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Abstract

Motivation: De novo transcriptome analysis using RNA-seq offers a promising means to study

gene expression in non-model organisms. Yet, the difficulty of transcriptome assembly means that

the contigs provided by the assembler often represent a fractured and incomplete view of the tran-

scriptome, complicating downstream analysis. We introduce Grouper, a new method for clustering

contigs from de novo assemblies that are likely to belong to the same transcripts and genes; these

groups can subsequently be analyzed more robustly. When provided with access to the genome of

a related organism, Grouper can transfer annotations to the de novo assembly, further improving

the clustering.

Results: On de novo assemblies from four different species, we show that Grouper is able to accur-

ately cluster a larger number of contigs than the existing state-of-the-art method. The Grouper

pipeline is able to map greater than 10% more reads against the contigs, leading to accurate down-

stream differential expression analyses. The labeling module, in the presence of a closely related

annotated genome, can efficiently transfer annotations to the contigs and use this information to

further improve clustering. Overall, Grouper provides a complete and efficient pipeline for process-

ing de novo transcriptomic assemblies.

Availability and implementation: The Grouper software is freely available at https://github.com/

COMBINE-lab/grouper under the 2-clause BSD license.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in sequencing technologies have allowed the efficient and

accurate exploration of transcriptomes beyond the scope of genetic

model organisms (Ekblom and Galindo, 2011; Marioni et al.,

2008). Transcriptome sequencing opens the door to understanding

gene expression even in species with no high-quality reference gen-

ome, which constitutes a vast majority of known species (Martin

and Wang, 2011). Some common uses of transcriptome sequencing

include variant detection, fusion and alternative splicing event dis-

covery, and differential expression analysis (Soumana et al., 2015;

Stubben et al., 2014). In organisms where the transcript sequences

are not known a priori, a crucial initial step is assembling the tran-

scriptome using short sequencing reads. In short read sequencing, a

transcriptome is typically sequenced to high depth, resulting in tens

to hundreds of millions of reads, which then need to be assembled to

reconstruct the original transcript sequences; a process called de

novo assembly. These transcripts will later act as the ‘reference’ for

subsequent analyses. For instance, in a differential analysis pipeline,

the reads are first mapped back to the assembled transcripts to infer

transcript abundance (Li and Dewey, 2011).

There are many popular tools for assembling the full-length tran-

scripts from short reads by leveraging the redundancies and overlap

between reads, such as Trinity (Haas et al., 2013), Oasis (Schulz

et al., 2012) and Trans-ABySS (Robertson et al., 2010). Similarly,

there are tools that can be used to improve the quality of the

assemblies generated by these methods (Cabau et al., 2017;
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Durai and Schulz, 2016). However, despite the powerful algorithms

and heuristics adopted, the final output sequences (i.e. contigs) often

don’t represent the full-length transcripts. In other words, many

transcripts are fragmented into a set of non-overlapping contigs.

This results from numerous difficulties in assembly including

(but not limited to) errors in the sequenced reads, transcriptome

complexity arising from alternative splicing and paralogous genes,

uneven or insufficient coverage across the length of the sequences

molecules, and deficiencies in the underlying approaches used for as-

sembly (e.g. places where the computational problem being solved

does not match well with the underlying biology). All of these can

lead to a collection of output contigs, which is much larger than the

actual set of transcripts assayed.

Because of the potentially low quality of de novo assembly output,

it is more promising and robust to pursue gene-level differential ex-

pression analysis instead of transcript-level (i.e. contig-level) analysis.

To obtain gene-level information, we need to infer the contigs that

represent parts of the same transcript and those that represent iso-

forms of the same gene, and group them together. This is what meth-

odologies such as those by Davidson and Oshlack (2014), Ptitsyn

et al. (2015) and Srivastava et al. (2016) propose. Corset computes a

hierarchical clustering based on the shared counts of the contigs, and

RapClust clusters a sparse graph, called the mapping ambiguity

graph, with nodes representing the contigs, and edges weighted based

on the abundances of the contigs sharing common reads. Moreover,

for meaningful interpretation of these clusters and various analyses, it

is important to have some notion of what the contigs in the de novo

assembly represent (Garber et al., 2011). Often, we have annotated

genomes or transcriptomes from species closely related to the non-

model organism under study. This information can be exploited to ac-

curately annotate the contigs of a de novo assembly and improve our

understanding of the function of the genes that demonstrate differen-

tial expression. Traditionally, variants of BLAST (Altschul et al.,

1990) are used to perform this annotation and then complete Gene

Ontology (GO) analysis (Ji et al., 2012; Parchman et al., 2010).

Currently, several methods exist to process de novo assemblies in

order to improve downstream analyses and ease the interpretation

of results from such analyses. However, each method has its limita-

tions, and apart from Corset, there doesn’t exist a tool that provides

a complete pipeline for clustering and annotating de novo contigs.

We introduce Grouper that subsumes and improves on the frame-

work of RapClust and can be used for accurate and efficient process-

ing of de novo transcriptome assemblies, to yield clusters of contigs

and transfer labels to them from an annotated genome in a matter of

tens of minutes. The underlying algorithms in Grouper transfer in-

formation from de novo assemblies onto a graph, suggesting a useful

future direction for de novo transcriptome analysis beyond direct se-

quence analysis of the assembled contigs. The complete Grouper

pipeline also provides quantification information that can be used

for differential expression analyses. The Grouper software is freely

available at https://github.com/COMBINE-lab/grouper.

2 Materials and methods

2.1 Overview
The first step for the analysis of RNA-seq data, in the absence of a ref-

erence genome, is generating a de novo transcriptome assembly, using

tools such as Trinity (Grabherr et al., 2011) and Oases (Schulz et al.,

2012). The assemblies tend to have a large number of fractured or

incomplete contigs that do not represent full-length transcripts.

Grouper aims to cluster these contigs such that, under ideal

conditions, each cluster represents a single gene with its various tran-

scripts. To do so, the original RNA-seq reads are mapped to the as-

sembly using Salmon, which generates quantification estimates and

fragment equivalence classes. Each equivalence class contains frag-

ments that are mapped to the same set of contigs from the de novo as-

sembly, hence encoding the multi-mapping structure of sequencing

reads in relation to a reference. These are processed by Grouper to

construct a mapping ambiguity graph, where the nodes are the set of

contigs and are connected by edges based on the reads that multi-map

between them. This graph is then further improved using quantifica-

tion estimates and, optionally, orphan read information from Salmon.

Annotations can also be added to the graph from the annotated

genomes of closely related species using Grouper’s labeling module.

The final graph is then clustered providing groups of contigs as the

output and annotations (if added). Downstream analyses can then be

done treating these groups as putative genes. For example using the

R tool, tximport (Love et al., 2017), to aggregate abundance estimates

to the cluster level, which can then be used for differential expression

testing. This complete pipeline is illustrated in Figure 1.

There are two main modules in Grouper: clustering and labeling.

The former takes as input the output from Salmon (Patro et al.,

2017), where RNA-seq reads are mapped against a de novo assem-

bly and quantified. This is used to generate the mapping ambiguity

graph and then cluster the unannotated contigs. Clustering module

is the main module of Grouper, and the labeling module is built on

top of this framework. It is optional and requires an additional input

of annotations from species closely related to the one used for as-

sembly. Both of these modules help improve and annotate the

assembled contigs for downstream analyses.

2.2 Clustering
The clustering module (Supplementary Fig. S1) builds on the work

in RapClust, a tool for accurate and fast clustering of contigs from

Fig. 1. Grouper pipeline: Grouper consists of two modules with different mod-

ules, Clustering and Labeling. The goal of Clustering is to put contigs from a

de novo assembly into groups that represent individual genes. The labeling

module assigns a label to each of these clusters using annotated genomes

from closely related species. Hence, the labeling step is optional. Grouper

needs equivalence classes as input, which can be generated using Salmon on

the raw RNA-seq reads. Orphan reads are optionally used in the Clustering

module. The output of Grouper are clusters representing a putative contig-to-

gene mapping, which may be labeled using an annotated genome from a

related species. Quantification estimates can then be summed to the cluster

level for downstream differential expression analyses using tximport
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de novo assemblies (Srivastava et al., 2016). The original work

makes use of the intrinsic sequence similarity within the contigs,

expressed in the form of equivalence classes, and the transcript-level

expression estimates. The clustering module consists of multiple

steps, the first being the construction of the mapping ambiguity

graph using equivalence classes, generated by Salmon during the

mapping and quantification phase. The graph, G, is a weighted, un-

directed graph with contigs (having at least 10 reads mapped to

them) as its vertices. Two vertices are connected by an edge if they

share multi-mapping reads, meaning that a read is mapped to both

of the contigs. The edge weight is indicative of the amount of simi-

larity between the two contigs, and, as with the weighting function

used in Corset (Davidson and Oshlack, 2014), is defined based on

the number of reads that these contigs share compared to the num-

ber of reads that map to each of them individually. Once the graph

is constructed, an additional filter accounts for contigs from paralo-

gous genes by removing edges that connect contigs with read counts

that vary significantly. Optionally, this graph can be further

improved using two steps. The first involves adding edges using or-

phan reads (as output by Salmon), where the ends of a paired-end

read map to two different contigs, with similar expression estimates.

In the second step, instead of simply removing adjacent contigs with

significantly varying read counts, we compute a min-cut separating

the two components containing these contigs, forcing them to reside

in distinct clusters in the final output. Once the mapping ambiguity

graph has been updated, it is clustered using MCL (Dongen, 2000),

an off-the-shelf graph clustering method, to obtain groups represent-

ing a mapping of contigs to genes.

2.2.1 Equivalence classes

Grouper uses the idea of fragment equivalence classes to estimate

similarity between two fragments or contigs. Similar notions of

equivalence classes have previously been defined and used for mul-

tiple purposes (Nicolae et al., 2011; Patro et al., 2017; Salzman

et al., 2011; Turro et al., 2011). We define an equivalence class over

a set of fragments on the basis of the transcripts to which the frag-

ments map. Fragments fi and fj belong to the same equivalence class

if M fið Þ ¼ M fj

� �
, where M fið Þ is the set of transcripts to which

fragment fi maps, and M fj

� �
is the set of transcripts to which fj

maps. Each equivalence class also has an associated count that is

simply the number of equivalent fragments it contains.

2.2.2 Graph construction

Salmon generates a set of equivalence classes, x ¼ x1;x2; . . .. Using

these, we define the mapping ambiguity graph, G ¼ hV;Ei, as fol-

lows: V is the set of distinct contigs, C, which are the result of the de

novo assembly and an edge, eij 2 E, connects two contigs, ci; cj 2 C,

if they are in the same equivalence class. The weight of each edge,

wij, is proportional to the total number of reads mapping to both the

contigs ci and cj and is inversely proportional to the total number of

reads mapping individually to each of the contigs. We calculate wij,

weight of edge eij, as detailed in Equation (1). In this equation, we

show the appearance of a transcript ci in an equivalence class x‘ as

ci � lab x‘ð Þ. A pair of transcripts can appear in different equiva-

lence classes, and in combination with several sets of varying con-

tigs, and hence can contribute to multiple edge weight calculations.

With equivalence classes in hand after read mapping, we use the

equivalence class counts to calculate the total number of reads com-

ing from a contig as all the reads assigned to a class have been

mapped to all the contigs representing that equivalence class during

the mapping process.

wij ¼
Nij

min Ni;Nj

� � ; where

Ni ¼
X

x‘ j
fcig�lab x‘ð Þ

count x‘ð Þ

Nj ¼
X

x‘ jfcig�lab x‘ð Þ
count x‘ð Þ

Ni;j ¼
X

x‘ jfci ;cjg�lab x‘ð Þ
count x‘ð Þ:

(1)

2.2.3 Filtering

After constructing the mapping ambiguity graph, we apply two

main filters, adopted from Corset (Davidson and Oshlack, 2014),

before clustering it. In the first step, we remove a node and all its

connections from the graph if the total number of reads mapping to

the representative contig in all the samples is fewer than 10. This

reduces the noise in the graph since, based on the number of map-

ping reads, such a node will have highly weighted edges connecting

it to neighbor nodes but is probably a short or misassembled contig.

The second filtering step uses quantification information provided

by Salmon to reduce the number of edges between contigs that have

a similar sequence but significantly varying expression estimates

across conditions and are, therefore, unlikely to be from the same

underlying gene. This filter helps remove contigs that likely origi-

nated from paralogous genes and cannot be separated based only on

the sequence. Specifically, the filter performs a likelihood ratio test,

where the likelihood values are calculated as detailed in Equations

S1, S2 and edges with value 2 ‘1 � ‘0ð Þ > 20 are removed from the

graph.

2.2.4 Orphan reads

The first optional filter in Grouper adds edges to the mapping ambi-

guity graph using information from orphan reads. In a paired-end

sequencing run, the output is a series of reads such that each pair of

reads is sequenced from a single fragment that originated from the

same transcript. Hence, these reads should ideally map to a single

contig in the assembly. However, there are cases where one end of

the read is mapped to one contig and the other end to a different

contig. We call such reads as orphans, as their parent contig is not

unique or identifiable. These can occur due to two main reasons.

The first is (adversarial) sequencing error, which makes it impossible

to correctly identify the original source of the read. The second is

misassembled or broken contigs, which are a common artifact of the

de novo assembly procedure. Since orphan reads provide extra infor-

mation about which contigs hypothetically originate from the same

transcript, we use these reads to join contigs in the underlying map-

ping ambiguity graph by adding an edge between the two contigs in

if they share a pair of orphan reads between them. The edge is only

added if the absolute value of the ratio of the expression (TPMs) of

the two contigs, calculated by Salmon, is less than 2. This reduces

the number of false positives in the clustering method, since orphan

reads can be caused by errors in the sequencing methodology, or

could falsely join together two contigs from distinct transcripts or

related genes. Adding an edge in this way helps improve the recall of

Grouper over other methods.
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2.2.5 Min-cut filter

The second optional filter uses the likelihood ratio test based on the

quantification information, as explained above, but instead of sim-

ply removing the edge between the contigs, a min-cut is performed

on the graph to completely separate the two contigs into disjoint

subsets of the graph. This ensures that in the final graph clustering

step, the two contigs are not put into the same cluster based on a

longer path joining them. Based on the de novo assembly, this min-

cut can improve the accuracy of downstream differential expression

tests. However, depending on the complexity of the underlying

graph structure, this can take a long time to run and is therefore op-

tional. (We note that we have not attempted to optimize the algo-

rithm used to perform the min-cut, and that it is likely that this

process can be made considerably faster.)

2.3 Labeling
The labeling module (Supplementary Fig. S2) is best considered as a

method capable of ‘boosting’ an initial set of annotations by

accounting for expression and sequence similarities within the de

novo assembly rather than being a complete annotation pipeline.

Graph-based methods have previously been used to transfer infor-

mation in biological data as well (Libbrecht et al., 2015).

Furthermore, this module not only boosts annotation quality, but

also uses these annotations to improve contig-level clustering, which

can lead to more accurate differential analysis results. We begin by

labeling nodes of the mapping ambiguity graph, G. This is done by

mapping the annotations from a closely related species to the contigs

in the de novo assembly, using a traditional approach, such as a

BLAST search (Altschul et al., 1990). Subsequently, a graph-based

semi-supervised learning method for label propagation is used to

transfer these initial annotations to unannotated nodes in the graph.

For this purpose, we use the adsorption algorithm, which relies on

random walks through the graph and has been used to efficiently

propagate information through a variety of graphs in its various

applications (Baluja et al., 2008). On top of this label propagation,

we build an iterative algorithm to modify the topology and edge

weights in the graph based on the current labeling. This process is

repeated until the topology of the graph converges. The final result of

our approach is a collection of annotations for the contigs in the de

novo assembly and a graph that best represents the relationship be-

tween these contigs based on the available sequence and annotation

information, which can then be clustered, as before, using MCL.

2.3.1 Initial annotation

The initial labeling can be passed to this step in two formats. Take A

to be the set of contigs from the de novo assembly, and B the set of

annotated transcripts from the related species. The first is a simple

mapping from A to B. The second format consists of two separate

files where the first file contains results from a nucleotide BLAST of

the de novo assembly of the test species against the database con-

structed using the annotated reference from the related species and

vice-versa in the second file. Hence, the first file contains a mapping

from A to B and the second from B to A. In the latter case, the two

BLAST files are sorted using the bit score, with ties being broken by

the e-value and contigs are given their corresponding consensus

label, with a probability value proportional to the length of overlap

between the sequences. The contig is not labeled if no consensus

exists, i.e. if the best hit in A! B is not the same as the best hit in B

! A. This labeling and the mapping ambiguity graph are passed to

the labeling module and it proceeds executing, iteratively, the steps

of its algorithm. In the description of the algorithm, we use the fol-

lowing notation:

• Gt ¼ V;Etð Þ is the mapping ambiguity graph at the tth iteration
• Et is the edge set at the tth iteration
• e 2 Et is an edge from Et and is an un-ordered pair

fu; vgju; v 2 V

2.3.2 Edge manipulation

After labeling contigs, edges in the graph are changed, iteratively, in

two ways based on the shared labels and edge weights from the prior

iterations of the algorithm:

1. Let tþ1 denote the current iteration of the algorithm, and let

e ¼ fu; vg 2 Et be an edge in the set Et of edges. The weight of e,

denoted as w eð Þ, can be updated if there are labels common be-

tween two contigs sharing an edge and is calculated as

1� að Þ �w e0
� �� �

þ a �
P

l2L pl
1 � pl

2

� �� �
. Here, a is set to 0.8 for

our tests, w e0
� �

is the original edge weight in the input graph

(i.e. G0) and p1, p2 are probabilities of each contig having a label

l from the set of shared labels, L. We chose a value for a based

on the species we tested against and show that depending on the

proximity of the annotated species to the test species, the effect

of this value varies. For species that are more distantly related to

the test species, smaller values of a give better results, since the

labels obtained using sequences may not be accurate but are ini-

tialized with a probability of 1.0 by default, unless the user

specifies other values as input.

2. New edges are added to the graph in cases where two contigs

share a label with high probability, but do not have an edge be-

tween them. The new edge weight is calculated in the same way

as above. However, instead of the original edge weight w e0
� �

(since no edge originally existed), we instead use the median of

the edge weights connecting the two vertices to their neighbors in

the graph. The edge is only added if the joint probability of shared

labels is greater than 0.9. This threshold is chosen to avoid adding

a large number of false edges, especially in the first iteration when

a majority of labels are likely assigned a probability of 1.0.

2.3.3 Label propagation

Using results from BLAST, a portion of the contigs in the mapping

ambiguity graph are labeled. The graph-based, semi-supervised

learning algorithm, adsorption (Baluja et al., 2008) [we use the im-

plementation from the Junto library (Talukdar and Pereira, 2010)],

is used to extend these labels to contigs that have a large number of

overlapping mapped reads and, therefore, an edge between them in

the graph. The algorithm works by taking random walks through

the graph carrying label information. This information is propa-

gated based on three probabilities associated with each node: pinj,

the probability of stopping the current random walk and emitting a

new label, pabnd, the probability of completely abandoning the walk

and pcont, the probability of continuing the random walk with the

current label.

We do not run the label propagation algorithm until conver-

gence, since we wish to utilize information at each iteration to up-

date the graph and change the edges. Due to this, labels from the

current node are only propagated to all highly connected neighbors,

reducing the number of false positives as well. At the end of label

propagation, each label associated with a contig has a weight in the

range 0; 1ð �, and each contig may have up to a maximum of three

labels (a limitation of the implementation of the adsorption algo-

rithm we adopt). Once the topology of the graph converges,
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we cluster it as before. The convergence criteria we set in this case is

that the number of edges added in the current iteration is less than

or equal to 5% of those added in the previous iteration. The final it-

eration step also outputs a partial mapping from contigs in the de

novo assembly to transcripts or genes in the related annotated spe-

cies. Hence, the clusters represent a putative contig-to-gene level

mapping and each cluster can be assigned a gene label based on the

label for the majority of contigs in the cluster.

3 Results

3.1 Test setup
To analyze the performance of different modules in Grouper, we

ran the tool on datasets from four different organisms, varying in

complexity and genome size. We consider datasets from human,

mouse and yeast. To check for the effect of assembly quality, we

tested our tool assemblies generated using Trinity (Grabherr et al.,

2011) as well as with the reference transcriptomes of each organism

(the latter experiments acting as an upper bound of how we expect

the method might perform as the de novo assemblies become more

accurate and complete). We also included a plant species, Asian rice,

in the analysis to show the ability of Grouper to process data con-

taining many transcripts with high sequence similarity. Over the

four datasets, we compared the clusters produced by Grouper

against those predicted by the contig clustering method, Corset

(Davidson and Oshlack, 2014). All results include those from the ori-

ginal Grouper algorithm, as well as those with the optional filters

applied. We shall refer to the base algorithm as Grouper, which is

adapted from RapClust (Srivastava et al., 2016) and uses only the read

counts to filter contigs and edges, Grouper (O) refers to the results of

Grouper considering the orphan read pairs, and Grouper (OþM)

refers to results after applying both the optional post-processing steps,

adding edges using orphan reads and performing min-cuts on the graph

using read counts. Details of the datasets and parameters used to run

the tools are provided in the Supplementary Material.

3.2 Grouper increases the accuracy and speed of

clustering
To calculate the accuracy of the clusters produced by different

methods, we first mapped reads using Salmon (Patro et al., 2017)

(for Grouper) and aligned reads using Bowtie (Langmead, 2010)

(for Corset). This step was done with both the assemblies generated

by Trinity and the annotated reference transcriptomes. Since the

‘true’ clusters in the former case were generated using BLAST (see

Section 2), they are not guaranteed to be free of errors. To account

for this, we ran the same tests on the reference transcriptomes,

where the truth was obtained from the annotated genomes. This re-

sult suggests how these clustering methods may perform as the qual-

ity of the assemblies improves. In both cases, a true positive is

counted if two contigs in the same cluster have the same ‘true’ gene

label and a false positive if they do not. Conversely, a false negative

is counted if two contigs that have the same label under the truth are

put in separate groups by the clustering method.

The results from the de novo assemblies are shown in Figure 2a.

Looking at the F1 scores, Grouper performs consistently better than

Corset, particularly with the inclusion of the two additional filters.

In general, Grouper clusters have higher recall but slightly lower

precision than those predicted by Corset. Although the optional fil-

ters in Grouper do not make a large difference in the accuracy of the

clusters, depending on the size of the dataset, we recommend using

them since minor differences in the clusters can lead to varying dif-

ferential expression calls. The total number of contigs clustered in

each case does not vary significantly, as shown on the left panel in

Supplementary Table S1, except in the case of the human dataset

where Grouper clusters a much larger number of contigs. In our

experiments, both Grouper and Corset were told to ignore contigs

with fewer than 10 reads mapping to them (the default parameter in

both tools). However, since both methods use different quantifica-

tion pipelines, the overall percentage of reads mapped by Salmon is

much higher, as shown in Table 1. Therefore, within the variants of

Grouper, only a few extra contigs are included in the graph when

considering counts from orphan reads.

To demonstrate the effect of transcriptome assembly methods on

the accuracy of the clusters produced, we repeated the same tests on

the original transcriptomes (results presented in Fig. 2b). In the case

of human, mouse and rice, Grouper performs better than Corset in

terms of both precision and recall. For the yeast dataset, Grouper

performs slightly worse. However, it is important to notice that

Grouper clusters 6725 contigs, whereas Corset clusters only 3592,

as shown in the right panel of Supplementary Table S2. Hence,

Grouper discards fewer reads (Table 1), and therefore contigs, while

Fig. 2. Accuracy results: The precision, recall and F1 scores using different clustering approaches on de novo assemblies (a) and reference transcriptomes

(b) from the test species
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maintaining the accuracy of the resulting clusters. The better accur-

acy of clusters produced by Grouper, especially in the case of the

human and mouse datasets, show that as transcriptome assembly

methods improve, the Grouper algorithm may have the ability to

perform significantly better than existing contig clustering tools.

This, we believe, may also reduce the need for the additional filters.

The time, in seconds, taken for each clustering method is reported

in Table 2 and the memory usage in Supplementary Table S3. On the

de novo assemblies, all variants of Grouper are considerably faster

than Corset, taking a few minutes at most to process the input data

and generate clusters. This is also true for the tests using reference

transcripomes, except in the case of human when both the optional fil-

ters are enabled. The large runtime on this dataset is due to the com-

putational complexity of repeatedly performing min-cut on the large

(and denser) mapping ambiguity graph. The results in Table 2 repre-

sents only the time needed for the clustering component of the tools.

However, the complete pipeline also includes aligning reads against

the input reference sequence. Corset takes as input an alignment BAM

file, generated using Bowtie, whereas Grouper takes as input the

equivalence classes generated by Salmon. We report times for running

these two tools on the raw RNA-seq reads in Supplementary Table

S4. Salmon is able to map and quantify reads within minutes, whereas

Bowtie can take up to a few hours. Overall, the Salmon and Grouper

pipeline takes only a few minutes to process the sequencing data and

generate clusters.

3.3 Accuracy in detecting differentially expressed genes
Transcriptome assembly methods tend to produce incomplete or

fractured contigs that eventually confound downstream differential

expression tests. Hence, it is important that the clusters produced by

processing the assembled contigs approximate the actual gene-level

expression estimates. To test this, we perform differential expression

analysis on the clusters generated by the different methods. Each

cluster is given a gene label, which is obtained by taking the contig-

to-gene mapping and labeling a cluster with the most frequently

occurring gene label among its constituent contigs. Cluster-level ex-

pression estimates for Corset are provided as output by the tool it-

self, and for Grouper, are obtained using the R package, tximport

(Love et al., 2017), to sum read counts provided by Salmon to the

cluster level. Then, Limma Voom (Law et al., 2014) is used to obtain

corrected P-values for the hypothesis that each cluster is differential-

ly expressed, calling genes with corrected P-value less than or equal

to 0.05 as differentially expressed. The same procedure, using

counts from Salmon or RSEM (Li and Dewey, 2011), was repeated

for the ‘true’ clustering to obtain ground truth.

We repeated this test on the human and yeast datasets, where we

had RNA-seq samples under varying conditions. Note that the other

datasets only include samples from a single condition, and therefore

cannot be used for differential expression analysis. The results from

this analysis are presented in Figure 3, and in Supplementary

Figure S3. The curve represents the accuracy of the different meth-

ods. In the human dataset, the different variants of Grouper perform

similarly to Corset, though they exhibit a slightly lower AUC. On

the other hand, in the yeast dataset, Grouper variants perform con-

siderably better than Corset, performing almost 1.25 times better

when run with both the optional filters. This shows that Grouper

consistently generates good clusters, not just in terms of the accuracy

of the actual clustering, but also in terms of downstream analysis

performed on them. Interestingly, this test also shows that the accur-

acy of the clustering itself is not immediately or proportionally

reflected in differential gene expression testing accuracy (at least

under the testing scheme used here).

3.4 Combining information from annotated

transcriptomes
For a meaningful interpretation of differential expression analyses,

there needs to be some notion of which genes are represented by the

individual contigs. Often, we have annotated genomes from species

that are closely related to the non-model organism assembled.

Information from this annotation can be harvested to accurately an-

notate contigs from the de novo assembly. Traditionally, variants of

BLAST are used to transfer these annotations. Corset also provides

a method for transferring annotations by aligning reads against the

annotated transcriptome and processing all the alignment files to-

gether. We provide a labeling module in Grouper that allows for ef-

ficiently transferring annotations to the de novo assembly and then

Table 1. Percentage of reads aligned by each method on the de

novo assemblies and the reference transcriptomes

De novo assemblies Transcriptomes

Bowtie Salmon Bowtie Salmon

Human 86.34 95.76 86.99 94.72

Yeast 66.48 97.84 56.47 87.99

Mouse 30.74 86.01 88.2 85.98

Rice 82.28 92.36 79.45 83.8

Table 2. Clustering time of each method using the de novo assemblies and the reference transcriptomes (in seconds)

De novo assembly Transcriptome

Corset Grouper Grouper (O) Grouper (OþM) Corset Grouper Grouper (O) Grouper (OþM)

Human 902.19 50.49 100.93 269.99 24479.29 154.46 296.62 549160.99

Yeast 167.8 1.92 8.67 11.28 234.6 3.23 10.07 33.06

Mouse 348.91 14.31 46.12 46.12 503.54 27.65 52.65 52.65

Rice 234.96 37.02 74.85 74.85 259.93 12.11 24.95 24.95

(a) (b)

Fig. 3. DGE results: The curve represents the accuracy (true positives against

false positives) of calling differentially expressed genes using Salmon counts

as ground truth, represented by the clusters generated by each method in the

human (a) and yeast (b) datasets
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propagating them through the mapping ambiguity graph to eventu-

ally annotate a larger number of contigs.

We compare our results against results from Corset, BLAST

using all the contigs in the assembly, BLAST using only the contigs

that have greater than 10 reads mapping to them, and Trinotate

(Haas et al., 2013), using both nucleotide and protein level BLAST

against the SwissProt database. Since there is no obvious and com-

plete mapping between the contigs and annotations from the related

species, we choose to compare the different methods based on their

ability to give contigs from a single gene the same label and, in turn,

cluster them together for down-stream analyses. We did the analysis

using an annotated, closely related genome for the human, mouse,

and Asian rice datasets. Annotated genomes used were from gibbon,

ratand red rice, respectively. The results, presented in Figure 4, show

that although precision of the clusters generated by the labeling

module in Grouper is slightly lower than the next-best method, the

gain in recall is significantly higher, resulting in clusters with higher

overall F1 scores.

In addition to being accurate, Grouper assigns annotations to a

greater number of contigs than simply using BLAST. This is a bene-

fit of the label propagation step which, in each iteration, makes use

of the previous information to continue labeling connected compo-

nents in the graph. This means that some of the previously unanno-

tated contigs, which could not be annotated on the basis of sequence

similarity alone, are labeled by the end of the iterative process. In

this way, Grouper is able to assign annotations to 2325, 4957 and

3655 extra contigs in human, mouse and rice assemblies, respective-

ly. The larger number of annotations could be helpful in down-

stream analyses for specific genes. On the other hand, Corset does

not directly label contigs in the de novo assembly but adds the anno-

tated transcripts in clusters along with them. This cluster-level infor-

mation can then be used to infer annotations, which adds to the

complexity of the pipeline.

Along with producing more complete and accurate annotations,

Grouper is also much faster than the other tools, as shown in

Table 3. The time taken for Grouper includes the time to run

Salmon (which generates contig-level abundance estimates), to

generate equivalence classes, to construct the mapping ambiguity

graph, to run BLAST to generate the initial contig labels and then to

propagate the labels, alter the graph topology and cluster the con-

tigs. Similarly, Corset timing includes time to align reads in each

sample against the reference. Grouper takes 20 min in human, with

a total of 23.2 million reads across six samples and 107 389 contigs

in the de novo assembly. The other species take less than 15 min,

with a total of 10.5 million reads and 75 727 contigs in mouse and 8

million reads and 99 745 contigs in rice. In comparison, the other

tools take several hours to run on these datasets.

4 Discussion

The analysis of transcriptomic profiles via RNA-seq remains a

challenge especially when the organism being assayed lacks a

high-quality reference transcriptome. Considerable progress has

been made in terms of both the sequencing technologies available

(providing higher depth and higher quality read information) and

the computational approaches used to reconstruct the underlying

transcriptome from the output of these sequencing experiments.

Yet, even the best available assembly approaches often yield incom-

plete (and sometimes incorrect) transcript sequences. The fractured

nature of these assemblies complicates downstream analyses, such

as differential expression analysis, and results in spurious false-

positive calls, as well as a loss of statistical power in terms of genes

that can truly be identified to be differentially expressed.

Following the general framework originally laid-out by

Davidson and Oshlack (2014), we introduce Grouper, a tool for

processing de novo transcriptomic data that groups together

assembled contigs into putative genes based on evidence of shared

sequence. These putative genes can then be more accurately and sta-

bly quantified. We cast this problem of determining transcript

groups as one of clustering a mapping ambiguity graph, that we con-

struct using multi-mapping read information. We introduce useful

heuristics for both filtering this graph (to remove likely spurious

edges), and for augmenting this graph with information obtained

from orphan mappings that likely result from the incomplete nature

of the underlying assembly. We demonstrate that this clustering

problem can be solved efficiently and accurately, and that treating

the resulting clusters as putative genes can lead to biologically mean-

ingful analyses.

Simultaneously, we also introduce a novel, graph-based ap-

proach for annotating the transcripts in a de novo assembly using in-

formation from related organisms. Rather than relying only on the

sequence similarity between the two references, we also make use of

the mapping ambiguity graph that provides evidence of the sequence

similarity of the contigs within the assembly. We initially label a

subset of the contigs (nodes in the graph) with high-confidence

labels transferred from a related organism. Then we take advantage

of the graph structure by applying a semi-supervised label propaga-

tion algorithm (Talukdar and Pereira, 2010), to propagate gene

Fig. 4. Accuracy results: The precision, recall and F1 scores from different

annotations methods on the human genome using the gibbon as a closely

related annotated species (a), on the mouse dataset using the rat genome (b),

and the Asian rice dataset using the red rice genome (c). Note: HE BLAST

refers to using BLAST to annotate only the contigs that have more than 10

reads mapping to them, as quantified by Salmon

Table 3. Total time (in minutes) for each pipeline used to annotate

contigs in a de novo assembly

Corset Trinotate (nucl.) Trinotate (prot.) Grouper

Human 513.28 2356.13 781.56 20.85

Mouse 272.88 1616.01 498.3 10.23

Rice 208.79 983.37 424.02 11.19

Note: Note that these results include alignment and quantification times, as

well as the clustering time, for Grouper and Corset.
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labels among highly related contigs within the assembly. We demon-

strate that, when labeling information from related organisms is

included, the labeling scheme that relies on the graph-based label

propagation approach moderately outperforms other approaches,

measured by the quality of the resulting clusters (Fig. 4). Thus, we

show that Grouper provides an accurate and efficient way to im-

prove the quality of de novo transcriptome analysis by allowing the

aggregation of contigs into biologically meaningful groups (putative

genes), and that it can effectively make use of related transcriptomes

when available. Given its relatively modest computational overhead,

we believe that Grouper can become a popular tool to help tackle

some of the difficult tasks faced in de novo transcriptome analysis.

While Grouper performs well in our tests, and is able to cluster

and annotate contigs from de novo assemblies efficiently, there is

clearly a limit to the accuracy it can obtain based on the quality and

completeness of the underlying de novo assembly. This is demon-

strated in Figure 2, where we see considerably improved perform-

ance of Grouper (and Corset) when they are provided with the

reference assemblies as input. The results of this analysis suggest

that a major limiting factor in improving performance is actually the

quality of the de novo assemblies being produced. While de novo

transcriptome assembly is known to be a very challenging problem,

progress is nonetheless being made both in terms of the computa-

tional approaches being developed and in terms of the biotechnolo-

gies being brought to bear on the problem. In the future, we are

interested in incorporating into Grouper the evidence that can be

provided by long read transcriptome sequencing (e.g. by PacBio Iso-

Seq or nanopore’s direct RNA-sequencing technology). While these

technologies often do not obtain the same depth of coverage as trad-

itional RNA-seq, and therefore are less likely to sequence rare iso-

forms, they nonetheless provide high-quality structural information

about the expressed transcripts, and we anticipate that such data

will be able to provide information about the ‘backbone’ gene struc-

ture by which shorter contigs can be grouped. As the quality of the

assemblies improve, we also suggest using Grouper without the add-

itional filters that incorporate information from orphan reads.
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