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Abstract

Motivation: Bioinformatics studies often rely on similarity measures between sequence pairs,

which often pose a bottleneck in large-scale sequence analysis.

Results: Here, we present a new convolutional kernel function for protein sequences called the

Lempel-Ziv-Welch (LZW)-Kernel. It is based on code words identified with the LZW universal text

compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always

provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs)

in classification problems, contrary to normalized compression distance, which often violates the

distance metric properties in practice and requires further techniques to be used with SVMs. The

LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications.

Our experimental studies on remote protein homology detection and protein classification tasks re-

veal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK)

and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the

time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with Basic

Local Alignment Search Tool (BLAST) scores, which indicates that the LZW code words might be a

better basis for similarity measures than local alignment approximations found with BLAST. In add-

ition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based

SAM and Fisher kernel and protein family based PSI-BLAST, among others. Further advantages in-

clude the LZW-Kernel’s reliance on a simple idea, its ease of implementation, and its high speed,

three times faster than BLAST and several magnitudes faster than SW or LAK in our tests.

Availability and implementation: LZW-Kernel is implemented as a standalone C code and is a free

open-source program distributed under GPLv3 license and can be downloaded from https://github.

com/kfattila/LZW-Kernel.

Contact: akerteszfarkas@hse.ru

Supplementary information: Supplementary data are available at Bioinformatics Online.

1 Introduction

Over the last two decades, two interesting alignment-free

approaches have emerged for protein sequence comparison. The

first one builds on the universal compressibility of sequences and is

widely used for clustering (Cilibrasi and Vitanyi, 2005) or

phylogeny (Li et al., 2001). The second approach aims at building

novel discrete kernel functions that could directly be plugged into

Support Vector Machines (SVMs) for discriminative protein
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sequence classification or protein homology detection (Haussler,

1999; Jaakkola et al., 1999).
The interest in normalized compression distance (NCD) methods

was fostered by Ming Li et al.’s seminal paper (Li et al., 2001), in

which they applied the GenCompress algorithm to estimate the dis-

tance between mitochondrial genomes. This was followed by an-

other paper (Li et al., 2003), in which they proved that a simple

sequence compressibility index is actually better than n-gram techni-

ques. Soon, NCD appeared in various practical applications includ-

ing protein sequence and structure classification (Ferragina et al.,

2007; Kertész-Farkas et al., 2008a, b; Krasnogor and Pelta, 2004;

Kocsor et al., 2006), language classification (Benedetto et al., 2003;

Li et al., 2003), hierarchical clustering (Cilibrasi and Vitanyi, 2005;

Kraskov et al., 2003), music classification (Cilibrasi et al., 2004)

and clustering fetal heart rate tracings (Santos et al., 2006). The nor-

malized compression-based distance was defined by Cilibrasi and

Vitányi in (Cilibrasi and Vitanyi, 2005) as

NCD x; yð Þ ¼ C xyð Þ �minfC xð Þ;C yð Þg
maxfC xð Þ;C yð Þg ; (1)

where C(x) denotes the length of a compressed string compressed by

a casual text compressor such as zip. One of the most well-known

text compressors is the Lempel–Ziv–Welch (LZW) compressor (Ziv

and Lempel, 1977); it is widely used because it is fast and simple. It

was shown that NCD is a distance metric up to an additive term

O log nð Þ=nð Þ, if the compressor C satisfies the following properties:

Idempotency (C xxð Þ ¼ C xð Þ and C kð Þ ¼ 0, where k is the empty

string), Symmetry (C xyð Þ ¼ C yxð Þ), Monotonicity: (C xyð Þ � C xð Þ)
and Distributivity: (C xyð Þ þ C zð Þ � C xzð Þ þ C yzð Þ) up to an addi-

tive term O log nð Þ, where n is the highest complexity of a string that

appears in the (in)equality (Cilibrasi and Vitanyi, 2005). However,

in practice, NCD violates the metric properties quite often. It was

shown that it is not always symmetric and it violates the triangle in-

equality and the identity of indiscernibles. For more details, we refer

the reader to (Kertész-Farkas et al., 2008a, b).

Kernel functions can be regarded as similarity functions which

have the additional property of always being positive semi-definite

[see (Berg et al., 1984)]. Kernel functions provide a plausible way

to extend linear vector and scalar product-based applications to a

non-linear model while preserving their computational advantages

(Shawe-Taylor and Cristianini, 2004). Furthermore, kernel func-

tions can be directly applied to non-vectorial data like strings, trees

and graphs. For discrete data structures such as strings, trees, or

graphs, Haussler has given a general way to construct new kernel

functions, called convolutional kernels (Haussler, 1999). Basically,

they convolve simpler kernel functions to obtain more complex

ones. The convolutional kernel goes over all possible decomposi-

tions of input structures, which can be intractable in practice. Over

the past two decades, many kernels have been developed for protein

sequence classification, protein homology detection, or protein–pro-

tein interaction detection problems such as the string kernels (Lodhi

et al., 2002), context tree kernels (Cuturi and Vert, 2005), mismatch

kernel (MMK) (Leslie et al., 2004), spectrum kernel (Leslie et al.,

2002), local alignment kernel (LAK) (Vert et al., 2004), Fisher ker-

nel (Jaakkola et al., 1999), pairwise kernel for protein–protein inter-

action prediction (Vert et al., 2007) and support vector kernels

(Dombi and Kertész-Farkas, 2009; Kertész-Farkas et al., 2007) in

combination with SVMs.

The spectrum kernel calculates the scalar products of an

n-gram representation of two sequences; however, it does so with-

out implicitly calculating the actual large dimensional n-gram vec-

tors. This requires O(nN) time, where N is the total length of the

input. MMKs and string kernels further generalize this, as they

allow a certain amount of mismatches (m) or gaps when counting

the common n-mers. The MMK is relatively inexpensive for m and

n values that are practical in applications and for M sequences

each of length k, it has a worst-case complexity of O M2knmlm
� �

,

where l is the size of the alphabet (20 for amino acids and 4 for

nucleotides). Unfortunately, MMK becomes impractical for any

m>1.

The Fisher kernel combines the rich biological information

encoded into a generative hidden Markov model (HMM) with the

discriminative power of the SVM algorithm. However, the training

of HMMs requires lot of data and the Fisher score calculation

requires the dynamic-programming based Viterbi algorithm, which

is quadratic in the sequence length for profile HMMs. Thus, the

Fisher kernel is computationally very expensive in practice (Leslie

et al., 2004).

Sequence alignment methods, such as Smith–Waterman (SW)

and Basic Local Alignment Search Tool (BLAST) are perhaps the

best-performing methods for biological sequence similarity. The

scoring is mainly based on the so-called substitution matrix, e.g.

BLOSUM62 and gap penalties which encode rich biological know-

ledge, where the power of these methods comes. Unfortunately,

these methods are only similarity measures, but not kernel functions;

thus, they cannot be directly used with SVMs (Cristianini

and Shawe-Taylor, 2000). LAK can be considered the kernelized

version of SW. LAK, roughly speaking, summarizes all the local

alignments contrary to SW, which simply uses the best scoring local

alignment. Both methods, LAK and SW, have a polynomial time

complexity O N2
� �

for sequences of total length N.

In this article, we introduce a new convolutional kernel function

for sequence similarity measures called LZW-Kernel, which can be

used with SVMs. It utilizes the LZW compressor to give the best

decomposition of the input sequences x and y; therefore, the convo-

lutional kernel does not need to iterate over all possible decomposi-

tions. Then, roughly speaking, LZW-Kernel calculates a weighted

sum of the common blocks. Because the LZW compression is a sin-

gle pass method, the LZW-Kernel function is also extremely fast.

We note that because the LZW compression is related to the entropy

of the input string, the LZW-Kernel is likely to have an information

theoretic interpretation. This is the topic of one of our ongoing

research.

The LZW-Kernel has more favorable characteristics than NCDs

have. For instance, the normalized LZW-Kernel is always symmet-

ric, is positive valued, always provides 1.0 for identical sequences,

and it can be used directly with SVMs. In contrast, NCDs often vio-

late the metric properties using various compressors, as was shown

in our former work (Kertész-Farkas et al., 2008a, b); moreover,

NCDs cannot be used with SVMs directly because they are neither

positive definite kernels nor similarity functions. Overcoming these

disadvantages of NCDs was our main motivation in developing

LZW-Kernel. While NCD is fast, the LZW-kernel is around 30–

40% faster. In addition, our experimental tests show that the

LZW-Kernel provides better performance on remote protein hom-

ology detection using SVMs than NCDs using LZW compressors

with the SVM-pairwise approach. These facts about LZW-kernel

shows its great advantages compared to NCDs.

In the next section, we formally introduce our new convolutional

kernel. In Section 3, we introduce our testing environment and

describe the datasets and methods we used. This is followed by

Section 4, in which we present and discuss our experimental results.

Finally, we summarize our findings and conclusions in the last

section.
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2 The LZW-Kernel

The LZW text compressor is a one-pass parsing algorithm that

divides a sequence into distinct phrases such that each block is the

shortest string that was not parsed previously. By construction, all

code blocks are different, except maybe the last one. For example,

the LZW compressor parses the string x¼ abbbbaaabba of length

11 only once, produces 6 variable length code blocks—a, b, bb, ba,

aa, bba—and stores them in a dictionary. The input string is

chopped into these code blocks and each is encoded with a fixed

length symbol. Thus, the length of this compressed string is

len C xð Þð Þ ¼ 6. The pseudo code of the LZW compressor can be

found in the Supplementary Material. Note that the string can be

unambiguously reconstructed because LZW is a lossless compressor;

however, we are not interested in compression, but only in the code

blocks identified. LZW assumes that sequences are generated by a

higher but finite order stationary Markov process P over a finite al-

phabet. The entropy of P can be estimated by the formula n�1C xð Þ
log2C xð Þ and the convergence happens almost surely, as the length

of sequence x tends to infinity. In practice, a better compression

ratio can sometimes be achieved by LZW than by Huffman coding

because of this more realistic assumption.

Formally, a symmetric function K :; :ð Þ over X � X is said to be

kernel if for any x1; . . . ; xn 2 X ; c1; . . . ; cn 2 R; n 2 Nþ it satisfies

the following so-called positive definite property:X
i;j

cicjK xi; xj

� �
� 0: (2)

For a given kernel functions k1; . . . ;kD (D>1), the convolutional

kernel is defined as

K x; yð Þ ¼
X

x1 . . . xD ¼ x
y1 . . . yD ¼ y

YD
d¼1

Kd xd; ydð Þ; (3)

where x1 . . . xD ¼ x denotes the decomposition of object x 2 X into

D distinct sub-parts. The proof that convolutional kernels are indeed

kernel functions can be found in Haussler’s article (Haussler, 1999).

First, let us define a kernel function over the code word pairs in

the following way. For any xd and yd code word pair, let kc :; :ð Þ be a

function defined as follows

kc xd; ydð Þ ¼
wd if xd ¼ yd

0 otherwise

(
(4)

where wd > 0 is a positive value that may or may not depend on the

input.

We can show that this function satisfies the conditions of kernel

functions. Let x1; . . . ;xn 2 X be a set of different strings, and c1; . . . ;

cn; ci 2 R a set of constants. Therefore, we haveX
i;j

cicjkc xi;xj

� �
¼
X

i

c2
i kc xi; xið Þ þ

X
i 6¼j

cicjkc xi; xj

� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

¼
X

i

c2
i|{z}
�0

kc xi;xið Þ|fflfflfflfflffl{zfflfflfflfflffl}
wd>0

� 0
(5)

Using this simple kernel function, we are ready to define the

unnormalized LZW kernel ~KLZW :; :ð Þ as follows:

~KLZW x; yð Þ ¼
Y

xd2D xð Þ;yd2D yð Þ
exp ckc xd ; ydð Þð Þ; (6)

where D(x) denotes the set of code blocks identified in x with the

LZW compressor and c > 0 is a scaling factor. It can be shown that

~KLZW is a special case of the convolutional kernels; therefore, it

meets the requirements for being a kernel.

Theoretically, the kernel goes over all the possible code-word

pairs and evaluates kc on each of them. However, for xd 6¼ yd the

code kernel kc xd ; ydð Þ ¼ 0. Therefore, it is enough to identify the

common code blocks in D(x) and D(y) and evaluate kc on those.

This reduces the computational time required.

The un-normalized kernel above suffers from length-dependency

and will produce larger values for longer sequences, even for unre-

lated sequences where longer and/or more common code blocks can

appear merely by chance. For this reason, we define the normalized

LZW-Kernel as follows:

KLZW x; yð Þ ¼
~KLZW x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~KLZW x;xð Þ ~KLZW y; yð Þ
q

¼ exp c
X

xd2D xð Þ\D yð Þ
wd �

1

2
c

X
xd2D xð Þ

wd þ
X

yd2D yð Þ
wd

0
@

1
A

8<
:

9=
;

(7)

If we define wd¼1, then KLZW will be related to number of the com-

mon code blocks normalized by the length of the compressed

sequences. If we define wd ¼ jxdj as the length of the code blocks,

then KLZW is proportional to the length of the common code blocks

normalized by the length of the input sequences. We introduced the

c parameter as a scaling factor merely so that the exp will not under-

flow for large negative arguments. In our experiments, we defined c
as the reciprocal of the average size of the code word dictionaries

and we defined wds by the length of the code words. The normalized

LZW-Kernel is always symmetric, is positive-valued in the range

[0, 1] and always provides 1.0 for identical sequences. The imple-

mentation of the LZW-Kernel is simple; it takes only 188 lines of

code in standard C (including comments).

Now, we discuss the time-complexity of the LZW-Kernel. The

code dictionary construction requires parsing the input string only

once. Therefore, for a sequence of length n, it takes O(n) and

the code words can be stored in prefix trees. The common code

words can be identified via simultaneously traversing the common

branches of the corresponding code trees. Counting the number of

common entries is linear in the minimal size of the dictionaries. This

procedure takes O n= loga nð Þð Þ time for two protein sequences of a

length of at most n [See the upper bound for the dictionary size in

(Cover and Thomas, 2006, Lemma 13.5.3)], where a denotes the

size of the alphabet. Hence, the total time required to calculate the

kernel matrix for M sequences with average length n is given by

O nMþM2n= loga nð Þ
� �

.

The LZW compressor implicitly defines a vector representation

for an input string. Let C be a set of all possible finite code words

that can be identified in a set of sequences T. Therefore, any se-

quence x 2 T can be represented by a binary vector where compo-

nents are indexed with code words and indicate the presence of the

given code word in x. This may look like an n-gram representation;

however, the main advantage of the LZW compressor against n-

gram techniques is that LZW carefully chooses the code words

which are related to the entropy of the input string avoiding large di-

mensional sparse representations. However, n-gram techniques

often explicitly define large dimensional vector spaces that grow ex-

ponentially in n and redundantly count sub-strings. In our opinion,

this is one of the reasons why LZW-Kernel outperforms the n-gram

based methods.

In our experiments, we defined the weights wds with the length

of the corresponding code words in Equation (4). However, before

the SVM classification, these kernel weights could be learned
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directly from the training data in the following way, for instance.

Consider T ¼ f x ið Þ; y ið Þ� �
gN

i¼1 as a training set, where x ið Þ denotes

the binary vector of sequence (i) constructed as described in the pre-

vious paragraph and y ið Þ 2 f0; 1g denotes the class label. Now, ap-

propriate weights would be those that maximize
P

x ið Þ :y ið Þ¼1 wTx ið Þ

for positive sequences and minimize
P

x ið Þ :y ið Þ¼0 wTx ið Þ for negative

sequences, where vector w is formed from the weights wd. This can

be achieved by maximizing the likelihood Pw xð Þ ¼ r wTx
� �

for posi-

tive and minimizing the likelihood Pw xð Þ ¼ r wTx
� �

for negative

sequences, where r tð Þ ¼ 1= 1þ e�tð Þ is the sigmoid function. The

weights can be found via Maximum Likelihood Estimation by solv-

ing the following convex optimization problem:

~w  argmaxwf
1

jSj
X

i:y ið Þ¼1

lnPw x ið Þ
� �

þ 1

jTj
X

i:y ið Þ 6¼1

ln 1� Pw x ið Þ
� �� �

�aX wð Þg;

(8)

where jSj and jTj denotes the number of the positive and negative

training sequences, respectively. This is basically the training pro-

cedure of the regularized logistic regression problem with norm pen-

alty X. After the training, a weight wd � 0 indicates that the

corresponding code word appears among the positive and negative

sequences, hence it does not carry useful information for discrimin-

ation. However, a large positive weight indicates a good representa-

tive code word only for the positive class, while a large negative

weight indicates a good representative code only for the negative

class. The regularization term is also important here. The weight of

a code word that appears exclusively among either positive or nega-

tive sequences, could grow till infinity or until numerical overflow

(whichever happens earlier). Now, if we form a diagonal matrix W

from w, the (unnormalized) weighted LZW-Kernel can be written

as ~KLZW xi; xj

� �
¼ exp Wxið ÞT Wxj

� �� �
¼ exp xT

i WTW
� �

xj

� �
, where

WTW becomes a non-negative valued diagonal matrix whose ele-

ments are w2
d. Thus, the weighting provides a correct kernel function

and optimization is not needed to be constrained to the positive

weight domain. We tried this weight learning approach in our

experiments. Unfortunately, it slightly decreased the performance of

the LZW-Kernel because, in our opinion, the size of the positive

training data is not large enough to obtain adequately accurate

weights.

3 Datasets and methods

For the experimental tests, we used the Protein Classification

Benchmark Collection (PCB; Kertész-Farkas et al., 2007; Sonego

et al., 2007), which was created in order to compare the perform-

ance of machine learning methods and similarity measures. The col-

lection contains datasets of sequences and structures, each sub-

divided into positive/negative training/test sets. Such a sub-division

is called a classification task. Typical tasks include the classification

of structural domains and remote protein homology detection in the

structural classification of proteins (SCOP) and class-architecture-

topology-homology (CATH) databases based on their sequences, as

well as various functional and taxonomic classification tasks on

COG (classification of orthologous protein groups). This data col-

lection is freely available at http://pongor.itk.ppke.hu/benchmark/.

Table 1 lists the summary of the datasets we used in our experi-

ments. At the beginning of each panel, the source and the number of

the sequences are shown. This is followed by the lists of datasets

generated with the number of classification tasks and the average

size of the positive/negative and training/test sets. For instance, the

dataset PCB00001 was created from the 11 953 SCOP protein

sequences and a family within a superfamily was used as positive

test, while the rest of the members of the superfamily were used as a

training set. Sequences outside the superfamily were used as negative

sequences. This provided a total of 246 binary classification tasks.

The datasets marked by ‘5-fold’ were created using the 5-fold cross-

validation technique. For instance, the positive set of PCB00002 was

formed from a superfamily that was randomly divided into training

and test sets, ir-respectively of the families. For more details about

the data, we refer the reader to (Kertész-Farkas et al., 2007).

We also employed a gold standard dataset created by Liao and

Noble (Liao and Noble, 2002) because several baseline methods

have been evaluated on this dataset. These baseline methods include

the hidden Markov model based SAM and Fisher kernel, SVM-

pairwise, protein family-based PSI-BLAST, Family-Pairwise Search

(FPS), etc. This dataset contains 4352 distinct protein sequences

taken from SCOP version 1.53 and organized into 54 classification

tasks. A protein family was designated to a classification task and

treated as a positive test set if it contained at least 10 family mem-

bers and there were at least 5 superfamily members outside of the

family. The protein domain sequences within the same superfamily

but outside of the given family were used as positive training sets.

Negative examples were taken from outside of the family’s fold and

were randomly split into train and test sets in the same ratio as the

positive examples. For further details about this dataset and for the

list of the 54 protein families, see (Liao and Noble, 2002).

For protein sequence comparison, we used SW (Smith and

Waterman, 1981), BLAST (Altschul et al., 1990), compression

based distances (as defined in Equation (1)) using LZW compressor

algorithm, LAK (Vert et al., 2004), MMKs (Leslie et al., 2004) and

normalized Google distance (NGD; Choi et al., 2008). The SW and

the BLAST similarity matrices were downloaded form the bench-

mark datasets. The SW program the part of the Bioinformatics tool-

box 2.0 of Matlab. The BLAST program, version 2.2.13 from the

NCBI, was used with a cut-off parameter value of 25 on the raw

blast score. The LAK program was downloaded from the author’s

homepage (http://members.cbio.mines-paristech.fr/~jvert/software/)

and we used it with scaling factor b ¼ 0:5, as suggested by the

authors (Vert et al., 2004). These alignment-based methods

(BLAST, LAK, SW) were used with the BLOSUM62 substitution

matrix (Henikoff et al., 1999) with gap open and extension parame-

ters equal to 11 and 1, respectively. The MMK program was down-

loaded from the authors’ website at http://cbio.mskcc.org/leslielab/

software/string_kernels.html. The NGD measure for two sequences

x and y is defined as NGD x; yð Þ ¼ maxf
P

wx;
P

wyg�
�P

minfwx;wygÞ=
P

wx þ
P

wy �minf
P

wx;
P

wyg
� �

, where wx is

the n-gram vector of x,
P

wx is the sum of the n-gram vector com-

ponents, and
P

minfwx;wyg is the sum of the minimum of the n-

gram vector components of the two sequences. The NGD program

was taken from the Alfpy python package (Zielezinski et al., 2017).

The word-size (n) parameter was set to 2. Smaller and larger word-

size parameters provided worse performance (data not shown).

The SVM-pairwise approach can exploit any sequence similarity

measure to construct fixed-length numerical vector v for every pro-

tein sequence (Liao and Noble, 2002). In this approach, the compo-

nent vi is a similarity score of the given protein sequence against

protein sequence pi from the training set. Having vectorized the

sequences, casual kernel functions can be used with SVMs. In our

work, the SVM-pairwise methods were used with RBF kernel in

which the sigma parameter was set to mean Euclidean distance from
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any positive training example to the nearest negative example, as

proposed in (Liao and Noble, 2002).

In this work, we used our own implementation of the original

LZW algorithm implemented in C to calculate the LZW-Kernel and

LZW-NCD; they are available at https://github.com/kfattila/LZW-

Kernel.

The protein classification tasks were carried out using an SVM

classifier taken from the python toolbox scikit-learn version

v0.19.1. This SVM was used to carry out the SVM-pairwise method

with RBF kernel, as mentioned above and the SVM classification

with the following kernel functions: LZW-Kernel, MMK and LAK.

All other parameters remained default. Classification performance

was evaluated using ROC analysis and we reported the mean area

under the curve (AUC) averaged over the classification tasks (the

bigger the better).

4 Results and discussions

4.1 Timing
In our first test, we timed the LZW-Kernel, LZW-NCD, NGD,

LAK, MMK and BLAST methods and calculated the pairwise meas-

ures for each method on four sequence sets (SCOP95, CATH95,

COG, SCOPv.1.53) on a PC equipped with 32 GB RAM and

3.2 GHz CPU operating Linux Ubuntu version 16.043. Table 2

shows the timing results. The LZW-based methods were the fastest

in our comparison. This is in fact expected because their time com-

plexity is O jxj þ jyjð Þ proportional to the sum of the length of the se-

quence pair. The MMK is also fast for (k, m)¼(5, 1); however, it

becomes impractically slow for larger mismatch values (m>1).

BLAST and NGD are fast enough for practical applications. The

LAK takes a considerable amount of time to calculate the pairwise

similarity measures. We did not calculate the LAK for the COG

sequences due to computational resource shortage, because we

expected it to take a few months. We note that this time does not in-

clude the time taken for performing classification tasks. The SW

similarity matrices were provided in the benchmark datasets and we

did not recalculate them.

4.2 Classification on PCB
Next, we compared the performance of the LZW-Kernel, LAK and

MMK functions in combination with SVM. The kernel matrices

were calculated beforehand and passed as pre-calculated kernel

functions to the SVM. Table 3 shows the classification performance.

The results indicate that LZW-Kernel always outperforms the

MMK. This is in fact expected, as n-gram models (like MMK) are

outperformed by compression based methods (Li et al., 2003). The

parameters for MMK k;mð Þ ¼ 5; 1ð Þ were suggested by the authors

because this provided the best results for them in their experiments.

Table 1. Statistics of the datasets

Sequence sourcea

Accession ID (Scenario)b #Tasksc Trainþd Testþd Train-d Test-d

SCOP95 v1.69 [from PCB (Sonego et al., 2007): 11 953 sequences]

PCB00001 (Superfamily–Family) 246 390 281 5772 5778

PCB00002 (Superfamily–5-fold) 490 319 80 9236 2309

PCB00003 (Fold–Superfamily) 191 512 394 5717 5716

PCB00004 (Fold–5-fold) 290 414 104 9142 2286

PCB00005 (Class–Fold) 377 1620 512 5107 5196

PCB00006 (Class–5-fold) 35 1312 328 8242 2060

CATH95 [from PCB (Sonego et al., 2007): 11 373 sequences]

PCB00007 (Homology–Similarity) 165 460 64 5488 5422

PCB00008 (Homology–5-fold) 375 372 93 8726 2182

PCB00009 (Topology–Homology) 199 656 460 5393 5317

PCB00010 (Topology–5-fold) 235 529 132 8569 2142

PCB00011 (Architecture–Topology) 297 986 657 5254 5116

PCB00012 (Architecture–5-fold) 95 802 200 9296 2074

PCB00013 (Class–Architecture) 33 2988 983 3799 3684

PCB00014 (Class–5-fold) 15 3112 778 5986 1497

COG [from PCB (Sonego et al., 2007): 17 973 sequences]

PCB00017 (Eukaryotes–Prokaryotes) 117 699 127 1530 1371

PCB00018 (Archea–Kingdoms) 72 67 67 323 322

SCOP v1.53 [from (Liao and Noble, 2002): 4352 sequences]

SCOPv1.53 54 33 16 2917 1351

aThe source, along with the number of the sequences, is shown at the beginning of each panel.
bClassification scenarios marked by ‘5-fold’ were created using the 5-fold cross-validation technique; scenarios marked by group-sub-group relation (i.e.

Superfamily–Family) were created using the supervised cross-validation technique.
cThe number of classification tasks in the given scenario.
dThe average number of protein sequences in the positive/negative and training/test sets, respectively. For more details, see (Kertész-Farkas et al., 2007).

Table 2. Time to calculate pairwise matrices

Dataset SCOPv1.53 SCOP95 CATH95 COG

Number of Sequences 4352 11 953 11 373 17 973

LZW-Kernel 42 s 415 s 344 s 30 m

LZW-NCD 55 s 519 s 504 s 38 m

NGD 165 s 1106 s 1033 s 51 m

LAK 30 h:28 m 22 d 3w n.a.

MMK-(5, 1) 50 s 448 s 344 s 61 m

BLAST 93 s 509 s 510 s 1 h:20 m

Note: s, seconds; m, minutes; h, hours; d, days; w, weeks. Tests were run

on PC equipped with 32 GB RAM and 3.2 GHz CPU operated by linux

Ubuntu version 16.043.
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We also evaluated the MMK with k;mð Þ ¼ 6;1ð Þ; k;mð Þ ¼ 4; 2ð Þ,
and k;mð Þ ¼ 4; 2ð Þ and observed worse results (data not shown).

The LAK outperforms LZW-Kernel and MMK, which in fact can

be expected because LAK, like SW, uses substantial biological informa-

tion encoded into a substitution matrix and in gap penalties. However,

we note that LZW-Kernel approached the performance of LAK in few

classification tasks: PCB0005, PCB0011, PCB00013 and PCB000014.

4.3 On the gold standard
We compared the performance of the LZW-Kernel function to other

baseline methods on the SCOP1.53 gold standard dataset from

(Liao and Noble, 2002). The results of the baseline methods (SAM,

Fisher-kernel, PSI-BLAST, FPS and the SVM-pairwise methods using

SW and BLAST as underlying scoring functions, respectively) were

downloaded from Liao and Noble (Liao and Noble, 2002). In add-

ition, we also ran LAK and MMK on this dataset to obtain a better

picture of their performance relative to the baselines. The results are

shown in Figure 1. They indicate that the LZW-Kernel significantly

outperforms the MMK, Fisher-kernel, the HMM-based SAM and

the protein family-based PSI-BLAST and FPS. The LZW-Kernel

closely approaches (but does not exceed) the performance of ex-

haustive LAK and the SVM-pairwise SW methods; however, it per-

forms at a fraction of a time. Moreover, it is surprising to see

that the LZW-Kernel significantly outperforms the SVM-pairwise

BLAST method. This means that, in our opinion, the common code

words found by the LZW yield a better similarity score than the

local alignments found by BLAST. However, the LZW-Kernel with

SVMs performs just a slightly better than the NGD within the SVM-

pairwise approach. We also compared the performance of the LZW-

Kernel to that of the LZW-NCD measures. To provide a fair basis,

we used these measures within the SVM-pairwise method. Results

shown in Figure 1B indicate that the LZW-Kernel slightly outper-

forms the LZW-NCD measures. In our opinion this is due to the fol-

lowing fact. Consider a scenario in which the LZW compressor

parses a code abc within a string and the next character is x, at

which point LZW adds a new code abcx to its dictionary and let us

assume that abcx does not occur in the string anymore. Then, the

LZW-NCD counts the code word abc only, while the LZW-Kernel

analyzes the corresponding dictionaries and takes into account lon-

ger code blocks as well. We note that, overall, the LZW-Kernel

alone outperformed both the LZW-Kernel and LZW-NCD when

they were used in the SVM-pairwise approach.

4.4 Invariance to rearranged sequences
Protein evolution often includes domain rearrangements such as

gain or loss of domains and circular shifts (Forslund and

Sonnhammer, 2012; Moore et al., 2008). Therefore, the questions

arise of how well the LZW-Kernel can detect such domain rear-

rangements. In order to study this, we used the C1S pre-cursor

(UniProtKB/Swiss-Prot accession: P09871), a multi-domain of 688

residues consisting of a signal peptide (A), two CUB domains (B, B’),

a EGF domain (C), two SUSHI domains (D, D’) and a trypsin-like

catalytic domain (E) that is post-translationally cleaved from the

pre-cursor. The domain architecture of the native protein can be

written as ABCB’DD’E and a hypothetical circular shift can be writ-

ten as DD’EABCB’. The results in Table 4 show how a reshuffling of

the domains affects the LZW-Kernel, LZW-CBD, MMK, NGD,

LAK and SW relative to the C1S sequence itself and to a random

shuffled version of C1S. MMK seems to be quite blind to these do-

main rearrangements, as it can be expected from any amino acid

Table 3. Classification performance of the kernel functions using

SVM on PCB

Accession ID (Scenario) LZW-Kernel MMK-(5, 1) LAK

SCOP95

PCB00001 (Superfamily–Family) 0.7983 0.5011 0.9226

PCB00002 (Superfamily–5-fold) 0.9214 0.7035 0.9910

PCB00003 (Fold–Superfamily) 0.7481 0.5288 0.8266

PCB00004 (Fold–5-fold) 0.8897 0.5998 0.9716

PCB00005 (Class–Fold) 0.7830 0.6123 0.7999

PCB00006 (Class–5-fold) 0.8867 0.6377 0.9479

CATH95

PCB00007 (Homology–Similarity) 0.9595 0.8554 0.9992

PCB00008 (Homology–5-fold) 0.9529 0.8765 0.9924

PCB00009 (Topology–Homology) 0.7716 0.5868 0.8456

PCB00010 (Topology–5-fold) 0.8817 0.7659 0.9683

PCB00011 (Architecture–Topology) 0.7018 0.5747 0.7251

PCB00012 (Architecture–5-fold) 0.8581 0.7405 0.9431

PCB00013 (Class–Architecture) 0.8072 0.6363 0.8338

PCB00014 (Class–5-fold) 0.8697 0.6882 0.9095

COG

PCB00017 (Eukaryotes–Prokaryotes) 0.9399 0.7453 n.a.

PCB00018 (Archea–Kingdom) 0.9114 0.8805 n.a.

Note: Performance is measured in AUC. For details about the classification

scenarios, refer to the main text or Table 1.

Fig. 1. Comparison of LZW-Kernel to the baseline methods on the gold-stand-

ard dataset. Results are shown on two panels to avoid crowding. The plots

show the total number of classification tasks for which a given method

exceeds an AUC score threshold
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composition based measure. Results also suggest that LAK is the

most sensitive to these domain rearrangements. It cannot distinguish

between a totally random sequence and a reversed or circularly

shifted domain order. The SW is moderately sensitive to reverse

order of domains and to circular shift; however, it is totally blind to

sequence duplications. We consider LZW-CBD moderately sensitive

and LZW-Kernel more sensitive to domain rearrangements. We

note that the LZW-Kernel and LAK could be considered somewhat

sensitive to sequence duplication; however, this is mainly due to nor-

malization. The unnormalized LZW-Kernel function yields the same

score of 1178 for (i) self-similarity of C1S protein and (ii) for the

similarity between C1S and its duplicated version; however, (iii) it

yields a low score of 384 when C1S is compared to its randomly

shuffled version. The unnormalized LAK also yields very similar

scores for (i) self-similarity (652.53) and (ii) for C1S and its dupli-

cated version (677.15), but (iii) it yields a poor score (482.87) when

C1S is compared to its randomly shuffled version. The NGD is in-

sensitive to domain circulation and to reversed domain order, but it

seems to be more sensitive to sequence length due to its normaliza-

tion. For instance, the domain duplication causes more changes in

the score then comparing a sequence to its randomly shuffled ver-

sion. Whether insensitivity to domain rearrangement is an advan-

tage or disadvantage depends on the application. We hope this study

will provide a guide to program designers.

4.5 Sequence clustering on the Alfree
We tested LAK, MMK, and our LZW-Kernel method against 38

(mainly alignment-free but including SW) sequence comparison meas-

ures on the Alfree benchmark dataset (Zielezinski et al., 2017) that was

constructed based on the ASTRAL v2.06 dataset (Fox et al., 2013)

from 6569 protein sequences organized into 513 family groups, 282

superfamilies, 219 folds and 4 classes. The clustering ability of the

methods was measured by ROC analysis. The best-performing method

here was the NGD, which achieved 0.760 mean AUC over the four

groups, while SW and LAK achieved 0.720 and 0.758 mean AUC,

respectively. The kernel functions MMK and LZW-Kernel performed

rather poorly here; they achieved 0.637 and 0.645 mean AUC,

respectively. However, if we employ the normalization technique

used by NGD, ~k ¼ � maxð k x; xð Þ;ð k y; yð ÞÞ �min k x; xð Þ; k y; yð Þð ÞÞ=
k x; yð Þ�ð min k x; xð Þ;ð k y; yð ÞÞÞ; then MMK and LZW-kernel achieve

0.723 and 0.739 mean AUC, respectively. Thus, we think the normal-

ization has a key role in this type of evaluation scenario. The LZW-

Kernel would be among the four best and six fastest methods in the

Alfree benchmark dataset. Further details about normalization and tim-

ing results can be found in Supplementary Section S2.

5 Conclusions

In this article, we introduced a new convolutional kernel function,

called LZW-Kernel, for protein sequence classification and remote

protein homology detection. Our kernel function utilizes the code

blocks identified by the universal LZW text-compressors and directly

constructs a kernel function out of them, resulting in better computa-

tional properties than NCD. Therefore, it can be considered a bridge

between the realms of kernel functions and compression based meth-

ods. The LZW-Kernel is extremely fast. In our experimental tests, we

showed that LZW-Kernel can be twice as fast as the MMK, three

times faster than the BLAST and several magnitudes faster than the

dynamic programming based LAK function and the SW method. We

also showed that LZW-Kernel outperforms the amino acid compos-

ition (n-gram) based MMK and the other gold standard methods used

for protein homology detection such as Fisher kernel, the hidden

Markov model based SAM, and the protein family-based methods

such as PSI-BLAST and the FPS methods. It is quite surprising that, at

a fraction of the time, the LZW-Kernel closely approaches the per-

formance of the exhaustive LAK and the SVM-pairwise methods

when the SW method is used as an underlying scoring function during

the feature vector construction. Moreover, LZW-Kernel significantly

outperforms the SVM-pairwise method when it is combined with

BLAST. This is in fact surprising, because these methods use a rich

biological knowledge encoded in the substitution matrix and gap pen-

alties, while LZW-Kernel does not use a substitution matrix and/or

gap penalties.

Finally, we mention that because the LZW-compressor is related

to the entropy of the input string, the LZW-Kernel is likely to have

an information-theoretic interpretation. For example, the symme-

trized Kullback–Leibler divergence is a good candidate to character-

ize our kernel. Numerical simulations with Markov models point in

this direction and a precise mathematical relationship is the topic of

one of our ongoing research projects.
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