
Gene expression

A powerful approach reveals numerous

expression quantitative trait haplotypes

in multiple tissues

Dingge Ying1, Mulin Jun Li1,4, Pak Chung Sham1 and Miaoxin Li1,2,3,*

1Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive

Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China, 2Zhongshan School of Medicine, Center for

Disease Genomics, Sun Yat-Sen University, Guangzhou 510080, China, 3Key Laboratory of Tropical Disease Control

(SYSU), Ministry of Education, Guangzhou 510080, China and 4Department of Pharmacology, School of Basic

Medical Sciences, Tianjin Medical University, Tianjin 300070, China

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on November 1, 2017; revised on March 19, 2018; editorial decision on April 18, 2018; accepted on April 25, 2018

Abstract

Motivation: Recently many studies showed single nucleotide polymorphisms (SNPs) affect gene

expression and contribute to development of complex traits/diseases in a tissue context-

dependent manner. However, little is known about haplotype’s influence on gene expression and

complex traits, which reflects the interaction effect between SNPs.

Results: In the present study, we firstly proposed a regulatory region guided eQTL haplotype asso-

ciation analysis approach, and then systematically investigate the expression quantitative trait loci

(eQTL) haplotypes in 20 different tissues by the approach. The approach has a powerful design of

reducing computational burden by the utilization of regulatory predictions for candidate SNP selec-

tion and multiple testing corrections on non-independent haplotypes. The application results in

multiple tissues showed that haplotype-based eQTLs not only increased the number of eQTL genes

in a tissue specific manner, but were also enriched in loci that associated with complex traits in a

tissue-matched manner. In addition, we found that tag SNPs of eQTL haplotypes from whole blood

were selectively enriched in certain combination of regulatory elements (e.g. promoters and

enhancers) according to predicted chromatin states. In summary, this eQTL haplotype detection

approach, together with the application results, shed insights into synergistic effect of sequence

variants on gene expression and their susceptibility to complex diseases.

Availability and implementation: The executable application ‘eHaplo’ is implemented in Java and

is publicly available at http://grass.cgs.hku.hk/limx/ehaplo/.

Contact: jonsonfox@gmail.com, limiaoxin@mail.sysu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of high throughput technologies has stimulated

comprehensive surveys on genome-wide gene expression and DNA

variation for disentangling the genetic architecture of human dis-

eases. The genetics of transcript abundance has been extensively

investigated through genome-wide gene expression studies (Ahuja

et al., 2016; Edwards et al., 2013). These studies demonstrated that,

for a large fraction of genes, gene expression is influenced by single

nucleotide polymorphisms (SNPs) located in the vicinity of the regu-

lated loci, named as expression quantitative trait loci (eQTLs), gen-

erally referred as cis eSNPs (Garnier et al., 2013). The importance of

cis eSNPs would be enhanced if they were also associated with a
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disease, as such data would indicate that the associated gene is a

candidate for the disease (Nica and Dermitzakis, 2008). Recent

eQTL studies have extended the focus from SNPs to other type of

variations, including bi-allelic indels, copy number variations

(CNVs) and short tandem repeats as determinants of gene expres-

sion (Encode Project Consortium, 2012; Grundberg et al., 2012;

Gymrek et al., 2016; Lappalainen et al., 2013; Montgomery et al.,

2013; Stranger et al., 2007). Meanwhile, many eQTL studies

showed significant contribution of tissue specific eQTLs to common

disease heritability (GTex Consortium, 2015; Torres et al., 2014).

An eQTL study between blood and brain also found some of the tis-

sue specific eQTLs were associated with related traits (Hernandez

et al., 2012). These studies showed the promise of tissue specific

eQTLs for the characterizing functional sequencing variation and

for interpreting statistic associations of genome-wide association

studies (GWAS).

Haplotype, which refers to certain combination of multiple SNP

alleles, is often used to explore synergistic or non-additive effects among

multiple SNPs. Although methods based on individual SNPs have led to

many significant findings in GWAS, haplotype-based methods will be

an complementary way to explore extra genetic factors contributing to

a disease (Liu et al., 2008). Many GWAS and region-specific association

studies have shown the power of haplotype by increasing the amount of

explained disease risks and identifying additional disease susceptibility

genes (Khankhanian et al., 2015; Solovieff et al., 2014). However, few

studies have extended the application of haplotype into eQTL analysis.

A gene expression study on HapMap data showed that samples with

certain haplotypes tagged by four SNPs located in two enhancers had

significantly higher gene expression, while this effect was vanished in

single SNP analysis (Corradin et al., 2014).

On the other hand, cis-regulatory sequences, such as enhancers

and promoters, control development and physiology by regulating

gene expression (Wittkopp and Kalay, 2012). Recently, progress has

been made on predicting regulatory potential at non-coding sequenc-

ing variants in high throughput sequencing studies (Li et al., 2016). Li

et al. adopted tissue and cell-type specific epigenomic data to score

regulatory variants; and found that the regulatory scores when used

as weights substantially improved power of gene-based association

analysis (Li et al., 2017). Therefore, prior regulatory predictions may

be a valuable resource for effectively selecting functional variants to

reduce the computational burden in haplotype analysis.

In this study, we proposed a regulatory region guided approach

for detecting eQTL haplotypes on whole genome level. In addition,

we utilized this approach to comprehensively explore genome-wide

cis-eQTL haplotypes in 20 tissues with the genotype and expression

data from Genotype-Tissue Expression Project (GTEx; GTex

Consortium, 2015). Furthermore, we also examined their enrich-

ment of regulatory functional elements derived by chromatin states,

and investigated their association with complex diseases and traits

in a tissue specific manner.

2 Materials and methods

2.1 The proposed regulatory region guided eQTL

haplotype analysis method
Here, we propose a regulatory region guided eQTL haplotype ana-

lysis method. This approach is made up of three steps. Firstly, the

regulatory scores on non-coding variants are utilized to predict

regulatory regions. Secondly, common haplotypes formed by SNPs

that located in the predicted regulatory regions are explored.

Finally, the association of the haplotypes with gene expression is

examined and the significance is corrected by an estimation of

‘effective number’ of tests performed in each gene. The public data

used and the key steps of the proposed approach are illustrated in

Figure 1.

2.1.1 Define gene regulatory regions according to prediction score

of variants in non-coding regions

To select potential variants that may form eQTL haplotypes, the first

step is to define regulatory regions that may harbor such variants.

Sequence variants are assigned with regulatory prediction scores by a

powerful integrative approach (Li et al., 2016). Briefly, the score was

calculated using a composite strategy that utilized the predictions

from eight different tools on functional annotation of non-coding var-

iants. The tool takes advantage of the complementary attributes of indi-

vidual tools to achieve a better performance. Supplementary Figure S1

shows the regulatory scores of a 200 kb region in chromosome 1.

Variants with relatively higher scores form clusters indicating regula-

tory regions. Meanwhile the variation of the scores in surrounding var-

iants is quite large, which makes it unsuitable to define clusters based

on the score directly. To better identify such clusters, we use a smooth-

ing method to utilize the variants with high scores. By doing so, firstly,

the score of each variant is smoothed and replaced by the average scores

in surrounding 10 variants (Mvar). Secondly, the segmental average

score (Mseg) and the SD (SDseg) are calculated for each 10 000 consecu-

tive variants, with 1000 variants as segment shifting size (the selection

of smoothing parameters were explained in the Supplementary Result

S8). Thirdly, variants are considered to be located in critical regulatory

regions if its’ smoothed regulatory score higher than segmental average

score by two segmental SDseg.

Mvar > Mseg þ SDseg � 2 (1)

As a result, every critical regulatory region consists of as a series of

variants (at least two variants) meeting the above criteria. Regions

that overlapping with centromere are spitted into two by removing

the centromere region.

2.1.2 Explore informative haplotypes in regulatory regions

The second step is to explore informative haplotypes in the above

regulatory regions. All coding genes in RefGene are selected for ana-

lysis. For each gene, a variant is considered as potential tag SNPs for

A B

C

Fig. 1. Overview of the proposed eQTL haplotype detection approach. (A) The

public data used for the eQTL haplotype detection workflow. (B) The work-

flow of the proposed approach in Section 2.1. (C) The comparison analysis

performed of the eQTL haplotypes as described in Section 2.2

3146 D.Ying et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3145/4987141 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty318#supplementary-data


eQTL haplotypes of the gene if it is: (i) located in critical regulatory

regions defined above, and (ii) within 1 Mb upstream or downstream

from the gene coding regions and (iii) with minor allele frequency

higher than 0.05.

The initial step of haplotype searching treats the two alleles of

the first SNPs (a1, A1) in upstream (according to co-ordinates) the

gene as the first two haplotypes (h1, h2).

h1 ¼ a1; h2 ¼ a2

1 SNP Hw ¼ ðh1; h2Þ

These two haplotypes are added into a working haplotype group

Hw, which contains all the haplotypes that can be extended by more

tag SNPs. The extension step of the haplotype searching is carried

out by adding one consecutive SNP to all haplotypes in the working

group. By doing so, each haplotype in the working group is extended

by two alleles of a newly added SNP and the frequencies of the

newly extended haplotypes are calculated according to the phased

genotype. Those with frequency higher than the preset threshold

(0.05 as default) are added to the working group.

h1 ¼ a1; h2 ¼ a2; h3 ¼ a1a2; h4 ¼ a1A2;

2 SNPs h5 ¼ A1a2; h6 ¼ A1A2; h7 ¼ A1; h8 ¼ A2;

Hw ¼ ðhiÞ; i ¼ 1 to 8; Freq ðhiÞ > 0:05

When the number of haplotypes in the working group reached

the preset threshold (10 000 as default), the haplotype extension

step stops and all obtained haplotypes, except the single allele haplo-

types (such as a1, A1), are added to an overall haplotype group Hall

for further analysis.

The above steps are defined as a single window analysis. The

working group is cleared for the next single window analysis. If the

number of variants in previous window is n and the index of the last

variant is l, the index of the first variant in next window analysis

would be l � n=2.

After all variants were analyzed in window analysis, duplicated

haplotypes in Hall will then be removed. Haplotypes are considered

as redundant haplotypes if any combination of its tag SNP alleles

(defined as sub-haplotype) has r2 (Coefficient of determination)

higher than 0.8 between the two haplotypes. To exclude redundant

haplotypes, each haplotype in Hall would be checked if any of the

sub-haplotype was also in Hall and with r2 higher than 0.8. All the

remaining haplotypes with frequency higher than threshold are con-

sidered as informative haplotypes and are stored in the overall

haplotype group Hall for further analysis.

2.1.3 Examine haplotypes associated with gene expression and

correct significance by an estimation of effective number

The last step is to perform association analysis at the above inform-

ative haplotype. The expression level of each coding genes for

further analysis is the normalized RPKM value from RNA sequenc-

ing or relative value from expression array. For each haplotypes (hi)

in Hall of each gene, the genotype for each sample j is coded as 0, 1

or 2 if it contains 0, 1 or 2 copies of the haplotype according to

the phased genotypes of the tag SNPs of the haplotype. Linear re-

gression analysis is applied to each haplotype using the additive

model:

RPKMj ¼ lþ bGhi;j þ e

where Ghi, j is the number of haplotype hi in sample j, l is a constant

term while e is the error term. b is the regression coefficient.

The testing of a large number of haplotypes needs to be taken

into account in the interpretation of statistical significance for each

gene, but this is complicated for the non-independence of haplotypes

because of linkage disequilibrium. A correction of multiple testing

by the number of haplotypes through the Bonferroni approach will

produce conservative P-values. Therefore, we adopt an effective

number of independent tests estimator (Li et al., 2012b) we pro-

posed previously to adjust the multiple testing issue. The estimator

uses genotype correlation to approximate the effective number of in-

dependent tests. The effective number of independent test is smaller

than the actual number of tests when genotypes are correlated. For

each haplotype, genotypes are encoded by the counts of the haplo-

type at every subject. The genotype correlation matrix of all haplo-

types is calculated by Pearson correlation method. The effective

number of independent tests (me) is approximated by Li et al.

(2012b) with the usage of genotype correlation matrix.

The corrected P-value of a haplotype i is:

bpi ¼ me � pi

where me is the estimated effective number of tests among all

extracted haplotypes of a gene and pi is the original P-value of the

eQTL association analysis.

As the haplotype analysis is designed to find synergistic effect,

haplotypes with association P-value higher than 0.05*P-value of

any of its tag SNPs are removed. The approach has been imple-

mented in the programming language Java. The executable applica-

tion and example data can be accessed at http://grass.cgs.hku.hk/

limx/ehaplo/.

2.2 eQTL haplotype analysis for GTEx data
Fully processed, normalized and filtered gene expression data from

8555 samples across 55 tissues and phased genotype data of the cor-

responding 450 individuals were obtained from GTEx v6 through

dbGap authorized access. Individual genotype and expression data

from top 10 sample size tissues, ranging from 241 to 385, together

with all 10 brain tissues with sample size ranging from 83 to 113,

were used for eQTL haplotype analysis. GTEx eQTL SNPs were col-

lected from GTEx public release (http://www.gtexportal.org/home/

datasets) for comparison, which used the FastQTL (http://fastqtl.

sourceforge.net/) to handle the multiple testing issues. After the

eQTL haplotype analysis, number of genes having eQTL SNPs,

eQTL haplotypes and both were counted for all 20 tissues.

For each pair of tissues, their eHap genes were compared and the

number of the eHap genes that only showed in one of the tissue pairs

was counted as its specific eHap genes. The average number of specif-

ic eHap genes for the 19 comparisons of each single tissue was calcu-

lated and compared with its number of eHap genes as the average

percent of tissue specific genes of each tissue. For instance, all genes

with eQTL haplotypes from whole blood were compared with skel-

etal muscle and the fraction of them that are not in skeletal muscle is

therefore calculated. By comparing to other 19 tissues individually,

the 19 fractions were calculated and the average number of is named

as ‘percentage of tissue specific eQTL genes’ for whole blood.

3 Results

3.1 Systematic eQTL haplotype identification in GTEx

data significantly expanded tissue specific eQTL genes

in different tissues
We first systematically investigated the existence of the eQTL haplo-

types in a series of tissues with a proposed regulatory region guided
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eQTL haplotype approach (See details in Section 2). GTEx project

(GTex Consortium, 2015) provided excellent resources for this pur-

pose, in which there are genotypes and gene expression data of 8555

samples of 450 individuals, crossing 55 tissues. The top 10 sample

size tissues and 10 brain tissues were used for tissue specific analysis,

which took around 2 h for each tissue on an ordinary workstation

(3.2 GHz CPU, 16 GB RAM, Supplementary Result S7). Genes with

eQTL SNPs in all these tissues were collected from GTEx public re-

lease (v6). The critical regulatory regions were obtained according

to integrative regulatory scores compiled from eight different tools

in non-coding regulatory variants by a composite model (Li et al.,

2016), which consist of 3.8% of the whole genome (see details in

Section 2). As a result, 540 455 SNPs located in the critical regula-

tory regions were selected out of 14 354, 092 SNPs from the GTEx

project. After eQTL haplotype detection on the selected SNPs and

gene expression of the GTEx samples, the number of genes with

eQTL markers (SNPs and haplotypes) increased remarkably. The

average number of genes with eQTL haplotypes (eHap genes) in the

top 10 tissues was 1799, ranging from 1547 to 2372. Among these

genes, on average, 601 genes have no eQTL SNPs at all. The number

of eHap genes accounted for 18% of all the genes with eQTL

markers (eGenes) on average, including SNPs and haplotypes. In the

other hand, the average number of eQTL haplotypes in all 10 brain

tissues was 1125, and explained 36% of the eGenes. By pairwise tis-

sue comparison (Section 2), the average fraction of tissue specific

eHap genes account for 81% of all eHap genes in each tissue, sug-

gesting the high influence of sequence variation on genes varies from

tissue to tissue (Table 1, Fig. 1C).

To investigate the basic properties of eQTL haplotypes, all

eQTL haplotypes identified in whole blood from GTEx data were

collected for further detailed analysis. In total 12 954 eQTL haplo-

types of 2372 genes were identified. The average number of tag

SNPs in these eQTL haplotypes was 4.5, ranging from 2 to 9, while

the expanding range of the tag SNPs within the haplotypes (length

of the haplotype) was 207 kb by average, ranging from 1.58 Mb to

36 bp. Given so large distance, there were originally many SNPs

and many more potential haplotypes tagged by these SNPs.

The regulatory region guided approach substantially reduced the

number of candidate haplotypes and made the identification of

eQTL haplotype with such long length possible. The frequency

threshold of the eQTL haplotype identification was set as>0.05 in

this analysis, while the median frequency was 0.233. The fraction of

eQTL haplotypes with frequency higher than 0.1, 0.2 and 0.3 were

76%, 46% and 25%. The median P-value of the eQTL haplotypes

was 3.17�10�7, ranging from 1.73�10�5 to 2.22�10�16.

3.2 Exploration on eQTL haplotypes located chromatin

states identified interaction enrichment in particular

chromatin states pairs
The next interesting question is what types of functional elements

support the interaction of variants on the eQTL haplotypes. To an-

swer this question, we utilized a set of fully processed finely-mapped

chromatin states obtained from ENCODE, which were learned by

integrating ChIP-seq data from nine cell lines using a Hidden

Markov Model (ChromHMM; Ernst and Kellis, 2012). All eQTL

haplotypes identified in whole blood from GTEx data and eight

major chromatin states from human blood cell line (GM12878)

were selected for the analysis, including active, weak and inactive

promoters, strong and weak enhancers in upstream or downstream

of genes and insulators (Supplementary Method S1). Therefore,

there are 36 pairwise combinations. For each eQTL haplotype, all

SNP located in the eight chromatin-state regions were collected and

each SNP pairs were allocated in one of the 36 state combinations.

Table 1. Summary of (A) GTEx top 10 sample size tissues and (B) Ten brain tissues

Sample

size

eSNP

gene

eHap

gene

All

eGene

eHap gene /

all eGene

eHap only

gene

Avg.% TS eHap

gene* (%)

(A) GTEx top 10 sample size tissues

Muscle skeletal 361 7079 1628 7670 19 591 80

Whole blood 338 6782 2372 7517 26 735 85

Skin sun exposed 302 8558 2023 9288 19 730 82

Adipose subcutaneous 298 8493 1648 9013 16 520 79

Transformed fibroblasts 292 8751 1547 9206 15 455 81

Artery tibial 285 8050 1881 8744 19 694 81

Lung 278 7224 1553 7869 18 645 79

Thyroid 278 9916 1887 10 435 16 519 80

Nerve tibial 256 9849 1859 10 370 16 521 80

Esophagus mucosa 241 7411 1588 8006 18 595 81

Top 10 tissue average 293 8211 1799 8812 18 601 81

(B) Ten brain tissues

Brain cerebellum 103 4162 1667 4728 29 566 81

Brain caudate basal ganglia 100 2446 1226 3107 33 661 83

Brain cortex 96 2566 1360 3279 35 713 78

Brain nucleus accumbens basal 93 2017 1046 2600 34 583 80

Brain_Frontal_Cortex_BA9 92 2008 971 2548 33 540 81

Brain cerebellar hemisphere 89 3249 1342 3823 29 574 79

Brain Putamen basal ganglia 82 1588 1033 2234 39 646 82

Brain hippocampus 81 1134 893 1765 44 631 80

Brain hypothalamus 81 1157 871 1731 43 574 83

Brain anterior cingulate cortex 72 1211 837 1762 41 551 79

Ten brain tissue average 89 2154 1125 2758 36 604 81

Note: *Average fraction of the tissue specific (TS) genes with eQTL haplotypes. The number is calculated by comparing the eGenes in the tissue with other 19

tissues individually.
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Within all the eQTL haplotypes, 67 270 SNP pairs were identified in

all 12 954 whole blood eQTL haplotypes, while majority states of

the involved SNPs were annotated as strong (20%), weak promoters

(20%) and upstream strong enhancers (26%). By calculating the

expected number of all combinations under random distribution,

and the actual number of SNP pairs for each state combinations, the

enrichments of all pairwise combinations were calculated as the

ratio of the observed value and expected value, and the correspond-

ing P-values were calculated by chi-square test, respectively.

The result of this analysis on whole blood eQTL haplotypes and

blood cell chromatin states showed that they were not equally distrib-

uted. Some state combinations are enriched in haplotype eQTLs more

often than expected by random. Specifically, nine combinations of regu-

latory elements were significantly positively enriched in eQTL haplo-

types (ratio>1.2 and P<10�5) and two combinations were negatively

enriched (ratio<0.8, and P<10�5), out of all 36 combinations.

Individually, the most significant positively enriched combinations were

strong promoter and weak promoter pair, with ratio of 1.91 and P-value

of 3.1 x 10�13, followed by insulator-insulator pair (1.57, 3.1 x 10�13),

upstream with downstream strong enhancer pair (1.54, 3.1 x 10�13)

and upstream weak with downstream strong enhancer pair (1.54, 3.1 x

10�13; Table 2A). Collectively, 3’ and 5’ strong enhancer participated in

five significant combinations, suggesting the strong enhancer may be a

dominant player of synergistic effect on eQTL haplotypes. The active

promoter participated in three of the nine combinations.

To further explore the conservative of these enrichments, we

applied the same analysis on eQTL haplotypes from all brain tissues,

which are unmatched tissues for the chromatin states from blood

cell lines. Only six combinations showed significantly positively en-

richment and two were negatively enriched (Table 2B). The numbers

were half (8/16) of the ones from eQTL haplotypes from matched

tissue (whole blood), while only five of them were occurred in the

two analyses. Again the 3’ and 5’ strong enhancers are the most fre-

quent participants in the significant combinations.

By comparing the results from the matched tissue analysis and

unmatched, it strongly indicated that segments that harbor the

eQTL haplotypes were strongly enriched in certain combination of

the regulatory elements annotated by chromatin states, and further-

more, only half of the enrichment were conserved between tissues

and the rest half were tissue specific.

4 Discussion

In this study, we proposed a regulatory region guided eQTL haplo-

type association analysis approach. The essentialness of the three

haplotype-number-deduction steps of the approach was confirmed

by comprehensive evaluation (Supplementary Results S1). By apply-

ing it to the whole-genome gene expression across multiple tissues

from the GTEx project, we successfully found a non-trivial fraction

of genes having significant eQTL haplotypes. The result suggests

that haplotype eQTL, which can be detected by the proposed

method, is an important complementary of SNP based eQTL in

which the former considers synergistic effect of the later.

Moreover, we also showed that most of the genes with eQTL

haplotypes (eHap gene) were tissue specific. After mapped onto

regulatory functional elements, the eQTL haplotypes are over-

whelmingly covered by a combination of strong enhancer and an-

other element. Further analysis in GWAS data showed that the

eQTL haplotypes also tend to have higher significant association

with human complex diseases only when the eQTL’s tissues are

related to the diseases (Supplementary Method S2 and Result

S3).This work highlights a need for conducting haplotype-based cis

eQTL analysis for various tissues and the potential of the tissue-

matched eQTL haplotypes for prioritizing disease-associated loci.

To further excavate the underlying principle of the eQTL haplo-

types detected by the proposed approach on GTEx dataset, we ana-

lyzed the combination of different chromatin states of the tag SNPs

of the eQTL haplotypes. The expected numbers of all 36 combina-

tions were compared with observed number in all eQTL haplotypes

in GTEx whole blood, which was matching the cell type that gener-

ating the chromatin states. Interestingly, nine combinations showed

significant enrichment in the observed number with large effect size.

Table 2. The enrichment of the chromatin states between the tag SNPs in eQTL haplotypes

Chromatin state Active

promoter

Weak

promoter

Inactive

promoter

Strong

enhancer 5’

Strong

enhancer 3’

Weak

enhancer 5’

Weak

enhancer 3’

Insulator

(A) Chrome state enrichment ratio for eQTL haplotypes derived from whole blood.

ratio(–log(P))

Active promoter 1.02

Weak promoter 1.91 (12.47) 1.21 (12.47)

Inactive promoter 0.55 (6.09) 0.61 0.68

Strong enhancer 5’ 1.24 (12.47) 1.07 1.43 (8.72) 1.22 (12.47)

Strong enhancer 3’ 0.84 0.85 1.15 1.54 (12.47) 1.27

Weak enhancer 5’ 0.77 (12.47) 0.79 (11.22) 1.18 0.96 1.54 (12.47) 0.74 (7.19)

Weak enhancer 3’ 0.79 (11.65) 0.58 (12.47) 1.31 1.06 0.86 1.15 1.19

Insulator 1.41 (12.47) 1.18 0.71 1.09 0.77 0.98 0.64 (9.86) 1.57 (12.47)

(B) Chrome state enrichment ratio for eQTL haplotypes derived from all brain tissues.

Active promoter 1.07

Weak promoter 1.45 (12.47) 1.05

Inactive promoter 0.77 1.18 1.32

Strong enhancer 5’ 1.28 (12.47) 1.05 1.04 1.25 (12.47)

Strong enhancer 3’ 1.01 1.17 (6.61) 0.74 1.36 (12.47) 1.13

Weak enhancer 5’ 0.93 0.94 1.05 0.99 1.06 1

Weak enhancer 3’ 1.04 0.83 (10) 1.19 1.02 0.85 1.14 1.12 (10.28)

Insulator 1.12 1.35 (12.47) 0.94 0.98 0.61 (11.73) 0.96 0.94 1.38 (5.86)

Note: The chromatin states were annotated by Chrom-HMM based on ChIP-seq data of human blood cell line (GM12878).

Significance of bold: ratio >1.2 and P<10E-5.
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Interactions between two insulators which locates upstream and

downstream of the under regulated enhancer-promoter pair have

been mapped in previous studies (Cavalli and Misteli, 2013; Mora

et al., 2016). In the other hand, the enrichment of the interaction be-

tween weak and strong promoters would also support the observa-

tions in previous report, showing that weak promoters conveyed

significant enhancer function to their stronger interacting partners

(active promoters) to control the gene expression (Li et al., 2012a;

Supplementary Result S2).

To further investigate whether these enrichments were tissue spe-

cific, we further analyzed the eQTL haplotypes from GTEx brain

tissues, with the chromatin states generated from blood cells, as an

unmatched tissue analysis. Five out of the nine state pairs in previous

matched tissue analysis still showed significant enrichment while the

signals in the other four faded out. Probably, the interactions in the

former five chromatin-state pairs were relatively conserved in differ-

ent tissues (Table 2B). A matched analysis of the brain eQTL haplo-

types on chromatin state from brain cells would better address this

phenomenon but it was not available in public ChIP-seq dataset.

In summary, we proposed a regulatory region guided eQTL haplo-

type detection approach and successfully identified many eQTL hap-

lotypes and genes in multiple tissues, based on the application on

GTEx data. In the proof-of-principle examples, we showed variant

synergistic effect on haplotypes may also play an important role in

regulation of gene expression. The haplotype eQTLs can substantially

extend the number of eQTLs genes. The synergistic effect may be

based on a combination of certain functional elements in which the

strong enhancers are heavily involved. These explorations improved

our standing of the mechanism of the interaction of variants that in-

fluence gene expression and then the risk of complex diseases.
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