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Abstract

Motivation: Counting molecules using next-generation sequencing (NGS) suffers from PCR amplifi-

cation bias, which reduces the accuracy of many quantitative NGS-based experimental methods such

as RNA-Seq. This is true even if molecules are made distinguishable using unique molecular identi-

fiers (UMIs) before PCR amplification, and distinct UMIs are counted instead of reads: Molecules that

are lost entirely during the sequencing process will still cause underestimation of the molecule count,

and amplification artifacts like PCR chimeras create phantom UMIs and thus cause over-estimation.

Results: We introduce the TRUmiCount algorithm to correct for both types of errors. The

TRUmiCount algorithm is based on a mechanistic model of PCR amplification and sequencing,

whose two parameters have an immediate physical interpretation as PCR efficiency and sequenc-

ing depth and can be estimated from experimental data without requiring calibration experiments

or spike-ins. We show that our model captures the main stochastic properties of amplification and

sequencing, and that it allows us to filter out phantom UMIs and to estimate the number of mole-

cules lost during the sequencing process. Finally, we demonstrate that the phantom-filtered and

loss-corrected molecule counts computed by TRUmiCount measure the true number of molecules

with considerably higher accuracy than the raw number of distinct UMIs, even if most UMIs are

sequenced only once as is typical for single-cell RNA-Seq.

Availability and implementation: TRUmiCount is available at http://www.cibiv.at/software/trumi

count and through Bioconda (http://bioconda.github.io).

Contact: florian.pflug@univie.ac.at

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Experimental methods like RNA-Seq, ChIP-Seq and many others de-

pend on next-generation sequencing (NGS) to measure the abun-

dance of DNA or RNA molecules in a sample. The PCR

amplification step necessary before sequencing often amplifies dif-

ferent molecules with different efficiencies, thereby biasing the

measured abundances (Aird et al., 2011). This problem can be alle-

viated by ensuring that all molecules are distinguishable before

amplification by some combination of factors comprising a unique

molecular identifier (UMI) (Hug and Schuler, 2003; Kivioja et al.,

2012), which usually includes a distinct molecular barcode ligated

to each molecule before amplification (Fig. 1A, colored dots; see

Smith et al. (2017) for a more extensive history of the UMI method).

After amplification and sequencing, instead of counting reads, reads

are grouped by UMI, and each distinct UMI is taken to reflect a dis-

tinct molecule in the original sample (Fig. 1A). But while the number
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of distinct UMIs may be a better proxy for the molecule count, it is

still biased, for two reasons:

• Molecules that are amplified with low efficiency will have fewer

copies made, hence fewer reads per UMI, and thus a higher

chance of being left entirely unsequenced (Fig. 1A, green tran-

script, violet UMI).
• Sequencing errors, PCR chimeras, and index miss-assignment (Sinha

et al., http://www.biorxiv.org/content/early/2017/04/09/125724) in

multiplexed sequencing runs can produce phantom UMIs which do

not correspond to any molecule in the original sample (Fig. 1A,

orange/red phantom UMI).

Various methods have been proposed to counter-act these

effects: Smith et al. (2017) proposed an algorithm for merging highly

similar, erroneous versions of the same original UMI to correct for

sequencing errors and single-nucleotide PCR amplification errors.

To filter out more complex PCR artifacts, strand-specific UMI-label-

ing protocols were introducted (Shiroguchi et al., 2012; Schmitt

et al., 2012) that allow filtering out artifacts based on whether

UMIs for both strands of a template molecule were detected. A cor-

rection for molecules left entirely unsequenced is mentioned by

Kivioja et al. (2012), but being based on the Poission distribution, it

severely under-estimates the amount of affected molecules; for their

data by about an order of magnitude.

Instead of relying on sequence similary or complicated strand-

specific UMI-labeling protocols, we rely on the per-UMI read count to

separate true UMIs (i.e. UMIs of actual molecules in the original sam-

ple) from phantom UMIs. Chimeric PCR products are typically pro-

duced during later reaction cycles, and can therefore be expected to

have smaller copy numbers and hence a lower read-count than non-

chimeric PCR products. Index miss-assignment and sequencing errors

typically happen randomly, and are unlikely to produce a larger num-

ber of reads showing the same phantom UMI. For these reasons, phan-

tom UMIs can be expected to have a markedly lower read count than

most true UMIs, i.e. UMIs of actual molecules in the original sample.

Our bias-correction and phantom-removal algorithm TRUmiCount

exploits this difference in expected read counts between phantoms and

true UMIs. It removes UMIs likely to be phantoms based on a read-

count threshold, and then estimates and corrects the (gene-specific) loss,

i.e. the fraction of molecules that were not sequenced or whose UMIs

were mistaken for phantoms. For this correction TRUmiCount employs

a model of PCR amplification that accounts for the stochasticity inher-

ent to this amplification reaction.

2 Materials and methods

2.1 The TRUmiCount algorithm
The TRUmiCount algorithm consists of the following three steps:

1. We first filter out phantom UMIs by removing any UMI whose

read count lies below a suitably chosen error-correction thresh-

old (T).

2. We then estimate the loss (‘), i.e. the fraction of molecules that

were not sequenced at all, or whose UMIs were removed by the

error-correction threshold. This estimate is computed using a

stochastic model of the amplification and sequencing process

whose parameters are the PCR efficiency (E), and the sequencing

depth (D), expressed as the average number of reads per UMI in

the initial sample. From the observed distribution of reads per

UMI, we estimate both (raw) gene-specific as well as library-

wide values for these parameters, and compute corresponding

estimates of the loss (see Section 2.2 for details).

3. Finally, we add the estimated number of lost UMIs back to the

the observed number of true UMIs (those UMIs with � thresh-

old reads) to find the total number of molecules in the original

sample. Since the loss can vary between genes, to yield unbiased

counts, the correction must be based on gene-specific loss esti-

mates. Due to the noise inherent to raw gene-specific estimates

for genes with only few observed true UMIs, we employ a

James-Stein-type (James and Stein, 1961) shrinkage estimator,

adjusting the raw gene-specific parameter and loss estimates to-

wards the library-wide ones (thus shrinking their difference). We

choose the amount of shrinkage based on each estimate’s preci-

sion, in such a way that the expected overall error is minimized

(Carter and Rolph, 1974) (see Section 2.3).

Fig. 1. (A) The relevant steps of library preparation when the UMI method is used. The sample initially contains three copies of molecule and two copies of

, which are made unique by labelling with UMIs ( , , , , ). Each of those molecules is expanded into a molecular family during amplification, and a ran-

dom selection of molecules from these families is sequenced. Counting unique UMIs then counts unique molecules, unless UMIs have read-count zero ( ) or

phantom UMIs are produced ( ). (B) PCR as a Galton-Watson branching process. Molecule failed to be copied during the first PCR cycle and the final family

size is thus reduced compared with . (C) Normalized family size distribution for efficiency 10, 50 and 90%. The arrows mark the most likely normalized family

sizes for the two molecules from (B), assuming a reaction efficiency of 90%, and taking their distinct fates during the first PCR cycle into account. (D) Distribution

of reads per UMI for efficiency 10, 50 and 90% assuming D ¼ 4 Reads per UMI on average
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2.2 Estimating the fraction of lost molecules
To estimate the loss, i.e. the fraction of molecules whose UMIs had

a read count below the error-correction threshold, we model the dis-

tribution of per-UMI read counts by combining a stochastic model

of PCR amplification with a model of NGS as random sampling.

2.2.1 A stochastic model of PCR amplification

To model PCR amplification, we use the single-stranded model of

Krawczak et al. (1989), meaning we view PCR as a stochastic process

that during each cycle duplicates each molecule independently with a

particular probability E, called the reaction’s efficiency. We further as-

sume that a molecule is copied perfectly or not at all, i.e. that neither

partial copies nor copies with a slightly different base-pair sequence

are produced, that no molecules are destroyed or lost, and that the effi-

ciency E stays constant throughout the reaction. Although this model

has been extended by Weiss and von Haeseler (1997) to include the

possibility of substitution errors during amplification, exhaustively

modeling all possible sources of phantom UMIs seems futile. We there-

fore pursue a different approach, and model only the error-free case,

trusting the error-correction threshold to remove phantoms. Over mul-

tiple cycles, each molecule is thus assumed to be expanded into a mo-

lecular family of identical copies. Since we use the single-stranded

model, molecule for us always means a single-stranded piece of DNA,

and we do not distinguish between a strand and its reverse comple-

ment. For our purposes, a piece of double-stranded DNA thus consists

of two indistinguishable molecules.

Before amplification, we assume all molecules in the sample to be

distinguishable by some UMI. During amplification, each of those

molecules gives rise to a molecular family of (indistinguishable) copies.

The initial size of such a family (i.e. the number of copies it is com-

prised of) is 1. During the first PCR cycle, the size increases to 2 if the

single initial molecule is copied successfully, i.e. with probability E.

Continuation of this process, always using all existing molecules as po-

tential templates that are copied with probability E, produces a ran-

dom sequence M0;M1;M2; . . . of molecular family sizes after the 0th,

1st, 2nd, . . . cycle. This sequence forms a Galton-Watson branching

process (Weiss and von Haeseler, 1995), and follows the recursion

M0 ¼ 1; Mi ¼Mi�1 þ Di where

Di � Binom ðMi�1;EÞ:
(1)

Although we are not aware of a way to obtain an explicit formula

for the distribution of the family size Mi after i PCR cycles, the

expected value and variance of Mi can be computed explicitly.

According to Harris (1989, Ch. 1), Equation (5.3), VMi ¼ r2miðmi�1Þ
m2�m

where m and r are the mean and SD of M1. In our case these are m

¼ 1þ E and r2 ¼ E � ð1� EÞ, thus we find

EMi ¼ ð1þ EÞi (2)

VMi ¼
1� E

1þ E
� ð1þ EÞiðð1þ EÞi � 1Þ (3)

Equation 2 shows the well-known exponential growth of

expected family sizes during PCR. But apart from recovering this

well-known property of PCR, the Galton-Watson model also pre-

dicts the likelihood of deviations from this expectation due to ran-

dom failures of copy operations, and by simulation allows us to find

the actual distribution of Mi.

2.2.2 The normalized family size F

Due to the exponential growth of the expectation of Mi, the distribu-

tion of Mi depends heavily on the PCR cycle count i. That

dependency, however, affects mostly the scale, not the shape of the

distribution of Mi. To see the effect on the shape more clearly, the ef-

fect on the scale is removed by replacing Mi with a re-scaled version

which has an expected value of one,

~Mi ¼
Mi

EMi
¼ Mi

ð1þ EÞi
: (4)

These re-scaled family sizes can be sensibly compared across

PCR cycles. We observe that with growing cycle counts, the add-

itional stochasticity introduced by each additional cycle drops rapid-

ly. The re-scaled family size after the first cycle varies by a factor of

two depending on whether the (single) copy operation during the

first cycle succeeds or fails. Later on there are more templates to

copy from, and thus the success or failure to copy any particular

molecule averages out, making the behavior of the reaction more de-

terministic. Finally, ~Mi � ~Miþ1, because the family size Mi increases

during each cycle almost exactly by a factor of 1þ E, which matches

the decrease of the re-scaling factor in ~Mi. This informal argument

can be turned into a formal proof (see Harris (1989), Ch. 1, Th. 8.1)

of the convergence of the re-scaled family size as i tends towards1,

which allows us to remove the cycle count as a parameter entirely

from what we call the normalized family size

F ¼ lim
i!1

~Mi: (5)

Although there is again no explicit formula known for the distri-

bution of the normalized family size F, we find its variance from

Equations (3–5) to be

VF ¼ 1� E

1þ E
: (6)

To quickly evaluate the density fFðx; EÞ of the distribution of F

for a particular normalized family size x given reaction efficiency E,

we interpolate using 2D polynomial interpolation (Akima, 1996) be-

tween pre-computed densities for different reaction efficiencies be-

tween 0 and 100% at different family sizes between 0 and 50 (see

Supplementary Section S1.1 for details).

2.2.3 Modeling the sequencing process

The normalized family size distribution models the abundance of

molecules with a particular UMI. To model the read count of a

particular UMI after sequencing (i.e. the number of reads stem-

ming from a particular pre-amplification molecule), we model

NGS with a Poissonian sampling model (Marioni et al., 2008).

This amounts to assuming that (i) each individual copy has the

same probability of being sequenced, (ii) this probability is small

compared to the sequencing depth and (iii) there were many (dis-

tinguishable) original molecules. We further assume that a UMI is

on average represented by D reads. Then the read count C of a

UMI with known normalized molecular family size F is Poisson

distributed,

C jF � Poisson ðF �DÞ;

PðC ¼ k j FÞ ¼ e�F�D ðF �DÞ
k

k!
:

(7)

In general, however, the exact family size F of any particular

UMI is unknown—we only know the distribution of F. To com-

pute the probability of a UMI having k reads, we average over all

possible family sizes x 2 ½0;1Þ, weighting them with their respect-

ive density fFðx; EÞ in the distribution of the normalized family

size F,
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PðC ¼ kÞ ¼
ð1

0

PðC ¼ k j F ¼ xÞ � fFðx; EÞ dx: (8)

We note that while PðC ¼ kÞ depends on D and E, we omit these

dependencies for brevity of notation. To compute the probabilities

PðC ¼ kÞ, we integrate numerically using the midpoint rule on the

grid of family sizes x for which fFðx; EÞ was pre-computed. For the

mean and variance of C we find the explicit expressions

EðCÞ ¼ D; VðCÞ ¼ DþD2 1� E

1þ E
: (9)

Since we impose an error-correction threshold T and drop UMIs

with fewer than T reads, the read-count distribution we actually ob-

serve is a censored version of C where the possible outcomes C<T

are removed. For the mean and variance of this censored distribu-

tion with threshold T we write

EðC jC � TÞ ¼
P1

k¼T k � PðC ¼ kÞ
PðC � TÞ ; (10)

VðC jC � TÞ ¼
P1

k¼Tðk� EðC jC � TÞÞ2 � PðC ¼ kÞ
PðC � TÞ : (11)

To compute EðC jC � TÞ, we rewrite the infinite sum in

Equation (10) to EðCÞ �
P

k<T k � PðC ¼ kÞ, and similarly for

VðC jC � TÞ.

2.2.4 Computing the loss

The expected loss ‘ is the expected fraction of true UMIs that either

remain completely unsequenced, or that are removed by the error-

correction threshold. Since we treat each per-UMI read count, and

hence each UMI’s fate (to be filtered or not) as independent stochas-

tic quantities, this expected fraction is simply the probability that a

single UMI has a read-count below the threshold T, i.e.

‘ ¼ PðC < TÞ: (12)

2.3 Correcting for lost molecules
Given nobs experimentally observed UMIs (after applying the error-

correction threshold T to filter out phantoms) and their read count

vector c ¼ ðc1; . . . ; cnobs Þ, we estimate the reaction efficiency E and

the mean number of reads per UMI D. We use the method of

moments, i.e. we find E and D such that the predicted mean equals

the sample mean bm of c, and the predicted variance its sample vari-

ance bv. Since we only take observed UMIs with at least T reads

into account, we must compute the predictions using the censored

distribution, i.e. find E, D such that bm ¼ EðC jC � TÞ andbv ¼ VðC jC � TÞ
If T ¼ 0, i.e. if bm and bv reflect the uncensored mean respectively

variance, these equations can be solved explicitly by inverting

Equation (9), which yields the method of moments estimates bD ¼ bm
and bE ¼ 1�v0

1þv0, where v0 ¼ bv�bmbm2 limited to the interval ½0;1�.
If T > 0, we solve the system of equations numerically to find E

and D (see Supplementary Section S1.2). With these parameter esti-

mates, we then compute an estimate b‘ of the loss ‘ using Equation

(12), and use it to correct for the expected number of lost molecules.

Assuming that we observed nobs UMIs and given b‘, we estimate the

total number of molecules in the original sample to have been

bntot ¼ nobs

1�b‘ : (13)

2.3.1 Gene-specific estimates and corrections

Since the reaction efficiency E and depth D, and hence also the loss,

will usually vary between individual genes (or other genomic fea-

tures of interest), to correct the observed number of transcripts of

some gene g 2 1; . . . ;K for the loss, a gene-specific loss estimate b‘g

should be used. In principle, such estimates are found by applying

the described estimation procedure to only the UMIs found for tran-

scripts of gene g, i.e. by computing a gene-specific mean bmg and

variance bvg of the number of reads per UMI, and solving for param-

eters E and D to find a gene-specific bEraw

g and bDraw

g , and computingb‘raw

g using Equation (12). If the number nobs
g of observed UMIs (i.e.

transcripts) stemming from gene g is large, a correction based onb‘raw

g yields an (approximately) unbiased and accurate estimate of the

total number of transcripts of that gene. But if nobs
g is small, the error

of the estimator b‘raw

g easily exceeds the variability of the true gene-

specific value ‘g between genes. In such cases, correcting using the li-

brary-wide estimate b‘all
computed from all UMIs found in the li-

brary will yield a more accurate (although biased) estimate of the

total number transcripts of gene g.

Interestingly, by combining these two flawed estimators of the

true gene-specific loss ‘g, we obtain a shrinkage estimator b‘shr

g that

improves upon both in terms of mean squared error (MSE), see

Carter and Rolph (1974) Equation (2.4),

b‘shr

g ¼ kg �b‘raw

g þ ð1� kgÞ �b‘all
: (14)

The gene-specific coefficient kg determines how much the raw

gene-specific estimate is shrunk towards the global estimate, and its

optimal choice (with respect to the MSE) depends on the variances

the two constituent estimators. To determine the optimal kg we

make the following assumptions about these estimators:

i. the library-wide estimate b‘all
is a good proxy for the true average

loss taken over all genes 1; . . . ;K. This seems reasonable given

the size of a typical library, comprising millions of UMIs.

ii. the estimator variance of the raw gene-specific estimator b‘raw

g

depends only on the number nobs
g of observed UMIs for gene g,

and does so in an inversely proportional manner. This is certain-

ly true asymptotically for large numbers of observations, for

small numbers Supplementary Figure S4 shows this approxima-

tion to be reasonable.

We write s for the variance of the true loss between genes (i.e.

for the mean squared difference of ‘g and b‘all
), and u for the propor-

tionality constant between the estimator variance of b‘raw

g and 1=nobs
g .

According to Carter and Rolph (1974) Equation (2.4ff) the optimal

choice for kg is then

kg ¼
s

sþ u=nobs
g

(15)

To compute the gene-specific shrinkage estimators b‘shr

g , it

remains to find constants u and s. Towards that end, we observe

that the expected squared deviation of the raw gene-specific loss es-

timate b‘raw

g from its average �‘ ¼ 1
n

PK
g¼1
b‘raw

g is the total variance ofb‘raw

g , which is comprised of the between-gene variance s and the esti-

mator variance u=nobs
g , or in other words E ðb‘raw

g � �‘Þ2 ¼ sþ u=nobs
g .

This allows us to estimate s and u using least squares regression,

i.e. by minimizing

XK

g¼1
ððb‘raw

g � �‘Þ2 � s� u=nobs
g Þ

2 �wðnobs
g Þ: (16)

Without weighting (i.e. for w(n) ¼ 1), the considerable drop in mag-

nitude of ðb‘raw

g � �‘Þ2 as nobs
g increases would allow genes with small
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number of observations to yield an unduly large influence over the

estimates. Since it is the genes with a low to moderate number of

observations that benefit from shrinking, some modest bias of this

sort is actually desired—but not as strong a bias as w(n) ¼ 1 exhib-

its, and one not so purely focused on genes with very few observa-

tions. We therefore use the weights wðnÞ ¼ n
1þn=100, which initially

increase linearly with the number of observations, but eventually

converge to 100 instead of increasing further. This has the desired

effect of shifting the focus away from rarely observed genes, and

concentrating it on genes with a moderate number of observations.

3 Results

3.1 PCR stochasticity versus efficiency
During PCR amplification, each uniquely labeled molecule is ampli-

fied into a molecular family of indistinguishable copies. Random

successes or failures to copy molecules during early reaction cycles

lead to a variation in the final family sizes (Fig. 1B), even between

identical (expect for their molecular barcode) molecules. As the fam-

ily size of each initial molecule grows, the proportion of successful

copy operations approaches the efficiency E, therefore reducing the

amount of noise added by each additional cycle. The total number

of cycles thus has little influence on the final family size distribution,

and is therefore not a parameter of our model. For the same reason,

a plateau effect (i.e. diminishing reaction efficiency during later

cycles) has little effect on the final family size distribution, and is

thus not included in the model. The final distribution does, however,

depend strongly on the reaction efficiency, with fluctuations in fam-

ily size decreasing as the efficiency grows towards 100% (Fig. 1C).

For efficiencies close to 100%, most molecular families are thus

of about average size, except for those (�100� E percent) families

for which the first copy failed. These are about half the average size,

and form a distinct secondary peak in the family size distribution

(Fig. 1C, brown curve). We emphasize that due to this, even at effi-

ciencies close to 100%, the distribution still shows considerable dis-

persion, meaning that even at high efficiencies stochastic PCR

effects are not negligible. At lower efficiencies, the family sizes vary

even more wildly, as extreme family sizes (on both ends of the scale)

become more likely (Fig. 1C, blue and green curves).

If we add sequencing to the picture, i.e. combine the stochastic

PCR model outlined above with a model of sequencing as random

Poissonian sampling (Marioni et al., 2008), the variability of per-

UMI read counts (Fig. 1D) then has two sources—the variability of

molecular family sizes and the Poissonian sampling introduced by

sequencing. Although the latter is reduced by increasing the sequenc-

ing depth, the former is independent of the sequencing depth but is

reduced by increasing the reaction efficiency. For all reasonable

error-correction thresholds T the predicted fraction of true UMIs fil-

tered out by the error-correction step thus grows with diminishing

efficiency E.

3.2 Model validation and phantom UMI removal
To validate our model of amplification and sequencing, we com-

pared the predicted distribution of per-UMI read counts to the dis-

tribution observed in two published RNA-Seq datasets. Kivioja et al.

(2012) labeled and sequenced transcripts in Drosophila

melanogaster S2 cells using 10 bp random molecular barcodes from

the 50 end. Shiroguchi et al. (2012) labeled and sequenced transcript

fragments in E.coli cells on both ends, using (on each end) one of

145 molecular barcodes carefully selected to have large pairwise edit

distances. The Y-shaped sequencing adapters used in the E.coli

experiment were designed such that each strand of a labeled double-

stranded cDNA molecule produces a related but distinguishable mo-

lecular family.

To see whether our algorithm offers an advantage over existing

UMI error-correction strategies, we pre-filtered the observed UMIs in

each of the two replicates of these datasets using the following existing

algorithms: We first merged UMIs likely to be erroneously sequenced

versions of the same molecule, using the algorithm proposed by Smith

et al. (2017). For the E.coli experiment we also removed UMIs for

which the complementary UMI corresponding to the second strand of

the same initial template molecule was not detected, as proposed by

Shiroguchi et al. (2012). See Supplementary Section S1.4 for details on

the analysis pipeline we used.

To this pre-filtered set of UMIs we then applied our algorithm.

For each dataset, we manually chose an error-correction threshold

by visually comparing read-count distribution and model prediction

for different thresholds, and picking the lowest threshold that

yielded a reasonably good fit. Above the error-correction threshold

(Fig. 2a, black bars), the observed library-wide distribution of reads

per UMI closely follows the model prediction, and the E.coli data

even shows traces of the secondary peak that represents molecules

not duplicated in the first reaction PCR cycle. Choosing a different

threshold will change the number of UMIs surviving the error-

correction filter, but has little influence on the estimated reaction

efficiency and on the estimated total number of UMIs after loss cor-

rection (Supplementary Fig. S1). We thus conclude that our model

captures the main stochastic behavior of the amplification and

sequencing processes, and accurately models the read-count distri-

bution of true UMIs.

The UMIs removed by our filter, i.e. those with fewer reads than

the error-correction threshold demands, (Fig. 2A, gray bars) are

over-abundant compared to our prediction. This over-abundance

increases further as per-UMI read counts drop, indicating the exist-

ence of a group of UMIs with significantly reduced molecular family

sizes. While we may expect some systematic variation of family sizes

between true UMIs (on top of the stochastic variations that our PCR

model predicts), we would expect these to be gradual and not form

distinct groups. We conclude that the extra UMIs causing the

observed over-abundance are indeed phantoms that are rightly

removed by our algorithm. We note that none of these phantoms

were removed by either the UMI merging algorithm of Smith et al.

(2017), or (for the E.coli data) by filtering UMIs for which the com-

plementary UMI (representing the second strand of the template

molecule) was not detected.

For the D.melanogaster data, our loss estimates of 9% (R1) and

8.8% (R2) are about a magnitude higher than the 1% (R1) and 2%

(R2) estimated using the (truncated) Poisson distribution suggested

by Kivioja et al. (2012). Given that using a Poisson model amounts

to assuming a 100% efficient duplication of molecules during each

PCR cycle, this severe underestimation by the Poisson model shows

that the inherent stochasticity of the PCR cannot be neglected.

3.3 Gene-specific quantification bias
The gene-specific (shrunken) estimates for amplification efficiency,

average reads per UMI, and loss that our algorithm produces, vary

between genes to different degrees (Fig. 2B). We observe the smallest

amount of variation for the average number of reads per UMI

(Fig. 2B, left)—the estimates of this parameter are virtually identical

for a large majority of genes, and differs only for a few outliers.

The estimated amplification efficiencies on the other hand can

vary substantially between genes (Fig. 2B, middle). For the two
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D.melanogaster replicates the range is 22–81% (R1) and 1–83%

(R2). Considering that in this experiment only the 3’ ends of tran-

scripts were sequenced, and all fragments contributing to a gene

hence share a similar sequence composition, this is not unexpected.

These differences in efficiency cause the loss to vary heavily between

genes as well (Fig. 2B, right), between 4 and 35% for R1 and be-

tween 4 and 89% for R2 (which has a much lower overall sequenc-

ing depth). Without gene-specific loss corrections, abundance

comparisons between genes will thus suffer from systematic quanti-

fication bias against certain genes of up to � 35–4% ¼ 31% for R1

and up to � 85% for R2. The larger amount of systematic bias in

D.melanogaster R2 is caused by the two-fold reduction of the num-

ber of reads per molecules in R2 compared with R1—due to the

lower number of reads per molecule in R2, the same difference in

amplification efficiencies between two genes translates into a larger

difference of the number of lost molecules in R2 compared with R1.

In contrast, fragments from all parts of the transcript were

sequenced in the E.coli experiments, and together with the high

sequencing depth (�300 reads per UMI), we now expect little varia-

tions of efficiency, and small and highly uniform losses across genes.

Our efficiency and loss estimates reflects this (Fig. 2B, middle and

right), and as the lack of outliers shows, they do so even for genes

with only few UMIs. Yet for these genes, the raw (unshrunken)

gene-specific estimates are noisy (Supplementary Fig. S3), proving

that shrinking the raw estimates successfully reduces the noise to ac-

ceptable levels.

3.4 Bias-corrected transcript counts
To further verify the accuracy of the corrected transcript counts

computed by our algorithm, we conducted a simulation study. We

use the (loss-corrected) estimated total transcript abundances of

D.melanogaster replicate 1, rounded to 10, 30, 100, 300, 1000,

3000 or 10 000 molecules as the true transcript abundances.

We then simulated amplification and sequencing of these tran-

scripts, using for each gene the previously estimated gene-specific ef-

ficiency and average number of reads per UMI (Fig. 2B). To the

resulting list of UMIs and their read-counts for each gene we applied

our algorithm to recover the true transcript abundances (threshold T

¼ 5 as before), and determined for each gene the relative error of the

recovered abundances compared with the simulation input.

Figure 3 shows these relative errors (i) if no correction is done

(ii) if the correction is based soley on the raw gene-specific loss esti-

mates (i.e. no shrinkage) and (iii) for the full TRUmiCount algo-

rithm (i.e. using shrunken loss estimates). The uncorrected counts

systematically under-estimate the true transcript counts, in 50% of

the cases by at least �10%, independent of the true number of tran-

scripts per gene. And even at high transcript abundances, the relative

error still varies between genes, biasing not only absolute transcript

quantification, but also relative comparisons between different

genes. The counts corrected using raw gene-specific estimates are

unbiased and virtually error-free for strongly expressed genes, but

exhibit a large amount of additional noise for weakly expressed

genes. The full TRUmiCount algorithm successfully controls the

amount of added noise, and shows no additional noise for weakly

expressed genes, while still being unbiased and virtually error-free

for more strongly expressed genes.

3.5 Peformance for low sequencing depth
To assess the performance of the TRUmiCount algorithm at low

sequencing depths such as are common for single-cell RNA-Seq

experiments, we ran a second simulation with gene-specific depth

parameters scaled such that the average across all genes was D ¼ 1

read per molecule (Fig. 4). Under these conditions, the most likely

outcome for a single molecule in the initial sample is to remain unse-

quenced (39% of molecules), and only 27% of molecules are found

in more than one read. The library-wide efficiency estimate of 57%

Fig. 2. (A) Observed and predicted library-wide distribution of reads per UMI and parameter and loss estimates. Filtered UMIs (grey bars, left of threshold T) are over-

abundant and thus assumed to contain both phantom and true UMIs (red dots). UMIs surviving the filter (black bars) closely follow the predicted distribution (black

dots) and are assumed to be true UMIs. (B) Variability of the (shrunken) model parameters and resulting loss between genes. Includes parameter for 7481 detected

genes in D.melanogaster R1, 8001 genes in R2, 2380 genes in E.coli R1 and 2308 genes in R2. (Color version of this figure is available at Bioinformatics online.)
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(Fig. 4A) is nevertheless accurate, and identical to the one computed

for the full dataset (D.melanogaster R1) that the simulation was

based on (Fig. 2A).

For the relative error of the corrected transcript counts we

observed a roughly 2-fold increase at low-sequencing depth (Fig. 4B)

compared with the situation at original sequencing depth (Fig. 3,

right), but still no systematic over- or under-estimation. We estimate

that Poissonian sampling effects account for about affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:09
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:39
p

� 1:2-fold increase of the relative errors. The

rest is probably due to the parameter estimation problem becoming

harder at lower sequencing depths, particularly for weakly

expressed genes. For more strongly expressed genes, the relative

quantification error again drops towards zero, similar to the behav-

ior at original sequencing depth.

4 Discussion

The TRUmiCount algorithm we presented successfully removes

the biases inherent in raw UMI counts, and produces unbiased

and low-noise measurements of transcript abundance, allowing

for unbiased comparisons between different genes, exons and

other genomic features. It does so even in the presence of various

types of phantom UMIs and varying amplification efficiencies,

both between samples and along the genome. Compared to other

error-correction techniques, it is not restricted to particular types

of phantom UMIs, or to a special Y-shaped design of the sequenc-

ing adapters.

Our model of the amplification and sequencing process is mech-

anistic, and its two parameters have an immediate physical inter-

pretation. They can both be determined from the experimental data

without the need for either guesses or separate calibration experi-

ments. The TRUmiCount algorithm thus does not require any

changes to library preparation over the basic UMI method. By

inspecting the estimated parameters—in particular the amplification

efficiency, the amplification reaction itself can be studied. For ex-

ample, by estimating model parameters separately for sequenced

fragments of different lengths, the drop of reaction efficiency

with increasing fragment lengths can be quantified (Supplementary

Fig. S2).

Although TRUmiCount requires that libraries are sequenced suf-

ficiently deeply to detect at least some UMIs more than once, it can

also deal with cases where a molecule is on average detected only by

a single read, which is common e.g. for single-cell RNA-Seq. The

performance of TRUmiCount is reduced a bit in such situations, but

it still offers an improvement over uncorrected counts by removing

systematic biases. For even lower read counts, where gene-specific

bias correction becomes infeasible, we expect that TRUmiCount

could still be used to correct for cell-specific (instead of gene-

specific) biases, thus reducing the amount of technical noise when

comparing absolute transcript counts of the same gene between indi-

vidual cells.

The TRUmiCount algorithm can thus help to increase the ac-

curacy of many quantitative applications of NGS, and by remov-

ing biases from comparisons between genes can aid in the

quantitative unraveling of complex gene interaction networks. To

make our method as easily accessible as possible to a wide range

of researchers, we provide two readily usable implementations of

our algorithm. Our R package gwpcR enables a flexible integra-

tion into existing R-based data analysis workflows. In addition,

we offer the command-line tool TRUmiCount which is designed

to work in conjunction with the UMI-Tools of Smith et al. (2017).

Together they provide a complete analysis pipeline which produ-

ces unbiased transcript counts from the raw reads produced by a

UMI-based RNA-Seq experiment (http://www.cibiv.at/software/

trumicount).

Fig. 3. Relative error of estimated total number of transcripts depending on the true number of transcripts. Left panel uses the observed number of UMIs without

any correction. Middle panel uses the raw gene-specific loss estimates to correct for lost UMIs. Right panel uses the full TRUMmiCount algorithm employing

shrunken gene-specific loss estimates to correct for lost UMIs

Fig. 4. TRUmiCount performance for low sequencing depth. (A) Overall distri-

bution of observed and predicted reads per UMI for an average of D ¼ 1 read

per molecule. (B) Relative error of estimated total number of transcripts for

different true numbers of transcripts and D ¼ 1 read per molecules on aver-

age. (Color version of this figure is available at Bioinformatics online.)
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