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Abstract

Motivation: Efflux protein plays a key role in pumping xenobiotics out of the cells. The prediction

of efflux family proteins involved in transport process of compounds is crucial for understanding

family structures, functions and energy dependencies. Many methods have been proposed to clas-

sify efflux pump transporters without considerations of any pump specific of efflux protein fami-

lies. In other words, efflux proteins protect cells from extrusion of foreign chemicals. Moreover,

almost all efflux protein families have the same structure based on the analysis of significant

motifs. The motif sequences consisting of the same amount of residues will have high degrees of

residue similarity and thus will affect the classification process. Consequently, it is challenging but

vital to recognize the structures and determine energy dependencies of efflux protein families. In

order to efficiently identify efflux protein families with considering about pump specific, we devel-

oped a 2 D convolutional neural network (2 D CNN) model called DeepEfflux. DeepEfflux tried to

capture the motifs of sequences around hidden target residues to use as hidden features of fami-

lies. In addition, the 2 D CNN model uses a position-specific scoring matrix (PSSM) as an input.

Three different datasets, each for one family of efflux protein, was fed into DeepEfflux, and then a

5-fold cross validation approach was used to evaluate the training performance.

Results: The model evaluation results show that DeepEfflux outperforms traditional machine learn-

ing algorithms. Furthermore, the accuracy of 96.02%, 94.89% and 90.34% for classes A, B and C, re-

spectively, in the independent test results show that our model can perform well and can be used

as a reliable tool for identifying families of efflux proteins in transporters.

Availability and implementation: The online version of deepefflux is available at http://deepefflux.

irit.fr. The source code of deepefflux is available both on the deepefflux website and at http://140.

138.155.216/deepefflux/.

Contact: yien@saturn.yzu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Efflux protein is a type of transporter that resides in the cytoplasmic

membrane of any sort of cells. As active transporters, efflux pump

(efflux protein) requires source of chemical energy to perform their

functions. Pumping out toxic substances or extruding the foreign

chemicals that are not necessary to external environment of cells is

the main task of these proteins as a primary mechanism of antibiotic

resistance (Sarkar et al., 2012). Consequently, efflux proteins with

pump specifics are required for all living organisms. Furthermore,
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membrane proteins are layers acting as barriers against undesirable

compounds from outside the cells (Ranaweera et al., 2015).

Although residing in membrane proteins, efflux proteins have specif-

ic biological functions. Active efflux transport proteins skip mem-

brane barriers and transport waste substances through specific

pump of the efflux pump. In general, efflux proteins are classified

into five different families that represent five different pumps of ef-

flux transporters. They are major facilitator superfamily (MFS) (Pao

et al., 1998; Yan, 2013; Ranaweera et al., 2015), ATP-binding cas-

sette superfamily (ABC) (Schneider and Hunke, 1998), small multi-

drug resistance family (SMR) (Chung and Saier Jr, 2001),

resistance–nodulation–cell division superfamily (RND) (Nikaido

and Takatsuka, 2009) and multiantimicrobial extrusion protein

family (MATE) (Kuroda and Tsuchiya, 2009). Since efflux proteins

are active transporters that require energy (chemical energy) to per-

form their functions (Sun et al., 2014; Ranaweera et al., 2015), the

understanding of multisubunit complex (amino acid sequence) and

energy sources of efflux pump is an indispensable idea. Among five

energy sources of efflux proteins, ABC, one of the largest and pos-

sibly the oldest superfamilies with representatives in all extant phyla

from prokaryotes to humans, is the primary active transporters;

RND superfamily (catalyzes the active efflux of many antibiotics

and chemotherapeutic agents) and MFS, SMR, and MATE families

are secondary active transporters (West, 1980; Saidijam et al.,

2005).

Numerous studies have been conducted on efflux proteins. For

example, Saidijam et al. (2017) studied efflux proteins in blood–

brain barrier that provides a mechanism for pumping out the waste

metabolics from the brain, preventing entry of unwanted substances

(such as drugs and xenobiotics) and help to maintain brain homeo-

stasis (Saidijam et al., 2017). Additionally, Sarkar et al (2012) pro-

posed a method for predicting minimum inhibitory concentration

ratios based on characteristics of the antibiotic (size, hydrophobi-

city, scored interactions with efflux pumps). Regarding prediction

model, there are two different works to identify efflux proteins from

membrane and transport proteins. Ou et al. (2013) used a Radial

Basis Function (RBF) network to predict efflux proteins. Taju and

Ou (2016) employed a deep learning approach via 2 D convolution-

al neural network (2 D CNN) model to identify efflux proteins in

membrane and transport proteins and achieved higher accuracy

compared to RBF network approach. Our current study focuses on

classifying efflux proteins into three classes based their amino acid

structures and energy dependence mechanisms. Compared to Taju

and Ou (2016), this study can be considered as a further research

about efflux proteins in transporters.

Recently, with the successful use of deep neural networks

(DNNs) approach (a brain-inspired approach) in various fields,

including speech recognition and computer vision, many researchers

tried to implement the same approach in bioinformatics field. CNN

model is among the popular choices. Several applications of CNN

model in the bioinformatics field were conducted to classify the

types of proteins, predict binding sites, predict structures and predict

protein–proteins interactions based on sequence information. Many

researchers have used deep learning for solving bioinformatics prob-

lems, for example, classification of efflux proteins from membrane

and transport proteins, prediction of electron transport proteins,

prediction of protein secondary structure, prediction of DNA–pro-

tein binding sites and prediction of protein–protein interaction (Taju

and Ou, 2016; Wang et al., 2016; Zeng et al., 2016; Le et al., 2017;

Sun et al., 2017). According to their family functions, the role of ef-

flux proteins is essential in protein transport process, and it is neces-

sary to develop a novel method to classify each family that

represents each pump specific of efflux proteins. In this study, we

propose an approach that combines 2 D CNN model with PSSM

profiles as a reliable tool to find the hidden features of the dataset.

As shown in a series of recent publications (Chen et al., 2013;

Lin et al., 2014; Liu et al., 2016; Chen et al., 2016; Jia et al., 2016;

Liu et al., 2015; Cheng et al., 2017; Feng et al., 2017; Liu et al.,

2017), to develop a really useful sequence-based statistical predictor

for a biological system, one should observe the five-step rule (Chou

2011); i.e. making the following five steps very clear: (i) how to con-

struct or select a valid benchmark dataset to train and test the pre-

dictor; (ii) how to formulate the biological sequence samples with an

effective mathematical expression that can truly reflect their intrinsic

correlation with the target to be predicted; (iii) how to introduce or

develop a powerful algorithm (or engine) to operate the prediction;

(iv) how to properly perform cross-validation tests to objectively

evaluate its anticipated accuracy; and(v) how to establish a user-

friendly web server for the predictor that is accessible to the public.

Subsequently, we describe how to deal with these steps one-by-one.

2 Materials and methods

2.1 Efflux protein families
In efflux protein structures, three components in cell membrane

were used to describe pump specifics, amino acid structures and en-

ergy-dependent mechanism of efflux proteins. They are inner mem-

brane efflux proteins (IEPs), periplasmic efflux proteins (PEPs) and

outer membrane efflux proteins (OEPs) (Johnson and Church, 1999;

Webber and Piddock, 2003; van Amsterdam et al., 2005). Active

transporter efflux proteins require chemical energy sources to per-

form their functions. As shown in Figure 1, we can categorize efflux

proteins into three classes based on their chemical energy sources

and amino acid structures. The first class (A) is a secondary active

transporter that performs its function by pumping hydrogen (Hþ) or

sodium (Naþ) ions into the cell as a source of chemical energy. The

second class (B) is also a secondary active transporter. In gram-

negative bacteria, class B is a multisubunit complex spanning IEPs,

PEPs and OEPs (Blair and Piddock, 2009; Nikaido and Takatsuka,

2009). Finally, the third class (C) is a primary active transporter uti-

lizing adenosine triphosphate hydrolysis (ATP), and adenosine di-

phosphate (ADP) and one inorganic phosphate group (ADPþPi)

(DuPont, 1992) as sources of chemical energy.

2.2 Data collection
As described in the DeepEfflux architecture in Figure 2, efflux pro-

tein data were extracted from Transporter Classification Database

(TCDB) (Saier et al., 2014). Then, the data were separated into two

parts, training and testing data, for developing and evaluating the

prediction model. In this study, we named each class by using A, B

or C character. MFS, SMR and MATE are grouped together and

referred to as class A, RND is referred to as class B and ABC family

is referred to as class C. We divided the task into three binary classi-

fication subproblem: classifying class A against class B and C, classi-

fying class B against class A and C and classifying class C against

class A and B. Table 1 shows three datasets of efflux protein families

used in this study. From the original data, we removed protein

sequences with similarity greater than 80% using BLAST (Altschul

et al., 1997). We set aside 50, 10 and 116 proteins of class A, B and

C, respectively, for use as testing data, and the remaining 155, 32

and 348 proteins of class A, B and C, respectively, were used for

building the model. The 5-fold cross validation technique was used

to evaluate the performance of the training process.
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2.3 Imbalance data
We found that our data are imbalanced, and this will greatly affect

the classification process and thus the performance. Specifically, the

dataset for classifying class B against class A and C is the one with a

ratio of positive–negative class below 7%. Commonly, there are two

approaches for addressing the imbalance of training data. The first

one is the data processing approach (resample the training set) and

the second one is the algorithmic approach (Wu and Chang, 2003).

In this study, we applied the data processing approach by oversam-

pling the minority class in the training data. The oversampling treat-

ments were introduced by previous investigators with the significant

improvements (Liu et al., 2015; Xiao et al., 2015; Jia et al., 2016).

By choosing oversampling approach over undersampling approach

in dealing with imbalance problem, we obtained 2 benefits: having

sufficient data for building solid model and avoiding losing valuable

information. In light of that, during the experiment, we gradually

increased the number of minority class instances and recorded the

performance after each step. The final selected model is the one

achieving the best performance with concern about the balance be-

tween sensitivity and specificity.

2.4 Feature generation
With the explosive growth of biological sequences in the postge-

nomic age, one of the most important but also most difficult prob-

lems in computational biology is how to express a biological

sequence with a discrete model or a vector yet still keep considerable

sequence order information or key pattern characteristic. This is be-

cause all the existing machine learning algorithms can only handle

vector but not sequence samples as elucidated in a comprehensive re-

view (Chou, 2015). However, a vector defined in a discrete model

may completely lose all the sequence pattern information. To avoid

completely losing the sequence pattern information for proteins, the

pseudo amino acid composition (PseAAC) (Chou, 2001) was pro-

posed. Ever since the concept of PseAAC was proposed, it has been

widely used in nearly all the areas of computational proteomics (see,

e.g., Dehzangi et al., 2015; Meher et al., 2017) as well as a long list

of references cited in (Chou, 2017)). Because it has been widely and

increasingly used, recently three powerful open-access softwares,

called ‘PseAAC-Builder,” “propy” and “ PseAAC-General,” were

established: The former two are for generating various modes of

Chou’s special PseAAC, while the third is for those of Chou’s gen-

eral PseAAC (Chou 2011), including not only all the special modes

of feature vectors for proteins but also the higher level feature vec-

tors such as “Functional Domain” mode (see equations 9 and 10 in

Chou, 2011), “Gene Ontology” mode (see equations 11 and 12 of

Chou, 2011) and “Sequential Evolution” or “PSSM” mode (see

equations 13 and 14 of Chou, 2011). Encouraged by the successes

of using PseAAC to deal with protein/peptide sequences, the concept

of Pseudo K-tuple Nucleotide Composition (Chen et al., 2014) was

developed recently for generating various feature vectors for DNA/

RNA sequences and has been found very useful (Chen et al., 2015)

as well. Particularly, recently a very powerful web-server called

“Pse-in-One” (Liu et al., 2015) and its updated version “Pse-in-

One2.0” (Liu et al., 2017) have been established which can be used

to generate any desired feature vectors for protein/peptide and

DNA/RNA sequences according to the need of users’ studies or their

own definitions. In the current study, we are to use the evolutionary

features extracted from sequence samples via PSSM to formulate the

protein samples for identifying the families of efflux proteins in

transporters.

PSSM is a type of scoring matrix for a protein sequence. PSSM

scores generally show amino acid substitution scores for each pos-

ition in a protein multiple sequence alignment. In bioinformatics

field, there are many publications that adopted PSSM techniques to

solve problems such as protein secondary structure prediction

(Jones, 1999), protein disorder prediction (Su et al., 2006) and

Fig. 1. Efflux protein families in the cell membrane. Efflux proteins are active transporters and localized in the cytoplasmic membrane of all kinds of cells. There

are five families of efflux proteins, and each performs its function by utilizing sources of chemical energy. (Color version of this figure is available at

Bioinformatics online.)

Fig. 2. Architecture of DeepEfflux. (Color version of this figure is available at

Bioinformatics online.)
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electron transport protein identification (Le et al., 2017), and their

results show significant improvements. Therefore, in this study, the

PSI-BLAST (Altschul et al., 1997) and nonredundant protein data-

base were used to generate PSSM profiles from our fasta files of ef-

flux proteins. Supplementary Figure S1 shows the way we generated

our dataset using PSSM method.

Generally, a PSSM profile consists of position component (index

of each amino acid residues in a sequence after multiple sequence

alignment) and profile component (a matrix with 20 columns repre-

sent 20 possible mutations of 20 amino acid residues). To discover

the molecular function of efflux proteins, we calculated the position

components of PSSM profiles representing 400 D input vectors as in-

put features for our DeepEfflux model. All elements with the same

amino acid in PSSM profiles were summed up, then divided by the

sequence length and finally scaled by sigmoidal or softmax normal-

ization. We conducted experiments on both data versions: with and

without feature scaling (normalization). We found out that our

dataset without normalization achieved better performance.

2.5 CNN structure
We implemented this study using CNN which is the most important

deep neural network. CNN has been applied in many fields and

achieved impressive results, especially in computer vision when an

input is normally a 2 D matrix of image pixel densities. Encouraged

by these results, we took advantage of the 2 D structure of an input

image of CNN architecture and conveniently made similar 2 D

inputs of PSSM matrixes with the sizes of 20 � 20s. The purpose of

using 2 D CNN model is to catch the hidden figures inside PSSM

profiles rather than using 1D. Next, PSSM profiles were connected

to 2 D CNN design from input layer through several hidden layers

to output layer. Supplementary Figure S2 describes the procedure of

inputting a PSSM profile into a CNN model, then passing through a

series of convolutional, nonlinearity, pooling (down-sampling) and

fully connected layers and finally to an output.

Regarding the way we constructed the CNN architecture of

DeepEfflux, we generally followed the typical CNN architecture.

Our model contains seven hidden layers including one 2 D convolu-

tional layer, two activation functions, one pooling layer, one flatten-

ing layer and two fully connected layers. The first layer in a CNN is

always a convolutional layer. Particularly, in our CNN, first layer

contains PSSM profile on which we applied 2 D convolutional oper-

ations with some existing parameters including nxn kernel size, f fil-

ters, 1 � 1 strides and 1 � 1 zero-padding. 2 D convolutional

operations were used to filter the important motif features. We

learned the network by changing the above-mentioned hyper-

parameters to find the appropriate ones. We next added a Rectified

linear unit (ReLU) activation function for introducing nonlinearity

to make the model able to represent our data better. Furthermore, to

reduce the size of matrix calculation, remove nonmaximal values

and control overfitting, we next added 2 D max-pooling layer with

1 � 1 strides, 8 � 8 filter sizes and 1 � 1 additional padding dimen-

sions. Before we applied two fully connected layers, we added

flattening layer to flatten the input. Our first fully connected layer

contains 500 hidden nodes. After this step, sigmoid activation func-

tion was used to decide whether each neuron can be activated or

not. Subsequently, we applied another fully connected layer with

two hidden nodes for binary classification of DeepEfflux model. For

the output layer, we used softmax function as a simple classifier to

classify our class of efflux protein families.

2.6 Assessment of predictive ability
For binary classification problem that classifies class A against

classes B and C, we defined class A sequences as positive data, and

the class B and class C sequences as negative data. Similar

approaches were applied for the other binary classification problems

regarding classes B and C. All these proteins were divided into two

sets: independent testing dataset and training dataset. We first

applied 5-fold cross-validation technique to develop our model and

evaluate the training process, and then the independent dataset was

used to assess the ability of our model in predicting new data. In

order to measure the predictive performance, we considered to

adopt Chou’s criterion (Chou, 2001) used in predicting signal pepti-

des. The four metrics used such as sensitivity (Sen), specificity

(Spec), precision (Pre), accuracy (Acc) and Matthews’s correlation

coefficient (MCC) (see, e.g. Chen et al., 2007; Feng et al., 2013; Liu

et al., 2015; Xiao et al., 2015; Jia et al., 2016a; Jia et al., 2016b; Liu

et al., 2017) can be formulated as in supplementary file.

3 Results and discussion

In this experiment, n-gram model and word cloud technique were

used to perform our motif analysis which aims at showing the im-

portant motifs in the dataset. We also used MXNet library (Chen

et al., 2015) as a deep learning framework to build the DeepEfflux

model. We further compared the proposed method with previous

method using QuickRBF Classifier, software available at https://

csie.org/�yien/quickrbf/ (Ou, 2005) (Based on some of our research

experiences Ou et al., 2008, Ou and Chen, 2009, Chen et al., 2011,

Ou et al., 2013, quickRBF has higher performance compared to

well-known LibSVM, Random forest, Naı̈ve Bayes and KNN classi-

fiers). We also examined the effect of using different optimizers

including Adam (Kingma and Ba, 2014), Adadelta (Zeiler, 2012),

AdaGrad (Duchi et al., 2011), RMSProp (Bengio) and Stochastic

Gradient Descent (SGD) (Bottou, 2010) optimizers on our model.

3.1 Analysis of the important sequence motif
In this analysis, we tried to observe the motifs that often appear in

protein sequences. Supplementary Table S1 shows the 10 most fre-

quent motifs in class A, B and C of more than one amino acid pair

residues with n-gram contiguous sequence. The n-gram model shows

that unigram, bigram and trigram of amino acid contain more im-

portant motif residues. We performed this analysis on training data.

Unigrams show that Leu (L), Ala (A), Gly (G) and Ser (S) amino

Table 1. Family of efflux proteins data

No. (Super) family Original data Identity< 20% Training data Testing data Name

1 MFS 755 191 144 47 Class A

2 SMR 15 5 4 1

3 MATE 41 9 7 2

4 RND 202 42 32 10 Class B

5 ABC 1670 464 348 116 Class C

3114 S.W.Taju et al.
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acids are dominant in classes A, B, and C. Regarding bigrams and

trigrams, bigram LL and trigram LLL are more abundant in the pro-

tein sequences under study. These residues are hydrophobic and

polar in nature. Supplementary Figure S3 shows unigram, bigram,

trigram, four-gram and five-gram word cloud (left to right) created

from efflux protein motif sequences. From the figure, we can see the

n-gram with highest frequencies of each family.

3.2 Different optimizers with PSSM features
Table 2 shows the predictive performance of DeepEfflux with five

different optimizers on PSSM dataset. Best optimizer results for each

class are highlighted in bold.

We can see from the table that by using Adam optimizer, class A

can achieve best performance at 92.00%, 96.83%, 95.45% and

88.83% for Sen, Spec, Acc, and MCC, respectively. Similarly, when

applied Adam optimizer, class C also reaches the best performance

at 93.22%, 82.76%, 89.77% and 76.68%. Finally, class B obtains

93.75%, 83.33%, 85.23% and 64.47% with SGD optimizer.

3.3 Different optimizers with PSSM features combined

with amino acid index features
We further added 20 topmost amino acid indexes (AAindex,

Supplementary Table S2) (Tomii and Kanehisa, 1996) selected using

fisher score or F-score (Supplementary Material, Formula S1) and

used as an additional feature set in the dataset. We increased the

number of feature from 400 to 420 in the dataset. Table 3 shows the

predictive performance of DeepEfflux with five different optimizers

on PSSMþAAIndex dataset. Similarly, best optimizer results for

each class are highlighted in bold.

According to the results in Table 3, by adding 20 new features,

DeepEfflux can obtain higher performance. More specifically, the

performance reaches the highest Sen (89.36%), Spec (98.45%), Acc

(96.02%), and MCC (89.72%) for class A using Adam Optimizer.

Class B achieves Sen (76.92%), Spec (96.32%), Acc (94.89%), and

MCC (66.64%) with Adam optimizer, and performance of Sen

(95.04%), Spec (80.00%), Acc (90.34%), and MCC (77.13%) are

obtained for class C using Adam optimizer. When compared to the

previous model (PSSM only), we found that we had increased the ac-

curacy from 95.45% to 96.02% for class A, 85.23% to 94.89% for

class B and 89.77% to 90.34% for class C. We also compared the

Matthews’s correlation coefficient values for each class. The result

shows that we had increased the MCC value from 88.83% to

89.72% for class A, 64.47% to 66.54% for class B and 76.68% to

77.13% for class C.

3.4 N-fold cross validation and independent test
In statistical prediction, the following three cross-validation meth-

ods are often used to examine a predictor for its effectiveness in

practical application: independent dataset test, subsampling or

K-fold cross-validation test and jackknife test (Chou and Zhang,

1995). However, of the three test methods, the jackknife test is

deemed the least arbitrary that can always yield a unique result for a

given benchmark dataset as elaborated in Chou (2011) and demon-

strated by equations.28–30 therein. Accordingly, the jackknife test

has been widely recognized and increasingly and used by investiga-

tors to examine the quality of various predictors (see, e.g.Chen et al.

2013; Lin et al., 2014; Dehzangi et al., 2015; Khan et al., 2015; Liu

et al., 2015; Xiao et al., 2015; Liu et al., 2016; Chen et al., 2016; Jia

et al., 2016a; Jia et al., 2016b; Jia et al., 2016c; Liuet al., 2017a;

Cheng et al., 2017; Feng et al., 2017; Liu et al., 2017c; Liu et al.,

2018). However, to reduce the computational time, we adopted the

5-fold cross validation and independent dataset test in this study as

done by many investigators with SVM or Neural Networks as the

prediction engine.

Based on the results mentioned in Sections 3.2 and 3.3, Adam

optimizer has been chosen as the best optimizer for our model. We

used default learning rate (float, default¼0.001 step size) and tried

various number of iterations from 100 to 200 during the experi-

ment. Furthermore, using independent testing data, we test how ac-

curate our model can predict new sample data and then compared

the results with QuickRBF classifier, as detailed below.

Table 4 shows the performance comparison of DeepEfflux with

QuickRBF classifier in 5-fold cross-validation and independent test.

We can see from the table that our proposed 2D CNN model can

achieve higher results in both 5-fold cross validation approach and

independent test approach. In more details, DeepEfflux can obtain

accuracy of 98.55%, 98.47% and 96.26% for class A, B and C, re-

spectively. These results are 2.37%, 6.80% and 1.31% higher than

those of QuickRBF. Regarding independent test result, DeepEfflux

Table 2. Performance comparison of CNN model with different

optimizers on PSSM data

Class Optimizer Sen Spec Acc MCC

Class A Adam 92.00% 96.83% 95.45% 88.83%

Adadelta 75.00% 96.21% 90.91% 74.94%

AdaGrad 93.55% 85.96% 88.64% 76.94%

RMSProp 92.45% 94.31% 93.75% 85.45%

SGD 91.23% 89.92% 90.34% 78.93%

Class B Adam 53.85% 94.48% 91.48% 43.97%

Adadelta 54.55% 96.36% 93.75% 48.89%

AdaGrad 68.75% 93.13% 90.91% 53.79%

RMSProp 45.45% 95.76% 92.61% 39.58%

SGD 93.75% 83.33% 85.23% 64.47%

Class C Adam 93.22% 82.76% 89.77% 76.68%

Adadelta 94.78% 40.48% 81.82% 43.79%

AdaGrad 91.94% 65.38% 84.09% 60.40%

RMSProp 96.09% 64.58% 87.50% 66.99%

SGD 69.07% 86.08% 76.70% 55.22%

Notes: By using the phrase “class A”, we mean the attempt to classify class

A against class non-A (class B and C). Similar meanings are applied to phrases

“class B” and “class C.”

Table 3. Performance comparison of CNN model with different

optimizers on PSSMþAAIndex data

Class Optimizer Sen Spec Acc MCC

Class A Adam 89.36% 98.45% 96.02% 89.72%

Adadelta 96.15% 68.37% 80.68% 65.49%

AdaGrad 88.24% 94.40% 92.61% 82.17%

RMSProp 90.20% 95.20% 93.75% 84.91%

SGD 93.65% 84.96% 88.07% 76.08%

Class B Adam 76.92% 96.32% 94.89% 66.64%

Adadelta 77.78% 92.41% 90.91% 59.93%

AdaGrad 81.25% 94.38% 93.18% 65.74%

RMSProp 69.23% 95.71% 93.75% 59.08%

SGD 94.44% 80.00% 82.95% 62.86%

Class C Adam 95.04% 80.00% 90.34% 77.13%

Adadelta 90.84% 40.00% 77.84% 35.78%

AdaGrad 94.53% 60.42% 85.23% 60.67%

RMSProp 95.12% 75.47% 89.20% 73.71%

SGD 67.71% 86.25% 76.14% 54.24%
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also outperforms QuickRBF with accuracy of 96.02%, 94.89% and

90.34% for class A, B and C, respectively, which are 0.57%, 7.96%

and 1.14% higher than the accuracies of QuickRBF. Similarly, we

also compared the Matthews’s correlation coefficient values for

each class in independent testing data evaluation. We found that

MCC results of DeepEfflux (89.72%, 66.64% and 77.13%) were

higher compared to QuickRBF (88.43%, 65.65%, and 73.71%) for

class A, B and C, respectively.

4 Conclusion

One of efflux superfamily, ABC transporters, can be exploited by re-

sistant cells to eject cytotoxic drugs that usually enter the cell by pas-

sive diffusion. On the other hand, MATE family equally functions

as drug/sodium or proton antiporters. Prediction of efflux protein

families involved in transport process of compounds is critical for

understanding family structure, function and energy dependency of

efflux family of active transporters. Although many methods have

been proposed to classify transporters from membranes, target

transport or proteins of compound carriers or even binding sites of

proteins transport, pump specifics of efflux protein families, which

in fact are similar to those of membrane layer in protecting cells

from undesirable compounds or extrusion of foreign chemicals,

were not taken into account. Moreover, as we can see from the ana-

lysis of significant motifs, efflux protein families have high degree of

similarity in structure, and this will affect the classification process.

Accordingly, the predictive model must recognize the hidden fea-

tures to productively classify the efflux protein families, so their

structures, functions and energy dependencies can be disclosed.

The 2D CNN is an important type of deep learning model con-

sisting of a convolution kernel and a filter being a set of motif detec-

tors that can learn from the data. By utilizing 2D CNN, we tried to

capture meaningful motif features and even hidden features by scan-

ning sequences around the target residue. The result of independent

test shows that our prediction model performance exceeds that of

traditional machine learning algorithm with accuracy of 96.02%,

94.89% and 90.34% for class A, B and C, respectively. These results

were even enhanced by utilizing the combination of PSSM and

AAIndex properties. This proves that DeepEfflux can capture im-

portant motifs of efflux protein sequences in particular and in other

types of protein in general. For this reason, our proposed model can

be served as a reliable tool for prediction efflux protein families

which helps biologists understand more about their structures as

well as their functions. We have developed a web server, which is

available at: http://140.138.155.216/deepefflux/ to provide service

to the scientific community.
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