
Systems biology

Automatic selection of verification tools for

efficient analysis of biochemical models

Mehmet Emin Bakir1,*, Savas Konur2, Marian Gheorghe2,

Natalio Krasnogor3 and Mike Stannett1

1Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK, 2School of Electrical Engineering

& Computer Science, University of Bradford, Bradford BD7 1DP, UK and 3Interdisciplinary Computing and Complex

BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University, Newcastle NE1 7RU, UK

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on November 24, 2017; revised on March 8, 2018; editorial decision on April 1, 2018; accepted on April 20, 2018

Abstract

Motivation: Formal verification is a computational approach that checks system correctness (in

relation to a desired functionality). It has been widely used in engineering applications to verify

that systems work correctly. Model checking, an algorithmic approach to verification, looks at

whether a system model satisfies its requirements specification. This approach has been applied

to a large number of models in systems and synthetic biology as well as in systems medicine.

Model checking is, however, computationally very expensive, and is not scalable to large models

and systems. Consequently, statistical model checking (SMC), which relaxes some of the con-

straints of model checking, has been introduced to address this drawback. Several SMC tools

have been developed; however, the performance of each tool significantly varies according to

the system model in question and the type of requirements being verified. This makes it hard to

know, a priori, which one to use for a given model and requirement, as choosing the most effi-

cient tool for any biological application requires a significant degree of computational expertise,

not usually available in biology labs. The objective of this article is to introduce a method and

provide a tool leading to the automatic selection of the most appropriate model checker for the

system of interest.

Results: We provide a system that can automatically predict the fastest model checking tool for a

given biological model. Our results show that one can make predictions of high confidence, with

over 90% accuracy. This implies significant performance gain in verification time and substantially

reduces the ‘usability barrier’ enabling biologists to have access to this powerful computational

technology.

Availability and implementation: SMC Predictor tool is available at http://www.smcpredictor.com.

Contact: mebakir1@sheffield.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine-executable mathematical and computational models of

biological systems have been developed to help understand their spa-

tial and temporal behaviours (Fisher and Henzinger, 2007). The

executable nature of these models enables the design of in silico

experiments, which are generally faster, cheaper and more reprodu-

cible than the analogous wet-lab experiments. The success of com-

putational models depends crucially on two aspects: (i) the accuracy

and capability to predict in vivo (or in vitro) experiments; and (ii)

whether or not the methods used to validate the models can scale

VC The Author(s) 2018. Published by Oxford University Press. 3187

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(18), 2018, 3187–3195

doi: 10.1093/bioinformatics/bty282

Advance Access Publication Date: 24 April 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024

http://www.smcpredictor.com
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
https://academic.oup.com/


efficiently to handle large problem instances while maintaining the

precision of the results obtained. This article deals with the latter.

Simulation and model checking (Clarke et al., 1999) are two

powerful techniques used for analysing computational models. Each

has its own advantages and disadvantages. Simulation works by exe-

cuting the model repeatedly, and analysing the result. Each run of

the system can be performed relatively quickly, but—especially in

large, non-deterministic models—it is generally not possible to guar-

antee that every single computation path is executed. In contrast,

model checking, which is an algorithmic formal verification tech-

nique, works by representing desirable properties of the model using

formal mathematical logic, and then verifying whether the model

satisfies the corresponding formal specification. This involves check-

ing the model’s entire state space exhaustively by analysing all pos-

sible system trajectories. Thus, compared with simulation, model

checking allows discovering more novel knowledge about system

properties albeit at the expense of increased computational cost.

Model checking has been extensively used for decades in com-

puter science and engineering in the verification of various systems,

e.g. concurrent (Alur et al., 2000) and distributed systems (Norman,

2004), multi-agent systems (Konur et al., 2013), pervasive systems

(Konur et al., 2014b) and swarm robotics (Konur et al., 2012), to

mention just a few. Due to its novel approach to extracting informa-

tion about system behaviour, it has been also applied in the analysis

of biological systems and biochemical networks. Recently, it has

been applied to the analysis of various systems- and synthetic-

biological systems, including the ERK/MAPK pathway (Heiner

et al., 2008), FGF signalling pathway (Heath et al., 2008), cell cycle

in eukaryotes (Romero-Campero et al., 2006), EGFR pathway (Eker

et al., 2002), T-cell receptor signalling pathway (Clarke et al.,

2008), cell cycle control (Calzone et al., 2006) and genetic Boolean

gates (Sanassy et al., 2014; Konur et al., 2014a).

Although model checking has been proven to be a useful method

in system analysis, the very well-known state-space explosion prob-

lem associated with large non-deterministic systems (as a result of

exhaustive analysis using mathematical and numerical methods) has

prevented it being applied to large systems. Statistical model check-

ing (SMC) (Younes and Simmons, 2002) has been introduced to al-

leviate the state-explosion problem issue by replacing mathematical

and numerical analysis with a simulation approach (where a number

of system trajectories are considered instead of exhaustive analysis),

which is computationally less demanding. That is, SMC combines

simulation and model checking, thereby leveraging the speed of

simulation with the comprehensive analytical capacity of model

checking. The greatly reduced number of executions enables verifi-

cation of larger models at far lower computational cost, albeit by

introducing a small amount of uncertainty.

The success of SMC has prompted researchers to implement a

number of SMC tools, e.g. probabilistic and symbolic model checker

(PRISM) (Hinton et al., 2006), Ymer (Younes, 2005), Markov reward

model checker (MRMC) (Katoen et al., 2009), Monte Carlo Model

Checker (MC2) (Donaldson and Gilbert, 2008) and PLASMA-Lab

(Boyer et al., 2013). In order to facilitate the model checking process,

SMC tools have also been employed as third party tools in a number

of integrated software suites, such as SMBioNet (Khalis et al., 2009),

Biocham (Faeder et al., 2009), Bio-PEPA Eclipse Workbench

(Ciocchetta and Hillston, 2009), genetic network analyser (Batt et al.,

2012), kPWorkbench (Bakir et al., 2014; Dragomir et al., 2014) and

Infobiotics Workbench (Blakes et al., 2011, 2014).

Despite its clear computational advantages, SMC also has draw-

backs. Although a large variety of tools have been developed, the

performance of each tool significantly varies according to the

topological features and characteristics of the underlying network of

a given model (e.g. number of vertices and edges, graph density,

graph degree etc.) and the type of system requirements/properties

being verified. The model features and characteristics can affect the

verification performance hugely (as well as simulation performance,

as shown in Sanassy et al., 2015); in particular, verification of mod-

els with more complex network structures tend to be more challeng-

ing. As we showed in a recent work (Bakir et al., 2017), the type of

biological property (i.e. requirement) can also significantly affect the

verification time, as each property type can involve different compu-

tational processes on the network working at different levels of com-

plexity (e.g. searching some nodes, or all nodes etc.).

This makes it hard to know—a priori—which model checking

tool is the most efficient one for a given biological model and re-

quirement, as this requires a significant degree of computational ex-

pertise, not usually available in biology labs.

Thus, while the availability of multiple variants of these tools and

algorithms can allow considerable flexibility and fine-tuned control over

the analysis of specific models, it is very difficult for non-expert users to

acquire the knowledge needed to identify clearly which tools are the

most appropriate. It is therefore important to have a way of identifying

and using the fastest SMC tool for a given model and property.

The objective of this article is to introduce a method and provide a

tool leading to the automatic selection of the most appropriate model

checker for the system of interest. This will not only significantly re-

duce the total time and effort requested by the use of the model check-

ing tools, but will also enable more precise verification of complex

models while keeping the verification time tractable. In consequence, a

deeper understanding of biological system dynamics will be acquired

in a significantly improved time scale and with better performances.

1.1 Contributions
In this work, we have introduced a novel approach that combines vari-

ous aspects of computer science, including formal verification, stochas-

tic simulation algorithms (SSAs) and machine learning to improve

computational analysis—via model checking—in systems and synthet-

ic biology by addressing performance related issues through novel

computing solutions. To this end, we have developed a systematic and

effective methodology: We have first identified some model features

that represent topological and graph theoretic characteristics of the

model. We have benchmarked the five of the most commonly used

SMC tools by verifying 675 biological models against various com-

monly used biological requirements (so called patterns). Using the

identified model features, we have then utilised several machine learn-

ing techniques on the data obtained to train efficient and accurate clas-

sifiers. We have demonstrated that our approach can predict the

fastest SMC tool with over 90% accuracy. This implies a huge per-

formance gain compared with the random selection of tools, as choos-

ing the most efficient model checker will result in significantly less

verification time. We have implemented our approach and developed

a software system, SMC Predictor, that predicts the fastest SMC tool

based on a given biomodel and biological property.

To the best of our knowledge, this is the first paper that

addresses the performance related issues of SMC tools in connection

with model structure and the property.

2 Materials and methods

2.1 SMC tools
In this section, we briefly describe the five widely used SMC tools

considered in our experimental analysis: PRISM (Hinton et al.,

3188 M.E.Bakir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024



2006), Ymer (Younes, 2005), MRMC (Katoen et al., 2009), MC2

(Donaldson and Gilbert, 2008) and PLASMA-Lab (Boyer et al.,

2013). These tools have been used for analysing a wide range of sys-

tems, including computer, network and biological systems. The ap-

plicability of these SMC tools to a broad range of biological systems

has been intensively investigated (Jansen et al., 2008; Bakir et al.,

2017; Boyer et al., 2013; Donaldson and Gilbert, 2008; Zuliani,

2015).

PRISM is a popular and well-maintained probabilistic model

checker tool (Hinton et al., 2006). PRISM implements both prob-

abilistic model checking based on numerical techniques with

exhaustive analysis of the model and SMC using an internal

discrete-event simulation engine (Kwiatkowska et al., 2007).

PLASMA-Lab is another SMC for analysing stochastic systems

(Boyer et al., 2013). In addition to its internal simulator, it also pro-

vides a plugin mechanism to users, allowing them to integrate cus-

tom simulators into the PLASMA-Lab platform. Ymer is one of the

first tools that implemented SMC algorithms—its ability to parallel-

ise the execution of simulation runs makes it a relatively fast tool

(Younes, 2005). MRMC is another tool which can support both nu-

meric and SMC of probabilistic systems. Finally, MC2 enables SMC

over simulation paths. Although this tool does not have an internal

simulator, it permits using simulation paths of external simulators

(Donaldson and Gilbert, 2008).

2.2 Property patterns
Model checking uses temporal logics (Clarke et al., 1999) to specify

desired system properties and requirements. But this is a very tedious

task, because writing such formal specifications requires a very good

understanding of formal languages. In order to facilitate the prop-

erty specification process for non-experts, various frequently used

property types (patterns) have been identified in previous studies

(Dwyer et al., 1999; Grunske, 2008; Monteiro et al., 2008); and we

have done likewise for patterns that are particularly appropriate for

biological models (Konur, 2014; Gheorghe et al., 2015; Konur and

Gheorghe, 2015). These patterns are commonly recurring properties

that one may want to check in a modelled system.

We have identified 11 popular property patterns that are used in

our experimental settings. The precise definitions of the property

patterns and the model checking tools supporting them are provided

using a systems level model of P.aeruginosa quorum sensing as an

example (see Supplementary Section 2).

2.3 Models
In order to identify the performance of SMC tools, we have verified

instances of the 11 patterns on 675 up-to-date biological models

taken from the BioModels database (http://www.ebi.ac.uk/) in

SBML format, a data exchange standard. In order to focus on the

model structure analysis, we have fixed stochastic rate constants of

all reactions to 1.0 and the amounts of all species to 100 (in previous

work (Sanassy et al., 2015), 380 of these models were considered in

a similar fashion to predict performance of simulation tools). The

models tested ranged in size from 2 species and 1 reaction, to 2631

species and 2824 reactions. The distribution of model sizes can be

found in Supplementary Section 4.2 (Fig. 1).

In this article, we focus on predicting the time performance of a

set of available model checkers in order to save the end-user compu-

tational expense. In previous work Sanassy et al. (2015), we have

shown that we can reliably focus on the model structure only to

make such performance prediction when trying to decide on the fast-

est simulation engine. That is, model parameters could be safely

ignored while still being able to robustly predict the best simulator

to use. More recently, it has been demonstrated that a similar ap-

proach (namely focussing on structure and ignoring parameters) was

sufficient to predict the outcome of long stochastic chemical simula-

tions Markovitch and Krasnogor (2018). Thus, we follow a similar

approach here and focus solely on model structure and ignore model

parameters for the purpose of predicting the speed at which different

model checkers verify system level models.

We have also run an additional experiment to demonstrate that

keeping the model parameters as they are does not affect the prediction

accuracy. The details can be found in Supplementary Section 4.4

2.4 Prediction
In order to train the classifiers, we utilised several different machine

learning algorithms implemented in the scikit-learn library

(Pedregosa et al., 2011). We have compared seven methods; five of

them are powerful and widely used algorithms, namely, support vec-

tor machine classifier (SVM) (Chang and Lin, 2011), logistic regres-

sion (LR) (Yu et al., 2011), K-nearest neighbour classifier (KNN)

(Mucherino et al., 2009), extremely randomized trees (ERT) (Geurts

et al. 2006) and random forests (RFs) (Breiman, 2001) and two of

the classifiers are for baseline predictions, namely, Random Dummy

(RD) and Stratified Dummy (SD). We used 10-fold cross-validation

for training and testing the classifiers. An alternative validation

method is provided in Supplementary Section 4.3.

2.5 SMC predictor tool
We have developed a software system, SMC Predictor, which

accepts biomodels written in SBML and property patterns as input,

and returns the prediction of which stochastic model checker the

user should use, giving preference to time required for the verifica-

tion process. The classifiers predict the fastest SMC tool for each

model and property pattern. The software system architecture is pre-

sented in Supplementary Section 5.

The experimental data and the SMC Predictor tool are available

at http://www.smcpredictor.com.

3 Results and discussion

In this section, we present the results of benchmarks with the five of

the most commonly used SMC tools by verifying 675 biological

models against various commonly used biological requirements (pat-

terns) and then analyse the accuracy of predicting the fastest SMC

tool by using classifiers, based on machine learning techniques

involving identified model features and trained on the data obtained.

Supplementary Section 4.1 describes the system configuration and

the current versions of the SMC tools used in our experiments.

We start by presenting experiments showing the average compu-

tational time required for various model features and the impact

these features have on the prediction accuracy.

3.1 Feature selection
Topological and graph-theoretic features of the underlying network

of a model (e.g. number of vertices and edges, graph density, graph

degree etc.) significantly affect the simulation time of SSAs. These

features have been used to predict the performance of SSAs (Sanassy

et al., 2015), although a restricted number of graph features was

used to reduce the complexity of the prediction process, as the com-

putation of some of the features which generally require graph con-

struction is computationally demanding. This resulted in a relatively

low accuracy rate, 63%.

Automatic selection of verification tools 3189

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
http://www.ebi.ac.uk/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
http://www.smcpredictor.com
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data


The performance of stochastic model checking depends primar-

ily on such model features as well as the property type being

queried (Bakir et al., 2017). In our work, we aim to increase the

predictive accuracy without compromising on computation time.

In addition to the graph topological features, we have therefore

considered new features which mostly do not require graph con-

struction (e.g. number of species whose values can change; number

of species multiplied by number of reactions; min, max and mean

number of variable changes; total number of all incoming

and outgoing edges). The graph-related features and our

newly introduced (non-graph related) ones are described in

Supplementary Section 3.

The bar chart in Figure 1 shows the average computational

time (in nanoseconds) required when using each topological fea-

ture. In order to identify which of the properties are most import-

ant for our purposes, we have conducted feature selection analysis

using a feature importance algorithm based on ERTs (Geurts

et al., 2006; Louppe et al., 2013). The data points on the line

graph in Figure 1 show the ‘percentage importance’ of each fea-

ture. The results show that graph-theoretic features such as reci-

procity, weakly connected components, biconnected components

and articulation points are computationally expensive but actually

contribute less to the predictive power than the computationally

less expensive features.

In addition to the above experiments we have evaluated the pre-

diction accuracy of the method described in Sanassy et al. (2015) in

the context of the extended set of features. Better results have been

obtained when non-graph-related features are considered and com-

putationally expensive graph-theoretic ones are removed (details in

Supplementary Section 4.2).

Based on these results we have considered for the final features

set those that give better prediction accuracy with a reasonable com-

putational time.

3.2 Performance benchmarking of SMC tools
We have benchmarked the performance of 5 SMC tools using 675

biomodels obtained from the EBI database (http://www.ebi.ac.uk/)

against 11 property patterns. This is a significant extension of our

previous work (Bakir et al., 2017), where we only considered a small

subset of models and property patterns with a significantly less num-

ber of experiments. Since all models are available in the SBML for-

mat, we have developed a tool translating the SBML model into the

syntax that these SMC tools accept as input. The tool also translates

the property patterns into the formal specification languages of the

model checkers.

For each test 500 simulation traces were generated and 5000

steps per trace were executed. Each test was repeated three times

and the average time considered. The elapsed time for each run

includes the time required for model parsing, simulation and verifi-

cation, and where one tool depends on the use of another one then

the execution time of the auxiliary tool is included in the total execu-

tion time.

Table 1 summarises our experimental results. PLASMA-Lab

could verify all models; MC2 could verify most models for all prop-

erty patterns, except Precedes. MC2 failed to verify only a few mod-

els within the available time. Ymer could also verify most of the

models, but could not handle and repeatedly crashed for 31 large

models. PRISM’s capacity for verification depends on the pattern

type; for example, it could verify only 364 models against the

Eventually pattern but it could verify almost all models, 672, for the

Fig. 1. Computational time and feature importance. Average computational time and feature importance associated with model topological properties

Table 1. The number of models verified against different property patterns

PRISM PLASMA-Lab Ymer MRMC MC2

Patterns Verif. Fast. Verif. Fast. Verif. Fast. Verif. Fast. Verif. Fast.

Eventually 364 18 675 248 644 402 116 3 668 4

Always 480 80 675 132 644 457 118 2 668 4

Follows N/A N/A 675 575 N/A N/A 116 39 664 61

Precedes 672 170 675 18 644 486 113 0 664 1

Never 542 103 675 147 644 422 116 1 668 2

Steady state N/A N/A 675 579 N/A N/A 80 30 668 66

Until 592 125 675 82 644 465 112 0 664 3

Infinitely often N/A N/A 675 604 N/A N/A N/A N/A 668 71

Next 658 581 675 17 N/A N/A 118 36 675 41

Release 622 151 675 49 644 472 111 0 664 3

Weak until 591 126 675 82 644 465 112 0 664 2

Note: Columns labelled Verif. show the number of models verified by each tool. Columns labelled Fast. show for how many models the corresponding tool was

the fastest. N/A, not applicable, means the corresponding pattern is not supported by the tool.

3190 M.E.Bakir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
http://www.ebi.ac.uk/


Precedes pattern. The reason is that PRISM requires a greater simu-

lation depth for unbounded property verification to have a reliable

approximation. MRMC could verify fewer models than the other

SMCs for all property patterns, because it relies on PRISM for tran-

sition matrix generation. However, for medium sized and large

models PRISM failed to build and export the transition matrices—

we believe this was due to a CU Decision Diagram library crash.

Figure 2 illustrates the relation between the fastest tool and

model size. Ymer is the fastest tool for most of the models (for the

supported property patterns), however, as Figure 2 shows, it was

generally the fastest for relatively small sized models. PRISM and

PLASMA-Lab are generally the fastest tools for medium to large

sized models. It may be observed that their performances vary across

different property patterns. MRMC and MC2 are the fastest tools

for fewer models and they perform best only for small sized models.

They do slightly better for the Follows, Steady State and Infinitely

Often patterns where they compete with fewer tools.

Figure 3 illustrates the verification time for each tool with re-

spect to model size, providing complementary information to what

is in Table 1 and Figure 2. The figure shows the tool performance

comparison for two patterns. The results for all patterns are pre-

sented in Supplementary Section 4.5. Generally speaking, MC2 and

MRMC require more time for verification; hence they are less effi-

cient compared with the other tools. In particular, MRMC can ver-

ify very few models and its verification time increases exponentially

for the larger models. The verification time for Ymer increases al-

most linearly, i.e. it is fast for small models, but the verification time

constantly increases when the model size increases. PLASMA-Lab

displays an exponential growth for small size models but it gets

more efficient for large size models. Like PLASMA-Lab, PRISM

generally is not the fastest option for small-sized models whereas it

can perform better for larger models.

These results show that the performance of the model checking

tools significantly changes based on models and property patterns,

which makes it extremely difficult to predict the best tool without

the assistance of an automated system.

3.3 Automating SMC tool prediction
We have used five machine learning techniques and two random se-

lection algorithms, RD and SD, for predicting the fastest SMC tool.

The random selection algorithms were used for comparing the suc-

cess rate of each algorithm with random prediction. The RD

classifier ‘guesses’ the SMC tool blindly, that is, with uniform prob-

ability 1/5 it picks one of the five verification tools at random,

whereas the SD classifier knows the distribution of the fastest SMC

tools. The RD classifier acts as a proxy for the behaviour of the

researchers who do not know much about model checking tools,

while SD can be considered as mirroring the behaviour of experi-

enced verification researchers who know the patterns supported by

each tool and the fastest tools distribution, but do not know which

is the best tool for a specific property to be checked on a specific

model. The remaining five methods are: SVM classifier (Chang and

Lin, 2011); LR (Yu et al., 2011); KNN classifier (Mucherino et al.,

2009); and two types of ensemble methods, namely, ERT (Geurts

et al., 2006) and RFs (Breiman, 2001) (despite their names these are

not random classifiers, but ensemble classifiers). We used the scikit-

learn library (Pedregosa et al., 2011) implementation of these classi-

fiers in our experiments.

We have considered three different accuracy scores in our experi-

ments. The first score, ‘S1’, is the percentage of correct estimation of

the fastest SMC tool with the 10-fold cross-validation. The second

score, ‘S2’, is calculated by considering a threshold bound to assess-

ing a correct prediction, namely, whenever the relative time differ-

ence between the actual fastest SMC tool and the predicted fastest

SMC tool is not >10% of the actual fastest SMC tool time, then the

prediction is considered correct. For the third score, ‘S3’, the order

of the fastest SMC tools is used and if the predicted SMC tool is the

second fastest tool, then it is regarded as a correct prediction.

The experimental results with first score (S1) of each classifier

for different property patterns are shown in Figure 4 and their accur-

acy values are tabulated in Table 2. The success rates were all higher

than for random classifiers. ERT was the most frequent winner, as it

had best predictive accuracy for six patterns (for Infinitely Often,

ERT and LR have the same highest accuracy, 95%), whereas the

SVM classifier was the second best winner with highest predictive

accuracy for five patterns. ERT and SVM are hereinafter referred to

as the best classifiers. The prediction accuracies of the best classifiers

were over 90% for all pattern types.

We have measured the P-values of each classifier across different

property patterns, by comparing the accuracy scores of cross-

validation of each classifier using the Friedman test (Friedman,

1940) provided with the Python SciPy library (http://scikit-learn.

org). Table 2 provides both row- and column-wise P-values. The

column-wise P-values indicate that, a given classifier (e.g. SVM)

views the predictive accuracies of different patterns with statistically

Fig. 2. Fastest SMC tools verifying each model against each property pattern. The X-axis represents logarithmic scale of model size; the Y-axis shows the property

patterns. For each model a one-unit vertical line is drawn against each pattern. The line’s colour shows the fastest SMC

Automatic selection of verification tools 3191

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty282#supplementary-data
http://scikit-learn.org
http://scikit-learn.org


significant differences (i.e. low P-values). So, it would not be recom-

mended to use just one classifier for all pattern types. The row-wise

P-values indicate that, for a given pattern (e.g. ‘Eventually’) the pre-

diction accuracy might be more readily done via different classifiers

with statistically significant differences. That is, the low P-values

suggest that different methods have statistically different

performances.

Table 3 shows the experimental results using the other score set-

tings. The accuracy of ‘S2’ experiments is not much higher than for

‘S1’, which considered only the actual fastest tool prediction as cor-

rect, but the accuracy of ‘S3’ is significantly higher because it ‘lumps

together’ the fastest and second fastest tools, but the time differences

between the second best and the actual best tool can be orders of

magnitude, i.e. much more than 10-fold. For the Follows, Steady

State and Infinitely Often patterns, the accuracies of SD and RD are

relatively better under these more relaxed scoring approaches, be-

cause there are fewer tools which support these patterns; hence they

have higher chances of correct prediction. Similar to Table 2,

Fig. 3. Performance comparison. For each property pattern, each tool performance is compared against the best performance. Here, X-axes represent the model

size (species � reactions) in logarithmic scale (log2), Y-axes show the relative performance of each SMC tool in comparison with the fastest one, and Z-axes show

(log10 scale) the consumed time in nanoseconds

Fig. 4. Predictive accuracies. Accuracies (S1) for the fastest SMC prediction with different algorithms

Table 2. Accuracy values using first score (S1)

SVM ERT RF LR KNN SD RD P-value

Eventually 92.4% 92.2% 91.6% 92.0% 88.8% 47.7% 12.4% 3.4e-09

Always 88.9% 90.5% 90.1% 85.9% 84.7% 53.4% 16.3% 8.1e-09

Follows 95.0% 93.6% 93.9% 92.4% 92.6% 70.5% 29.1% 3.5e-08

Precedes 95.4% 97.2% 97.0% 93.5% 94.4% 63.3% 27.4% 1.1e-09

Never 88.5% 91.0% 89.8% 85.6% 85.2% 48.8% 19.1% 3.5e-09

Steady state 94.2% 93.2% 92.6% 93.0% 92.7% 70.7% 29.6% 1.1e-07

Until 91.0% 92.8% 92.2% 87.8% 88.0% 54.7% 28.7% 4.5e-08

Infinitely often 91.6% 95.0% 94.7% 95.0% 93.6% 81.5% 61.2% 7.4e-09

Next 94.3% 93.5% 92.9% 92.6% 93.5% 72.9% 36.9% 1.9e-07

Release 94.2% 93.8% 93.1% 89.8% 91.3% 58.8% 28.4% 1.9e-08

Weak until 90.8% 92.3% 91.7% 88.8% 87.1% 57.4% 27.3% 2.4e-08

P-value 8.0e-08 2.9e-04 1.1e-05 1.7e-09 2.1e-09 2.4e-14 4.6e-13

3192 M.E.Bakir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024



Table 3 provides both row- and column-wise P-values. The row-

wise P-values indicate that there are statistically significant differen-

ces when using the same classifier for different patterns. The

column-wise P-values indicate that for a given pattern the prediction

accuracy varies for different classifiers with statistically significant

differences.

3.4 Performance gain and loss
In this section, for each property pattern, we have assessed the per-

formance gain and loss for the best classifiers and the random classi-

fiers. The performance gain is the time difference between the

verification time of the tools predicted by the best classifiers and the

random classifiers.

Figure 5 shows the total time required to verify all models with

the actual fastest SMC tools, the best classifier predictions and the

random classifier predictions. The performance gain between the

best classifiers and the SD classifier is minimum 63 min for Infinitely

Often, maximum 3002 min for Always, and average 1848 mins for

all patterns. The time difference between the best classifiers and RD

is even larger: minimum 528 min, maximum 12 506 min and aver-

age 6109 min for all patterns. The results show that using the best

classifier predictions a significant amount of time can be saved—up

to 208 h!

Generally, the outcomes of mispredictions can be as important

as correct predictions. In this regard, we have measured the

performance loss caused by inaccurate predictions. Figure 6 shows

the performance loss, i.e. time difference between the total verifica-

tion time using the actual fastest SMC tools and the total verifica-

tion time using the predicted SMC tools. The performance loss for

the best classifier is minimum 0.3 min for Precedes, maximum 885

min for Next, and average 318 min for all patterns. Similarly, the

performance loss for SD is minimum 67 min, maximum 3662 min

and average 2167 min; for RD is minimum 532 min; maximum

12 567 min and average 6427 min. The results suggest the best clas-

sifiers’ performance losses are always lower than the random classi-

fiers’ ones. More specifically SD and RD cause performance losses 7

and 20 times, respectively, higher than the best classifiers.

Finally, Table 4 provides the best, worst and predicted model

checking times for a set of selected models and patterns (note that

we have put a 1-h cap on the length of each experiments; the worst

model checking times presented are generally > 1 h (in some cases,

hours or even days)). The best times and predicted times for each

pattern are mostly identical; as previously discussed the prediction

accuracy is very high.

The results show that (even with a one hour cap) one can achieve

a significant performance gain. While a random selection might lead

to hours of model checking time, using the predictor can reduce this

time to milliseconds. In a typical formal analysis of a system, where

several queries are used to verify desired system properties, experi-

ments that might take hours or days to run can be reduced to

minutes or even seconds.

Table 3. Predictive accuracy with different score settings

Eventually Always Follows Precedes Never Steady state Until Infinitely often Next Release Weak until P-value

SVM S2 94.1% 91.1% 95.7% 96.6% 89.8% 95.3% 91.9% 92.3% 95.4% 95.4% 92.6% 1.9e-07

S3 98.7% 96.4% 99.1% 98.1% 94.4% 99.3% 95.1% 100.0% 97.2% 97.9% 96.7% 2.8e-10

ERT S2 93.7% 92.2% 94.8% 98.1% 92.7% 94.1% 94.3% 95.9% 94.7% 95.3% 93.9% 5.6e-04

S3 98.4% 96.9% 98.5% 99.6% 96.1% 99.0% 97.8% 100.0% 96.6% 97.8% 97.6% 2.8e-07

RF S2 93.4% 91.8% 95.0% 98.7% 91.5% 93.6% 93.6% 95.4% 94.3% 95.4% 93.2% 2.6e-04

S3 99.0% 97.0% 99.3% 99.9% 96.0% 99.1% 97.3% 100.0% 96.3% 97.6% 97.0% 2.8e-09

LR S2 93.8% 88.6% 93.6% 95.1% 87.5% 94.2% 90.0% 95.9% 93.8% 91.9% 90.4% 3.2e-08

S3 99.0% 95.4% 99.1% 97.3% 93.8% 99.7% 95.1% 100.0% 96.1% 95.1% 95.1% 4.9e-11

KNN S2 90.2% 87.5% 93.6% 96.0% 87.7% 93.6% 90.5% 94.5% 94.7% 92.8% 89.6% 2.6e-08

S3 96.7% 94.5% 98.1% 98.7% 93.2% 98.5% 95.4% 100.0% 96.0% 95.1% 94.4% 1.3e-09

SD S2 49.3% 55.7% 70.5% 64.9% 52.3% 71.4% 56.9% 82.4% 78.1% 60.7% 59.4% 3.3e-14

S3 71.7% 71.9% 90.5% 75.0% 72.4% 90.4% 70.8% 100.0% 86.8% 72.4% 74.8% 9.9e-13

RD S2 13.6% 17.3% 30.5% 31.8% 19.7% 30.7% 30.9% 61.5% 38.4% 31.7% 28.9% 1.4e-12

S3 32.9% 35.0% 65.0% 49.5% 39.4% 64.3% 48.0% 99.3% 56.0% 47.6% 47.9% 8.6e-15

P-value S2 3.3e-09 2.8e-08 3.5e-08 2.4e-09 3.1e-09 8.3e-08 1.1e-08 5.0e-09 1.8e-07 2.1e-08 7.0e-09

S3 2.2e-09 5.3e-08 1.6e-08 5.4e-10 2.4e-08 2.6e-08 7.3e-09 5.2e-04 2.4e-07 2.1e-08 1.1e-08

Fig. 5. Total time consumed for verifying all models

Automatic selection of verification tools 3193

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024



3.5 Conclusion
In this article, we have proposed and implemented a methodology to

automatically predict the most efficient SMC tool for any given

model and property pattern. To do so, we first proposed a set of

model features which can be used for SMC prediction. We then sys-

tematically benchmarked several model checkers by verifying 675

biological models against 11 property patterns. By utilizing several

machine learning algorithms, we have generated efficient and accur-

ate classifiers that successfully predict the fastest SMC tool with

over 90% accuracy for all pattern types. We have developed soft-

ware using built-in classifiers to make the prediction automatically.

Finally, we have shown that by using automated prediction, a sig-

nificant amount of time can be saved.

For the next stage of our work, we aim to integrate the auto-

mated fastest SMC prediction process into some of the larger bio-

logical model analysis suites, e.g. kPWorkbench (Dragomir et al.,

2014) and Infobiotics Workbench (Blakes et al., 2011).

Funding

This work was supported by the Engineering and Physical Sciences Research

Council [grant numbers EP/I031642/2 to S.K., M.G. and N.K. and EP/

J004111/2, EP/L001489/2 and EP/N031962/1 to N.K.]; Innovate UK [grant

number KTP010551 to S.K.]; the Romanian National Authority for

Scientific Research (CNCS-UEFISCDI) [project number PN-III-P4-ID-PCE-

2016-0210 to M.G.]; and the Turkey Ministry of Education [PhD studentship

to M.E.B.].

Conflict of Interest: none declared.

References

Alur,R. et al. (2000) Model checking of correctness conditions for concurrent

objects. Inform. Comp., 160, 167–188.

Bakir,M.E. et al. (2014). Extended simulation and verification platform for

kernel P systems. In: Gheorghe, M. et al. (eds), Membrane Computing,

Lecture Notes in Computer Science. Springer, Cham, pp. 158–178.

Bakir,M.E. et al. (2017). Comparative analysis of statistical model checking

tools. In: Membrane Computing, Lecture Notes in Computer Science.

Springer, Cham, pp. 119–135.

Batt,G. et al. (2012). Genetic network analyzer: a tool for the qualitative mod-

eling and simulation of bacterial regulatory networks. In: Bacterial

Molecular Networks, Volume 804 of Methods in Molecular Biology.

Springer, New York. pp. 439–462.

Blakes,J. et al. (2011) The Infobiotics Workbench: an integrated in silico

modelling platform for systems and synthetic biology. Bioinformatics, 27,

3323–3324.

Blakes,J. et al. (2014). Infobiotics workbench: a P systems based tool for sys-

tems and synthetic biology. In: Applications of Membrane Computing in

Systems and Synthetic Biology, Volume 7 of Emergence, Complexity and

Computation. Springer International Publishing, Switzerland, pp. 1–41.

Boyer,B. et al. (2013). Plasma-lab: a flexible, distributable statistical model

checking library. In: Proceedings of 10th International Conference QEST,

Volume 8054 of LNCS. Springer, Buenos Aires, Argentina, pp. 160–164.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Calzone,L. et al. (2006). Machine learning biochemical networks from tem-

poral logic properties. In: Transactions on Computational Systems Biology

VI, Volume 4220 of Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 68–94.

Chang,C.-C. and Lin,C.-J. (2011) LIBSVM: a library for support vector

machines. ACM Trans. Intell. Syst. Technol., 2, 1–27.

Fig. 6. The mean performance loss when the best classifiers predict incorrectly

Table 4. Best, worst and predicted model checking time (seconds) for various models and patterns

Always Eventually Until

Model Best Worst Predicted Best Worst Predicted Best Worst Predicted

1 0.09 >3600 0.09 0.25 >3600 0.25 0.08 >3600 0.08

2 0.08 >3600 0.08 0.26 >3600 0.26 0.08 >3600 0.08

3 0.07 >3600 0.07 0.14 >3600 0.14 0.08 >3600 0.08

4 0.63 >3600 0.63 1.26 >3600 1.26 0.34 >3600 0.34

5 0.67 >3600 0.67 1.30 >3600 1.30 0.34 >3600 0.34

6 0.31 >3600 0.31 0.58 >3600 0.58 0.33 >3600 0.33

7 1.49 >3600 1.49 8.63 >3600 8.63 1.49 >3600 2.14

8 1.51 >3600 1.51 6.01 >3600 6.01 2.92 >3600 5.01

9 1.54 >3600 1.54 4.29 >3600 4.29 1.50 >3600 1.50

10 121.00 >3600 121.00 195.00 >3600 195.00 3.23 >3600 3.23

11 118.00 >3600 118.00 201.00 >3600 201.00 6.24 >3600 6.24

12 64.06 >3600 64.06 385.00 >3600 385.00 3.37 >3600 3.37

3194 M.E.Bakir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024



Ciocchetta,F. and Hillston,J. (2009) Bio-pepa: a framework for the

modelling and analysis of biological systems. Theor. Comput. Sci., 410,

3065–3084.

Clarke,E.M. et al. (1999). Model Checking. MIT Press, Cambridge, MA, USA.

Clarke,E.M. et al. (2008). Statistical model checking in Biolab: applications to

the automated analysis of T-cell receptor signaling pathway. In: Proceedings

of the CMSB’08. Springer, Rostock, Germany, pp. 231–250.

Donaldson,R. and Gilbert,D. (2008). A Monte Carlo model checker for

Probabilistic LTL with numerical constraints. Technical report, University

of Glasgow, Department of Computing Science.

Dragomir,C. et al. (2014). Model checking kernel P systems. In: Membrane

Computing, Volume 8340 of Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, pp. 151–172.

Dwyer,M.B. et al. (1999). Patterns in property specifications for finite-state

verification. In: Proceedings of ICSE ’99, ACM, New York, NY, USA, pp.

411–420.

Eker,S. et al. (2002). Pathway logic: symbolic analysis of biological signaling.

In: Proceedings of the Pacific Symposium on Biocomputing. SRI

International, CA, USA, pp. 400–412.

Faeder,J.R. et al. (2009). Rule-based modeling of biochemical systems with

Bionetgen. In: Methods in Molecular Biology, System Biology, Volume 500

of Methods in Molecular Biology. Humana Press, pp. 113–167.

Fisher,J. and Henzinger,T.A. (2007) Executable cell biology. Nat. Biotech.,

25, 1239–1249.

Friedman,M. (1940) A comparison of alternative tests of significance for the

problem of m rankings. Ann. Math. Stat., 11, 86–92.

Geurts,P. et al. (2006) Extremely randomized trees. Mach. Learn., 63, 3–42.

Gheorghe,M. et al. (2015). An integrated model checking toolset for kernel P

systems. In: Membrane Computing, Lecture Notes in Computer Science.

Springer, Cham, pp. 153–170.

Grunske,L. (2008). Specification patterns for probabilistic quality properties.

In: Proceedings of the 30th International Conference on Software

Engineering, ICSE’08. ACM, NY, USA, pp. 31–40.

Heath,J. et al. (2008) Probabilistic model checking of complex biological path-

ways. Theor. Comput. Sci., 319, 239–257.

Heiner,M. et al. (2008). Petri nets for systems and synthetic biology. In:

Formal Methods for Computational Systems Biology, Volume 5016 of

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp.

215–264.

Hinton,A. et al. (2006). PRISM: a tool for automatic verification of probabilis-

tic systems. In: Tools and Algorithms for the Construction and Analysis of

Systems. Springer, Berlin, Heidelberg, pp. 441–444.

Jansen,D.N. et al. (2008). How fast and fat is your probabilistic model check-

er? an experimental performance comparison. In: Proceedings of HVC’07.

Springer-Verlag, Berlin, Heidelberg, pp. 69–85.

Katoen,J.-P. et al. (2009). The ins and outs of the probabilistic model checker

MRMC. In: Quantitative Evaluation of Systems (QEST). IEEE Computer

Society, Budapest, Hungary, pp. 167–176.

Khalis,Z. et al. (2009) The SMBioNet method for discovering models of gene

regulatory networks. Genes Genomes Genomics, 3, 15–22.

Konur,S. (2014) Towards light-weight probabilistic model checking. J. Appl.

Math., 2014, 1. 814159: 1–814159: 15.

Konur,S. and Gheorghe,M. (2015) A property-driven methodology for formal

analysis of synthetic biology systems. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 12, 360–371.

Konur,S. et al. (2012) Analysing robot swarm behaviour via probabilistic

model checking. Robot. Autonom. Syst., 60, 199–213.

Konur,S. et al. (2013) Combined model checking for temporal, probabilistic,

and real-time logics. Theor. Comput. Sci., 503, 61–88.

Konur,S. et al. (2014a) Conventional verification for unconventional comput-

ing: a genetic XOR gate example. Fund. Inform., 134, 97–110.

Konur,S. et al. (2014b) Formal verification of a pervasive messaging system.

Formal Aspects Comput., 26, 677–694.

Kwiatkowska,M. et al. (2007). Stochastic model checking. In: Proceedings of

the 7th International Conference on Formal Methods for Performance

Evaluation, SFM’07. Springer, Berlin, Heidelberg, pp. 220–270.

Louppe,G. et al. (2013). Understanding variable importances in forests of

randomized trees. In: Advances in Neural Information Processing Systems

26. Curran Associates, Inc., USA, pp. 431–439.

Markovitch,O. and Krasnogor,N. (2018) Predicting species emergence in

simulated complex pre-biotic networks. PLoS One, 13, e0192871.

Monteiro,P.T. et al. (2008) Temporal logic patterns for querying dynamic

models of cellular interaction networks. Bioinformatics, 24, i227–i233.

Mucherino,A. et al. (2009). k-nearest neighbor classification. In: Data Mining

in Agriculture. Springer, New York, pp. 83–106.

Norman,G. (2004). Validation of Stochastic Systems: A Guide to Current Research,

Volume 2925 of Lecture Notes in Computer Science (Tutorial Volume), Chapter

Analysing Randomized Distributed Algorithms. Springer-Verlag, Berlin,

Heidelberg, pp. 384–418.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 8, 2825–2830.

Romero-Campero,F.J. et al. (2006). Towards probabilistic model checking on

P systems using Prism. In: Membrane Computing, Volume 4361 of Lecture

Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 477–495.

Sanassy,D. et al. (2014). Modelling and stochastic simulation of synthetic biologic-

al Boolean gates. In: 16th IEEE International Conference on High Performance

Computing and Communications. IEEE, Paris, France, pp. 404–408.

Sanassy,D. et al. (2015) Meta-stochastic simulation of biochemical models for

systems and synthetic biology. ACS Synth. Biol., 4, 39–47.

Younes,H.L.S. (2005) Ymer: a statistical model checker. In: Proceedings of the

17th International Conference on Computer Aided Verification, CAV’05.

Springer-Verlag, Berlin, Heidelberg, pp. 429–433.

Younes,H.L.S. and Simmons,R.G. (2002). Probabilistic verification of discrete

event systems using acceptance sampling. In: Proceedings of 14th

International Conference on Computer Aided Verification. Springer,

Copenhagen, Denmark, pp. 223–235.

Yu,H.-F. et al. (2011) Dual coordinate descent methods for logistic regression

and maximum entropy models. Mach. Learn., 85, 41–75.

Zuliani,P. (2015) Statistical model checking for biological applications. Int. J.

Softw. Tools Technol. Transfer, 17, 527–536.

Automatic selection of verification tools 3195

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3187/4983061 by guest on 25 April 2024


	bty282-TF1

