160 11 3.4 9

iRefIndex 17 136 408 688 0.00278 21 3.0 8

ReactomeFI 11 501 209 020 0.00316 13 3.4 13

M.D., median degree; A.S.P., average shortest path.

Table 4. Hypergeometric test P-values for overlap between the top

1% of genes ranked by indicated gene score and the top 1% of

genes ranked by degree in each interaction network

Mutation frequency MutSig

HINTþHI 2.8� 10–3 6.5� 10–5

iRefIndex 4.1� 10–6 2.3� 10–12

ReactomeFI 1.1� 10–5 9.1� 10–14

Fig. 5. Precision on known cancer genes (x-axis) and on candidate cancer

genes (defined in text; y-axis) for eight different methods using MutSig gene

scores across three interaction networks. Smaller markers show the precision

of a method on each network, and larger markers indicate the average preci-

sion of a method across networks
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network ascertainment bias to recover more known cancer genes at

the expense of candidate cancer genes. As a result, it has similar per-

formance to both heinz and MUFFINN.

NetSig finds smaller proportions of known and candidate cancer

genes than MutSig. The NetSig statistic intentionally omits a gene’s

score when evaluating its network neighborhood, thus reducing

NetSig’s recovery of known cancer genes with high MutSig scores.

However, we found that most NetSig genes (380/463 distinct genes)

have MutSig scores of q¼1, thus having little support for their re-

current mutation across the cohort as candidate cancer genes. Also,

while NetSig’s statistical test attempts to condition on vertex degree,

we find that NetSig reports several high-degree nodes, such as UBC,

that are less likely to be cancer genes.

3.3 Hierarchical HotNet hierarchies and consensus results
Beyond predicting known and candidate cancer genes, Hierarchical

HotNet also builds hierarchies of significantly mutated subnetworks

and constructs consensus subnetworks across multiple network top-

ologies and gene scores. This section describes its results on three

distinct interaction networks (HINTþHI, iRefIndex and

ReactomeFI) and two distinct sets of genes scores (PanCanAtlas mu-

tation frequency scores and MutSig q-value scores). Hierarchical

HotNet’s results were statistically significant (P<0.01) on each of

the six resulting vertex-weighted graphs.

Hierarchical HotNet identified gene sets that had strong overlap

with biological pathways that are implicated in cancer. For example,

Figure 6 shows part of the Hierarchical HotNet hierarchy for the

ReactomeFI interaction network and TCGA PanCanAtlas mutation

frequency scores. This part of the Hierarchical HotNet hierarchy

overlaps well with the Notch signaling pathway, containing the

Notch genes NOTCH1, NOTCH2, NOTCH3, NOTCH4, JAG1,

JAG2 and DLL3 as well as the COSMIC CGC genes CPEB3 and

RB1 that interact with Notch pathway mutations.

Across these interaction networks and gene scores, Hierarchical

HotNet identified the consensus subnetworks G2 (see Section 2.4)

with 128 genes and 223 interactions supported by multiple signifi-

cantly mutated subnetworks within their respective hierarchies. See

the Supplementary Material for a full list of Hierarchical HotNet

consensus genes, biological process and pathway annotations of the

Hierarchical HotNet genes and a network view of the Hierarchical

HotNet consensus subnetworks.

Many of the Hierarchical HotNet consensus results are known

cancer genes, and the Hierarchical HotNet consensus subnetworks

contain parts of many canonical cancer pathways, including the

Notch (Rizzo et al., 2008), p53 (Vazquez et al., 2008), PI(3)K (Liu

et al., 2009; Yuan and Cantley, 2008), Ras/Raf (Roberts and Der,

2007) and Rb (Nevins, 2001) signaling pathways. They also con-

tains gene sets with more recent implications in cancer, including

parts of the BAP1 (Carbone et al., 2013), CBFB (Banerji et al.,

2012) and SWI/SNF (Wiegand et al., 2010) complexes. Moreover,

the Hierarchical HotNet consensus results contain novel predictions

that may be of interest for further study, including the possible

tumor suppressors RASA1 and SERPINB5. Hierarchical HotNet

also identifies a subnetwork of protein kinase D1 genes (PKD1 and

PKD2) with known roles in cell proliferation and other cancer hall-

marks (Sundram et al., 2011). An additional subnetwork includes

several putative cancer genes that interact but do not otherwise have

a clear relationship to one another: MERTK is a receptor tyrosine

kinase that may activate several downstream oncogenic pathways

(Cummings et al., 2013), VWF has recently been implicated in

angiogenesis and apoptosis (Franchini et al., 2013) and PROS1 may

be a marker for aggressive prostate cancer (Saraon et al., 2012).

Since HotNet2 also provides consensus results, we compared

Hierarchical HotNet’s consensus subnetworks with HotNet2’s con-

sensus subnetworks on the same data. Although Hierarchical

HotNet results were statistically significant (P<0.01) on each data-

set, HotNet2 had statistically insignificant (P�0.05) results for mu-

tation frequency scores on the iRefIndex or ReactomeFI networks.

For the rest of the section, we compare the recall and precision of

these methods for known cancer genes because a consensus com-

parison of candidate cancer genes is more complicated as these sets

differ across networks and gene scores.

Figure 7 summarizes the overlap of the Hierarchical HotNet and

HotNet2 consensus results with COSMIC CGC gene list.

Hierarchical HotNet and HotNet2 recover 37 of the same genes,

including 30 COSMIC CGC genes. However, Hierarchical HotNet

identifies 91 genes that HotNet2 does not, including 27 CGC genes.

These 27 genes include the well known cancer genes APC,

CTNBB1, PTEN, TP53 and VHL. Each of these genes is significant-

ly and recurrently mutated, but these well studied genes tend to have

more reported interactions in more recent interaction networks, and

the larger and denser networks in this analysis frustrates HotNet2’s

less robust subnetwork selection procedure. Conversely, HotNet2

predicts 52 genes that Hierarchical HotNet does not, including three

CGC genes: KEAP1, NFE2L2 and RSPO3. Hierarchical HotNet’s

more aggressive consensus procedure eliminates the interacting part-

ners KEAP1 and NFE2L2, but RSPO3 is absent from both the

HINTþHI and ReactomeFI networks, so its loss in Hierarchical

HotNet is more predictable.

Overall, Hierarchical HotNet identifies more COSMIC CGC

genes than HotNet2 (57 versus 33, respectively), giving it nearly

twice the recall (0.087 versus 0.051) with higher precision (0.445

versus 0.371, respectively) than HotNet2 (see Fig. 7 and Table 6).

Hierarchical HotNet’s higher recall and precision are primarily at-

tributable to Hierarchical HotNet’s ability to identify significantly

Fig. 6. Branches of the Hierarchical HotNet hierarchy for the ReactomeFI inter-

action network and TCGA PanCanAtlas mutation frequency gene scores,

where Notch signaling pathway and COSMIC CGC genes are indicated

(branch heights roughly to scale)

Table 5 Median degrees of vertices identified by each method on

different interaction networks, with methods sorted from smallest

to largest degree

Methods HINTþ
HI degree

iRefIndex

degree

ReactomeFI

degree

NetSig 27 54 46

Hierarchical HotNet 33.5 106 48

MutSig 29 95 90

HotNet2 32 92 95.5

heinz 40.5 118 104.5

DNmax 56 154 121

DNsum 53 170 124

Degree-biased MutSig 54 175 128

i978 M.A.Reyna et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i972/5093236 by guest on 19 April 2024

Deleted Text: [
Deleted Text: ],
Deleted Text: &plus;
Deleted Text: ,
Deleted Text: &thinsp;<&thinsp;
Deleted Text: .
Deleted Text: ,
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty613#supplementary-data
Deleted Text: ,
Deleted Text: ; Liu etal., 2009
Deleted Text: ),
Deleted Text: ),
Deleted Text: While
Deleted Text: &thinsp;<&thinsp;
Deleted Text: ()
Deleted Text: .
Deleted Text: ,
Deleted Text: 3
Deleted Text: ,
Deleted Text: &plus;
Deleted Text: vs.
Deleted Text: vs.
Deleted Text: vs.


mutated subnetworks across biological scales in its hierarchy of

subnetworks and more aggressive consensus procedure.

In practice, Hierarchical HotNet is more flexible, more robust and

less computationally intensive (CPU time, memory usage and storage

space) than HotNet2. For these results, the entire HotNet2 pipeline

required a few days of compute time on a modern, many-core machine

while the entire Hierarchical HotNet pipeline required a few hours.

4 Discussion

In this article, we introduce a novel computational method,

Hierarchical HotNet that simultaneously combines network interac-

tions and vertex scores to construct a hierarchy of high-weight,

topologically close subnetworks.

Applied to cancer genomics data, Hierarchical HotNet builds a

hierarchy of highly mutated subnetworks in a PPI network.

Hierarchical HotNet outperforms several state-of-the-art computa-

tional methods on recent datasets in terms of recovering known and

candidate cancer genes, addressing several important issues in current

network-based methods for identifying altered subnetworks, including

ascertainment bias (i.e. bias toward high-degree nodes) and statistical

significance testing. In particular, Hierarchical HotNet is a simpler

but more robust method than our earlier HotNet2 algorithm (see

Supplementary Material for a more detailed comparison), removing

parameters, reducing computational costs and improving predictions.

Applied to multiple interaction networks and cancer mutation data-

sets, Hierarchical HotNet identifies many known and putative cancer

genes. Further testing of these novel predictions may provide addition-

al insight into cancer biology.

There are multiple avenues for extending Hierarchical HotNet.

Hierarchical HotNet can be understood as part of general frame-

work for identifying clusters of high-weight, topologically close ver-

tices. As such, Hierarchical HotNet is a modular method; different

similarity measures, clustering algorithms or test statistics may be

more appropriate for different datasets, and each of these parts can

be changed as the application demands or curiosity dictates. This

modularity is strength of Hierarchical HotNet that should allow it

to be applied broadly.

It is also possible to adapt Hierarchical HotNet to use categoric-

al or vector-valued attributes instead of scalar-valued weights. For

example, one could define a new mutation similarity matrix using

the statistical significance of mutually exclusive or co-occurring

mutations between pairs of genes. Leiserson et al., (2016) use

this similarity matrix either directly with Hierarchical HotNet or

after combining it with the topological similarity matrix (1) to create

a new joint similarity matrix.

There is also a larger question about similarity measures on

vertex-weighted graphs and what properties such measures should

have. For the example, there is an interplay between the contributions

from network topology and vertex weights, and an ideal method

would attempt to quantify or balance these contributions to the dis-

covery of a method’s results. Hierarchical HotNet acknowledges this

interplay, and its framework provides opportunities to ascertain, e.g.

if either network topology or vertex weights dominate the

Hierarchical HotNet results. Additional study of similarity measures

on vertex-weighted graphs would be useful in the design of new meth-

ods for altered subnetwork discovery.
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