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Abstract

Motivation: Availability of large-scale genomic, epigenetic and proteomic data in complex diseases

makes it possible to objectively and comprehensively identify the therapeutic targets that can lead

to new therapies. The Connectivity Map has been widely used to explore novel indications of

existing drugs. However, the prediction accuracy of the existing methods, such as Kolmogorov–

Smirnov statistic remains low. Here we present a novel high-performance drug repositioning ap-

proach that improves over the state-of-the-art methods.

Results: We first designed an expression weighted cosine (EWCos) method to minimize the influ-

ence of the uninformative expression changes and then developed an ensemble approach termed

ensemble of multiple drug repositioning approaches (EMUDRA) to integrate EWCos and three

existing state-of-the-art methods. EMUDRA significantly outperformed individual drug reposition-

ing methods when applied to simulated and independent evaluation datasets. We predicted using

EMUDRA and experimentally validated an antibiotic rifabutin as an inhibitor of cell growth in triple

negative breast cancer. EMUDRA can identify drugs that more effectively target disease gene sig-

natures and will thus be a useful tool for identifying novel therapies for complex diseases and pre-

dicting new indications for existing drugs.

Availability and implementation: The EMUDRA R package is available at doi: 10.7303/

syn11510888.

Contact: bin.zhang@mssm.edu, zhangb@hotmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug repositioning methods enable the discovery of novel indica-

tions for drugs whose safety and tolerability have already been dem-

onstrated, which potentially accelerate development and delivery of

new therapies while reducing costs of bringing new therapies into

clinical use. Transcriptomic data of drug perturbations, such as the

Connectivity Map (CMap), have been widely used to search poten-

tial novel indications by matching signatures of diseases and drugs/

compounds (hereafter referred as drugs) based on gene expression

changes (Hsieh et al., 2016; Lamb et al., 2006; Lee et al., 2016a).

Such approaches are based on the assumption that drugs which can

reverse gene expression changes in a disease would have a potential
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therapeutic effect on restoring the disease to a healthy condition.

Moreover, in a recent dyslipidemia mouse model study, researchers

tried several treatments to restore physiological markers to their

baseline levels. They found that the efficacies of treatments were

correlated with their reversal of gene expression abnormalities to

normal levels (Wagner et al., 2015). This finding indicates that a

treatment resulting in opposite transcriptomic effects could poten-

tially reverse the clinical course of a disease.

The CMap approach utilized a nonparametric Kolmogorov–

Smirnov (KS) statistic to find connections between diseases and

drugs based on rankings of genes in a disease signature within the

drug-perturbed expression profiles (Lamb et al., 2006). Later,

Zhang et al. developed a weighted signed statistic (WSS) method

(Zhang and Gant, 2008), which separated up- and down-regulated

genes with opposite directions in disease signature and drug treat-

ment signature, and then calculated the normalized inner product

score for rankings of disease and drug signatures. However, rank-

based approaches suffer from high false positive rates, as even

genes not differentially expressed can be ranked high and contribute

to the similarity measurement for drug and disease signatures.

Furthermore, KS and WSS approaches would also miss many poten-

tial drugs as ranking only captured a small part of information in

gene expression profile. Thus, alternative gene expression matching

algorithms need be developed to better match drug and disease sig-

natures. Recently, Cheng and Yang (2013) presented four eXtreme

methods, which calculated correlation scores between disease signa-

ture and top up- and down-regulated genes in drug treatment by uti-

lizing the sum (XSum), cosine similarity (XCos), Pearson correlation

(XCor) and Spearman correlation (XSpe) measures. Nevertheless,

as a drug can perturb either thousands of genes or only a few genes,

the top N genes may cover only a small proportion of drug-

perturbed genes or comprise a large part of genes with no change.

Furthermore, the above methods may be subject to undue influence

of lowly expressed genes, which are more susceptible to detection

noise. Therefore, novel methods need be developed to correctly

match disease- and drug-signatures.

Another challenge in developing drug repositioning approaches

based on gene expression is the lack of gold standard disease and

drug signatures for systematically evaluating performance of various

approaches. This requires generation of expression data from the

experiments using the same cell lines and the same drugs as CMap.

Fortunately, the recently released library of integrated network-

based cellular signatures (LINCS) (Vempati, et al., 2014) dataset is

an excellent independent dataset for testing performance of methods

based on the CMap data. On the other hand, drugs sharing chemical

characteristics often have the similar mode of action (Iorio et al.,

2010; Keiser et al., 2009) and thus have similar effects on gene ex-

pression. The fourth level codes of anatomical therapeutic chemical

(ATC) classification system divide drugs into different classes

according to action as well as therapeutic, pharmacological and

chemical properties (Iskar et al., 2010). Therefore, the similarity be-

tween drugs sharing ATC fourth level codes can also be used for

evaluating the performance of drug repositioning approaches.

A promising drug repositioning approach would provide

highly confident drug-indications for experimental validation.

Accordingly, the partial area under the receiver operator characteris-

tic (ROC) curve (pAUC) with low false positive rate can be used to

measure the performance of those approaches. In this study, we first

developed an expression weighted cosine (EWCos) method and then

integrate EWCos and three best performed existing approaches

using an ensemble framework. The new and existing methods

were comprehensively evaluated by several independent datasets.

We further employed the best performed ensemble approach to

identify the potential novel indications of existing drugs for triple

negative breast cancer (TNBC) and validated a predicted drug

in vitro.

2 Materials and methods

2.1 Data collection and preprocessing
CMap build 02 raw data were downloaded from the CMap website.

CMap is a collection of genome-wide transcriptional expression

profiles from cultured human cell lines treated with drugs or di-

methyl sulfoxide (DMSO). The current version (build 02) of CMap

contains more than 7056 expression profiles, including 6100 instan-

ces treated with 1309 compounds and 956 microarrays treated with

DMSO. For more details, see the Supplementary Material in the ori-

ginal CMap study (Lamb, 2006).

The microarrays of development batches were discarded and the

production batches were grouped by platform. Raw intensities were

preprocessed using the robust multi-array average procedure

(Irizarry, 2003[Irizarry et al., 2003 has been changed to Lamb 2006

to match the reference list. Please approve.]). Next, probe sets that

don’t correspond to any gene or are unique to the HT_HG-U133A

or HT_HG-U133A_EA were discarded. Expression levels of mul-

tiple probe sets matching to the same gene were averaged as expres-

sion level of that gene. Drug-induced expression changes of

instances, denoted by log2 of fold changes (logFC), were generated

by subtracting the average expression levels of the vehicle controls

within a given batch from drug treated profiles within that batch. In

total, the 5488 instances of 1191 drugs in production batches were

retained for further analysis.

The ATC classification codes were obtained from the pharma-

ceutical benefits scheme (http://www.pbs.gov.au/browse/down

loads). Only the fourth level codes were retained for further ana-

lysis. The ATC system classifies drugs into subgroups according to

their chemical, therapeutic and pharmacological properties. Drugs

in each fouth-level code are a subgroup of substances with similar

chemical structure or a single indication.

The LINCS project (Wang et al., 2016) aims to expand the

CMap by testing more representative cell lines with more perturba-

gens, including small-molecules, shRNA and gene overexpression.

Perturbagen-induced gene expression changes were measured with

the L1000 gene-expression assay that enabled data generation at a

million-sample scale. In this study, normalized LINCS level three

data were downloaded from the GEO database (GSE70138)

(Barrett et al., 2013). The level three dataset includes the directly

measured expression levels of 978 landmark genes and inferred ex-

pression levels of more than 21 K genes. Those data were then scaled

using an 80-gene invariant set followed by quantile normalization.

RNA-seq v2 data of TNBC and adjacent normal were down-

loaded from The Cancer Genome Atlas (TCGA) data portal (The

Cancer Genome Atlas Network, 2012), log2(xþ1) transformed and

corrected for age, race, batch.

2.2 The KS, WSS and eXtreme methods
The KS method was implemented in the original CMap study

(Lamb, 2006). In this study, the rankings of drug-induced changes in

the production batch instances were downloaded from the CMap

website. Enrichment scores (ES) were then computed based on KS

statistic for a set of up- or down-regulated genes (termed ESup or

ESdown) against the gene signatures from 5488 instances. For a refer-

ence drug-induced expression (RDIE) set of N genes and a query
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signature of n up- or down-regulated genes, we first located the rank

of jth query gene in the RDIE set [denoted as S(gj)] and then calcu-

lated two statistics as follows:

Dþ ¼ maxj
j

n
� SðgjÞ

N

����
����

D� ¼ maxj
SðgjÞ

N
� j� 1

n

����
����

Next, we set ES ¼ Dþ if Dþ > D�, otherwise, ES ¼ �D�. The final

KS score was 0 if ESup and ESdown had the same algebraic sign.

Otherwise, KS was set as (ESup�ESdown).

In the WSS method (Zhang and Gant, 2008), each gene in a

query signature was weighted by the ranking of its expression

change and sign (þ for up-regulation and� for down-regulation)

and then WSS connection score was calculated by dot product of ref-

erence rankings and query rankings of common genes and normal-

ized by the maximum score. The signed rankings of the production

batch instances were extracted from the ssCMap (Zhang and Gant,

2009).

The eXtreme methods, including XSum, XCos, XCor and XSpe,

were based on gene expression changes, i.e. logFCs, of the top 500

genes (other genes were set as 0) as suggested in a previous study

(Cheng, et al., 2014; Cheng and Yang, 2013). XSum was defined as

the sum of the reference FCs of the query signature genes while

XCos, XCor and XSpe were computed based on logFCs of a refer-

ence profile and those of a query signature using cosine similarity,

Pearson correlation and Spearman correlation, respectively.

2.3 The EWCos and EMUDRA
We first developed an EWCos method to reduce the influence of

lowly expressed genes (Fig. 1A). A logistic-sigmoid function was

employed to smoothly weight the RDIE changes in CMap. Let xi be

the expression value of the ith gene ði ¼ 1; 2; � � � ; NÞ in an RDIE

profile. The weights of the ith gene were calculated by a logistic-

sigmoid function: Wi ¼ 1=ð1þ e�aðxi�k�xÞÞ, where a and k were

parameters that would be optimized and �x was the mean expression

value across all the gene expression profiles in CMap. Weight of a

lowly expressed gene was close to 0 while weight of a highly

expressed gene approached 1. Next, expression-weighted logFC

(EWlogFC) was calculated as: EWlogFC ¼W� logFC. The ranges

of a and k were from 0 to 6 and from 0 to 1.5, respectively.

We optimized the parameters of the logistic-sigmoid function for

each instance in CMap by utilizing the drug-induced signatures iden-

tified from its replicates. Specifically, we first calculated a weighted

reference logFC matrix for each a-k combination and then used the

drug-induced signatures from the corresponding replicates as query

signatures to calculate matching scores. Then, for each instance, we

calculated its ranking among all the instances in CMap using the

combined signatures identified from its replicate instances for query.

Finally, the parameter combination that resulted in the best ranking

was defined as the optimal parameters for the instance that were fur-

ther used for computing the final weights. Final weights of all the

references were combined accordingly to the matrix W. EWCos

score was cosine similarity between the logFC vector of a query sig-

nature and the EWlogFC matrix.

To take the advantage of the multiple complementary drug

repositioning methods, we further developed an ensemble approach

termed ensemble of multiple drug repositioning approaches

(EMUDRA) to combine the matching scores from the best

performed approaches including EWCos, Cosine, XSpe and XCor

(Fig. 1B). Matching scores from each method were first normalized

and then the normalized scores from the four methods for each for

each reference instance were combined into a single similarity score.

As random signatures were not supposed to be associated with a

query signature, matching scores would have approximately normal

distribution after excluding outliers (see the Supplementary

Material). Let Q1 and Q3 be the lower and upper quartile of a score

list l, respectively. The interquartile range (IQR) was defined as

(Q3 – Q1). The scores outside the range of ½ðQ1� 1:5�IQR; Q3

þ1:5�IQRÞ� were removed to derive a new score list l
0
. The normal-

ized scores for the list l were calculated based on the mean m(l
0
) and

the standard deviation r(l
0
). EMUDRA score was the sum of the

four normalized matching scores: EMDRA ¼
P

iðli � lðl0iÞÞ=rðl
0
iÞ,

where li was a list of matching scores calculated by the method i

(i¼1, 2, 3, 4).

2.4 Signature identification
For each instance in CMap, one-sample t-test was used to calculate

P-values through the comparison of the expression levels of an

RDIE profile with six vehicle controls in the same batch. After

correcting P-values for multiple comparisons by the Benjamini–

Hochberg (BH) procedure (Benjamini and Hochberg, 1995), a drug-

induced signature was identified using the thresholds of multiple

testing corrected P-value less than 0.05 and absolute logFC larger

than log2(1.2) or smaller than -log2(1.2). For several CMap instan-

ces with few or no genes passing the thresholds, the top 100 most

significant up-regulated genes and the top 100 down-regulated genes

were taken as their signatures.

To test the performance of all the above mentioned methods in

an independent dataset, the drug-induced signatures were identified

from the LINCS dataset as the positive control of their counterparts

in CMap. As each cell line was treated with each drug in six differ-

ent concentrations in more than a dozen batches, those profiles were

treated as replicates and put together to identify one high quality

drug-induced signature for each cell-line-drug combination. Welch’s

t-test was utilized to calculate P-values between drug-induced pro-

files and vehicle controls from the same batch. P-values were cor-

rected using the BH procedure. Drug-induced signatures were

identified using the same thresholds for identifying signatures for

Fig. 1. Workflows of EWCos (A) and EMUDRA (B). (A) To adjust the lowly

expressed genes, a logistic function was used to weight drug-induced expres-

sion changes. First, weight matrices were calculated for the parameters in the

function. Next, for each instance, drug-induced signatures identified from

replicates were used to optimize the parameters. Finally, weighted fold

changes were used to calculate EWCos scores for a given query signature.

(B) Matching scores from EWCos, Cosine, XCor and XSpe were normalized

and combined to obtain an ensemble score to rank order drugs. GO enrich-

ment analysis was performed on the signature gene sets reversed by the top

drugs
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each CMap instance. Additionally, the signature of TNBC was iden-

tified by the limma R package (Ritchie et al., 2015) through compar-

ing the TNBC samples with the matched adjacent normal samples in

TCGA.

2.5 Gene ontology enrichment analysis
To explore biological functions of the genes that were dysregulated

in disease and potentially restored by predicted drugs, we performed

gene ontology (GO) enrichment analysis (Ashburner et al., 2000) to

characterize the biological processes that were targeted by the top

ranked drugs. The analysis was based on the Bioconductor packages

GO.db and org.Hs.eg.db (Gentleman et al., 2004). Enrichment

P-values were calculated by the hypergeometric test and corrected

by the Benjamini–Yekutieli procedure as the annotation dependence

of the GO database (Benjamini and Yekutieli, 2001).

2.6 Performance evaluation and partial AUC
To systematically evaluate the performance of EWCos and

EMUDRA as well as the existing state-of-the-art approaches, we

used three simulated datasets, the LINCS dataset and the ATC drug

classification system.

The simulated dataset was generated by adding random noise to

the original CMap expression data to generate noisy signatures. Let

g be the original expression of a given gene. Then, the noised expres-

sion level of the gene is: g0 ¼ gð1þ ssÞ, where s is a random number

generated from an uniform distribution Uð�0:5; 0:5Þ and s is a

non-negative constant. A signature was then identified as described

in the section of signature identification and used as a query signa-

ture to calculate matching scores. Instances treated with the same

drug were taken as positive cases to evaluate performance of the

drug repositioning methods.

For the ATC drug classification system, a score between a drug

pair A and B was calculated as: SS A; Bð Þ ¼ ðSB
A þ SA

BÞ=2, where SB
A

was the mean matching score between A and B for a query signature

induced by B and SA
B was the mean similarity score between A and B

for a query signature induced by A. To calculate (p)AUC for per-

formance evaluation, a pair of drugs sharing at least n (n¼1, 2)

ATC code(s) were defined as a positive case while a drug pair shar-

ing less than n (n¼1, 2) ATC code(s) were considered as a negative

case.

For the LINCS dataset, the instances treated with the same drug

that induced a given signature in CMap were considered as positive

cases while the other instances were taken as negative cases. Scores

calculated from all the signatures were compiled to obtain a compre-

hensive pAUC and a whole AUC. ROC curves and (p)AUC were

visualized and calculated using the pROC package (Robin et al.,

2011). Significance of comparing two (p)AUCs was estimated by

bootstrapping with 1000 iterations (Robin et al., 2011).

2.7 In vitro validation
For 3 D cultures, MDA-MB-231 cells were seeded at a density of

3000 cells per well on matrigel-coated chamber slides. Cells were

treated every 24–48h, beginning at the time of seeding, with 0.4%

DMSO or 1uM, 4.8uM, or 25uM rifabutin (Sigma). For each well,

two photographs were taken daily to document cell growth. As cells

grew, progressively more area of an image was occupied by cells. To

quantify differences in cell growth between DMSO- and rifabutin-

treated cells, we used ImageJ version 1.47 with default settings to

measure the proportional area of a bright-field 5� field that con-

tained cells. Within each day, proportional cellular area differences

between DMSO- and rifabutin-treated conditions, measured with at

least four fields each from four independent experiments, were

tested for significance using a one-tailed t-test. Cell number was also

quantified on Day 7 after treatment with 0.4% DMSO, rifabutin

(6uM, 12uM, 25uM or 50uM) or taxol (0.75 nm, 1.5 nm, 3 nM)

using CellTiter-Glo 3 D (Promega) according to the manufacturer’s

instructions on a SpectraMax M5 plate reader with a 1 s integration

time.

3 Results

3.1 Performance assessment by simulation studies
We designed several simulation studies with ground truth to evalu-

ate the performance of EWCos, EMUDRA and the existing seven

methods. For each instance in CMap, a drug-induced signature was

identified by comparing drug- and vehicle-treated gene expression

profiles. Each drug-induced signature was then used as a query set

to calculate enrichment/matching scores by each method. For

each the query set of a drug, the instances treated with the same

drug were taken as positive cases and those from different drugs as

negative ones. Finally, the scores from all query sets were used to

generate a comprehensive pAUC for each method. As shown in

Figure 2A, EMUDRA had the best performance among all the meth-

ods. The pAUC of EMUDRA was 0.0054 at a false positive rate

(FPR) of 0.01, which was significantly better than the KS

(pAUC¼0.0048, P¼4.52�10�10) and XCos (pAUC¼0.0039,

P¼2.81�10�28) as well as all the other methods (P<0.01).

We also tested the nine methods in a simulated dataset which

was generated by adding random values to the gene expression pro-

files in CMap (the details are provided in Section 2). EMUDRA with

a pAUC of 0.0052 at FPR <0.01 performed significantly better than

KS (pAUC¼0.0038, P¼6.67�10�26), XCos (pAUC¼0.0046,

P¼1.31�10�09) and other methods (pAUC�0.0050, P<0.008)

(Fig. 2B).

Notably, EMUDRA was the best approach when evaluated by

either the whole AUC or the pAUC at FPR less than 0.1

(Supplementary Figs S1 and S2). For instance, in the simulation

study, EMUDRA gave rise to pAUC of 0.0619 at FPR of 0.1 and sig-

nificantly outperformed KS (pAUC¼0.0560, P¼1.22�10�09),

XCos (pAUC¼0.0604, p¼0.002) and other methods (P<0.01)

(Supplementary Fig. S2). We further designed two other simulation

studies with increased noise. Although the pAUCs of all the

approaches decreased as the noise level increased, EMUDRA

consistently showed the best performance (Supplementary Fig. S3).

Fig. 2. Evaluation of EWCos, EMUDRA and the existing methods based on

simulation studies. (A) For each instance, a drug-induced gene signature was

identified based on treatment and the corresponding controls, which was

used to query the CMap data by each method. Instances treated with the

same drug of a query signature were considered as positive cases and other

instances were used as negative. Performance was evaluated by ROC curves

and pAUC at false positive rate 0.01. (B) Performance for simulated data with

random noise from a uniform distribution

3154 X.Zhou et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3151/4983064 by guest on 17 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty325#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty325#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty325#supplementary-data


In summary, EMUDRA outperformed all the other methods in our

comprehensive simulation studies.

3.2 Performance assessment by sharing ATC codes and

the LINCS dataset
To further assess the performance of these methods trained by

CMap, we tested their capability of predicting the drug pairs sharing

ATC fourth level codes and positive control drugs that were

also tested in the LINCS dataset. The drugs sharing ATC fourth

level codes have similar chemical, therapeutic and pharmacological

properties and hence may target common molecular pathways.

Therefore, we can identify drugs sharing ATC fourth level codes by

matching their gene signatures. In addition, a drug’s signature iden-

tified from the LINCS dataset can be used as positive controls for

those signatures from the same drug tested in CMap.

In CMap, 1864 drug pairs involving 658 unique drugs shared at

least one ATC code. Thus, these pairs were taken as positive cases

while all the rest 214 289 drug pairs that did not share any ATC

code were taken as negative ones. Then, each of the signatures from

the 658 unique drugs was used as a query set to calculate matching

scores against all the rest drugs by each method. The positive and

negative cases as well as the predicted scores were used to generate

ROC curves and calculate pAUC. At FPR of 0.01, the AUC of

EMUDRA was 0.00056 (Fig. 3A) significantly higher than XCos

(pAUC¼0.00034, p¼1.65�10�18) and KS (pAUC¼0.00026,

p¼2.56�10�16) as well as other methods (pAUC<0.00036,

p<7.81�10�11). At FPR of 0.1, EMUDRA also had the best per-

formance (Supplementary Figs S4A and S5A).

We also tested all the nine methods for 288 drug pairs that

shared at least two ATC codes. These drug pairs involved 143

unique drugs. The negative cases were the drug pairs between the

143 drugs that shared only one or no ATC code. As shown in

Figure 3B, the pAUC (0.00115) of EMUDRA at FPR of 0.01 is 4.2

times larger than that of the KS (p¼8.51�10�07) and 42% higher

than that of XCos (p¼8.40�10�04). Moreover, EMUDRA with

the highest whole AUC (0.6827, Supplementary Fig. S4B) and the

best pAUC at FPR of 0.1 (0.03052, Supplementary Fig. S5B), signifi-

cantly outperformed the other methods (P<0.05).

To more comprehensively evaluate the performance of

EMUDRA and EWCos in comparison with the existing drug reposi-

tioning methods, we considered the drugs tested in both CMap and

LINCS as positive controls. The same 12 drugs were tested in two

cell lines including MCF7 and PC3 in CMap and LINCS. We identi-

fied 24 cell line specific signatures of the 12 drugs based on the

LINCS data. For each drug signature from the LINCS dataset, the

corresponding instance(s) (the same cell line treated with the same

drug) in CMap was (were) set as positive case(s) while the rest

CMap instances corresponding to the remaining 11 signatures

were taken as negative cases. At FPR of 0.01, the pAUC (0.0038)

of EMUDRA was significantly larger than those of KS

(pAUC¼0.0007, P¼3.59�10�98) and XCos (pAUC¼0.0013,

P¼1.18�10�27) as well as other methods (pAUC�0.0021,

P<4.17�10�13) (Fig. 3C). Consistently, the whole AUC (0.90233)

of EMUDRA was also significantly larger than those of KS

(AUC¼0.68633, P¼1.38�10�50) and XCos (AUC¼0.85033,

P¼1.53�10�15) and so on. Notably, EWCos performed much bet-

ter than all the other individual methods (Supplementary Figs S4C

and S5C). In summary, EMUDRA showed the best performance

under all the tested scenarios, whereas EWCos outperforms the indi-

vidual methods in the LINCS dataset.

We further compared EMUDRA with all the other possible

combinations (termed ensemble methods) of the eight non-

ensemble methods using the aforementioned datasets. A composite

score Gi ¼
Q

jgij was used to ranked the 255 methods, where gij is

the discriminant value of a method i in an instance j and is defined

as ðmaxj rij

� �
þ 1� rijÞ=

P
irij, where, rij is the rank of a method

i for a given instance j based on pAUC (Zhang et al.,

2013). Notably, EMUDRA had the largest composite score

(Supplementary Table S1), indicating that EMUDRA had the best

performance. In addition, we calculated AUC for all the 255 meth-

ods for the simulation data. The AUC of the EMUDRA was larger

than the AUCs of other ensemble and the non-ensemble methods

(Fig. 4A).

To evaluate the importance of each non-ensemble method

in the ensemble methods, we sorted all the 247 ensemble and 8

non-ensemble methods by their AUCs in each dataset and

then defined an accumulated ensemble score (AES) for a given

Fig. 3. Performance of EMUDRA, EWCos and the existing drug repositioning approaches based on positive controls determined by ATC Codes and the LINCS

Dataset. (A) ROC curves and pAUC for the prediction of the 1864 drug pairs sharing at least one ATC codes. These drug pairs were taken as positive cases and the

rest drug pairs were set as negative cases. ROC curves and pAUC were generated with FPR <0.01. (B) Performance for predicting the drug pairs sharing at least

two ATC codes. (C) Performance for predicting positive control drugs from the LINCS data. 24 cell line specific drug signatures identified from the LINCS data

were then used to query the instances in CMap using nineapproaches. The instances in CMap with the same drug and cell line as those in a given LINCS signa-

ture were set as positive cases while other instances were taken as negative cases for prediction
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non-ensemble method j in the top n ensemble methods as

AESjðnÞ ¼
PN

i¼1 dj;iðnÞ=n, where,

dj;iðnÞ ¼
1; if x ið Þ � n and a method j is in an ensemble

method i

0; otherwise

8<
:

and x(i) is the rank of an ensemble method i and N¼247. We calcu-

lated AES for the eight non-ensemble methods in three validation

datasets. The results showed that four methods comprising of

EMUDRA had larger ratios than other methods (Fig. 4B–D).

Notably, the AES of EWCos was 1 in the top 20 combinations, indi-

cating that EWCos was an essential component of the ensemble

methods with high performance. In summary, these results further

strongly demonstrated the excellent performance of EMUDRA and

EWCos while providing great insights into the contribution of

EWCos to EMUDRA.

3.3 Application of EMUDRA to TNBC
We applied EMUDRA to a gene signature characterizing TNBC ver-

sus adjacent normal breast samples. Based on an FDR cutoff of 0.05

and a fold change threshold of 1.5, we identified the 4776 genes dif-

ferentially expressed between 11 TNBC samples and matched adja-

cent normal samples in the TCGA database. The 4776 differentially

expressed genes were then used to query CMap by EMUDRA to

identify drugs that could reverse these gene expression changes. As

shown in Table 1, the top 20 drugs contained many promising

drugs including cyclic AMP elevators colforsin and resveratrol;

anti-mitotics etoposide, trifluridine, methotrexate, azacitidine and

0 175 029-0000; PI3K inhibitors wortmannin and quinostatin;

5 109 870, an iron chelator; the glutathione S-transferase inhibitor

ethacrynic acid; antimicrobials pyrvinium, cytochalasin B, ciclo-

pirox, puromycin, latamoxef and rifabutin; the antipsychotic

agents thioridazine and trifluoperazine; and the calcium-calmodulin

inhibitor calmidazolium. The genes up-regulated in TNBC but

down-regulated by these drugs were particularly enriched for bio-

logical processes related to cell cycle and proliferation such as ‘mi-

totic cell cycle’ (adjusted P¼4.35�10�65), ‘nuclear division’

(adjusted p¼8.46�10�46) and ‘DNA replication’ (adjusted

P-value¼1.47�10�21). On the other hand, the genes down-

regulated in TNBC and up-regulated by the drugs were enriched for

biological processes associated with development and differentiation

such as ‘tissue development’ (adjusted p¼1.94�10�05) and ‘cell

differentiation’ (adjusted P¼0.0011). These functional enrichment

results indicated that the top drugs could suppress cell division and

promote cell differentiation, suggesting their potential for treating

TNBC.

We then searched the literature to see which drugs had been

tested in TNBC or other cancers. As shown in Table 1, several of

our top-predicted drugs are currently used for TNBC treatment or

have been investigated in pre-clinical or in clinical trials in TNBC.

These drugs include etoposide (Lu et al., 2015), methotrexate (Wu

et al., 2014) and azacitidine (Connolly et al., 2014). Specifically,

etoposide is a topoisomerase II inhibitor that has been clinically

used to treat a variety of cancers (Lu et al., 2015). In TNBC, etopo-

side has shown particular efficacy against cells with BRCA1 muta-

tions (Reddy, 2011) and has been used to treat metastatic breast

cancer. For methotrexate, it had been shown that TNBC patients

benefited more from the methotrexate combining with cyclophos-

phamide than other breast cancer subtypes in a clinical trial

(Colleoni et al., 2015). Furthermore, several other top drugs had

been shown to improve survival of patients with metastatic cancer

(Mayer et al., 2015) or antitumor effects in cancer cell lines (Chen

et al., 2009; Deng et al., 2013; Kang et al., 2012; Mu et al., 2014),

which may be potential therapeutics of TNBC. For instance, in a re-

cent phase III trial, administration of trifluridine significantly

improved overall survival of patients with refractory metastatic

colorectal cancers in combination with tipiracil (Mayer et al., 2015).

In addition to the above mentioned drugs, two other drugs, rifabutin

Fig. 4. Performance comparison of all possible combinations of the non-ensemble methods. (A) AUCs of the 255 possible combinations of the 8 non-ensemble

methods based on the simulation data with noise. The numbers in the legend are number of methods assembled. (B)–(D) The ensemble rate of individual meth-

ods in the simulation, ATC and LINCS datasets. All 247 ensemble and 8 non-ensemble methods were rank ordered by AUC
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and colforsin, have not been previously investigated in TNBC treat-

ment and are therefore potential novel agents.

3.4 Rifabutin inhibits growth of TNBC cells
We hypothesized that colforsin and rifabutin could potentially re-

verse the TNBC gene signature and have an anti-proliferative effect

on TNBC cells. We selected rifabutin, an antibiotic currently used in

the treatment of tuberculosis, for validation due to its more exten-

sive clinical study and use. We grew MDA-MB-231 cells (TNBC

cells) in 3 D MatrigelTM and treated them with either DMSO or rifa-

butin. We dosed rifabutin at the concentration used in CMap,

4.8 lM, as well as one below (1 lM) and one above (25 lM). To

quantify differences in cell growth, we took photographs of cells

under the above conditions and quantified the proportional area of

a field that was occupied by cells (Fig. 5A). One day after beginning

treatment, there was no statistically significant difference in cellular-

ity between DMSO- and rifabutin-treated conditions (Fig. 5B). After

7 days of treatment, all concentrations of rifabutin significantly sup-

pressed cell growth (1 lM: 25.9% reduction, P¼1.84e-02; 4.8 lM:

47.4% reduction, P¼1.65e-03; 25 lM: 81. 0% reduction, P¼9.07-

04) (Fig. 5B). Similarly, rifabutin treatment significantly impaired vi-

able cell number and had a comparable potency with taxol (Fig. 5C)

at a relatively high dosage. This observed inhibition of cell growth is

consistent with our prediction that rifabutin is able to reverse the

upregulation of pro-proliferative genes in TNBC.

4 Discussion

A primary assumption under the CMap project is that a drug induc-

ing gene expression changes opposite to the changes caused by a

disease can potentially have a therapeutic effect on the disease.

The original CMap study utilized the KS statistic to measure the as-

sociation between a disease signature and drug perturbed gene

expression profiles (Lamb et al., 2006). In this study, we developed

a non-ensemble method EWCos and an ensemble approach

EMUDRA that integrated results from EWCos and three state-of-

the-art methods including Cosine, XCor and XSpe. Because neither

reliable disease signatures nor gold standard drug-indication set was

Table 1. The top 20 drugs reversed the TNBC signature

Drug EMUDRA score Known indications and effects Evidence type References

Colforsin �14.278 cAMP elevator may inhibit cell growth Indirect Sapio et al. (2017)

5 109 870 �13.6124 Iron chelator Unclear Fryknas et al. (2016)

Etoposide �12.8953 Used in TNBC clinical treatment Direct Reddy (2011)

Resveratrol �10.4495 Inhibit growth/migration of TNBC Direct Shindikar et al. (2016)

Trifluridine �10.2588 Improved survival in colorectal patients Direct Mayer et al. (2015)

Methotrexate �9.64846 Used in TNBC clinical treatment Direct Colleoni et al. (2002)

Quinostatin �9.36177 PI3K inhibitor may inhibit tumor growth Indirect Yang et al. (2007)

Ciclopirox �9.18798 Anti-cancer activity in multiple cancers Direct Mihailidou et al. (2018)

Etacrynic acid �8.95189 Induce apoptosis Indirect Liu et al. (2013)

Calmidazolium �8.61005 Inhibit growth of cancer cells Direct Lee et al. (2016b)

Pyrvinium �8.59439 Inhibit tumor cell proliferation Direct Momtazi-Borojeni et al. (2018)

Monobenzone �8.41266 Clinical trial for melanoma Direct Teulings et al. (2018)

Azacitidine �8.23745 Clinical trials for breast cancer Direct Connolly et al. (2017)

Cytochalasin B �8.21187 Induces apoptosis of cancer cells Indirect Trendowski (2015)

Puromycin �8.20552 Protein synthesis inhibitor Indirect Lamb et al. (2015)

Wortmannin �8.1305 Enhances cancer cell apoptosis Direct Sato et al. (2017)

0 175 029–0000 �7.52009 CDK inhibitor Indirect Hsieh et al. (2016)

Latamoxef �7.39494 Antibiotic Unclear None

Rifabutin �7.37229 Ansamycin antibiotic Unclear None

Trifluoperazine �7.21889 Inhibits tumor growth Direct Jiang et al. (2017)

C

A B

Fig. 5. Rifabutin dose-dependently inhibits growth of TNBC cells in 3D cul-

ture. (A) MDA-MB-231 cells were grown in 3D MatrigelTM and treated every

24–48 h with DMSO or 1, 4.8 or 25 lM rifabutin. Representative fields (5�)

shown. (B). At least four fields each from at least three independent experi-

ments were used for statistical analysis. Error bars represent standard error.

Statistical significance of the difference in proportion of a field containing

cells (field cellularity) between DMSO- and rifabutin-treated cells was tested

using a one-tailed student’s t-test. (C). Viability of rifabutin and taxol-treated

MDA-MB-231 cells grown in 3D Matrigel and treated every 48 h with media

containing 0.4% DMSO, rifabutin or taxol. Luminescence was assayed using

CellTiter-Glo 3D (Promega). Error bars represent standard error of the mean

(SEM) from three independent experiments. One-sided student’s t-test com-

paring treatment to DMSO: *P<0.05; **P< 0.005; ***P<0.0005
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available for assessing performance of drug repositioning methods,

we developed three independent positive control sets (i.e. three simu-

lation datasets with random noise, the drug pairs sharing ATC codes

and the cell line-drug pairs shared by CMap and LINCS) to system-

atically and comprehensively evaluate those methods. EMUDRA

consistently out-performed all the other methods, while the KS and

WSS methods had the worst performance and the eXtreme methods

had relatively good performance.

As CMap measured the drug-perturbed profiles in only three

cancer cell lines, the drug signatures cannot perfectly match those

from human disease tissues, especially in noncancerous diseases.

Even so, CMap has been proved useful for searching potential thera-

peutic indications for experimental validation. Several studies have

used CMap to computationally predict and experimentally validate

novel drugs for refractory diseases (Chen et al., 2011; Dudley et al.,

2011; Iskar et al., 2015; Kunkel et al., 2011; van Noort et al.,

2014). For example, using genes dysregulated by both spinal cord

injury and fasting in muscle tissue, Kunkel et al. predicted ursolic

acid as a candidate for treating muscle atrophy (Kunkel et al.,

2011). This prediction was experimentally validated in a mouse

model by showing that the administration of ursolic acid significant-

ly reduced muscle atrophy and stimulated muscle growth. As an an-

other example, topiramate was repurposed to inflammatory bowel

disease, which was validated through a trinitrobenzenesulfonic-acid-

induced colitis mouse model (Dudley et al., 2011). Nevertheless, the

limited number of cell lines and drugs profiled in the CMap

restricted its application. Furthermore, narrow spectrum of drug

dosages and limited treatment time might not reach the minimum

criteria that can cause a measurable gene expression changes.

Therefore, although EMUDRA has a very good performance, a

larger drug set in a wider dosage spectrum and more cell lines need

to be tested to generate more reliable hypotheses. As the LINCS pro-

ject is continuously producing more drug perturbed gene expression

profiles, integration of the LINCS data into EMUDRA will be a

next step.

Through querying the signature identified from the matched

TNBC and adjacent normal with EMUDRA, we predicted rifabutin

and colforsin as two novel indications that could be potential thera-

peutics for TNBC. We further experimentally validated rifabutin as

an inhibitor of TNBC cell proliferation. Our findings suggest that

rifabutin and other EMUDRA-predicted drugs may be promising

drugs for treating TNBC.

In summary, we developed two novel and effective drug

repositioning methods EWCos and EMUDRA. EWCos was

designed to reduce the impact of lowly expressed genes on matching

score between drug and disease gene signatures while EMUDRA

employed an ensemble framework to integrate EWCos and three

existing best performed methods. EMUDRA significantly outper-

formed the state-of-the-art drug repositioning methods. EMUDRA

can identify drugs that more effectively target disease gene signa-

tures and will thus be a useful tool for identifying novel therapies for

complex diseases and predicting new indications for existing drugs.
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