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Abstract

Motivation: Machine learning plays a substantial role in bioscience owing to the explosive growth

in sequence data and the challenging application of computational methods. Peptide-recognition

domains (PRDs) are critical as they promote coupled-binding with short peptide-motifs of function-

al importance through transient interactions. It is challenging to build a reliable predictor of

peptide-binding residue in proteins with diverse types of PRDs from protein sequence alone. On

the other hand, it is vital to cope up with the sequencing speed and to broaden the scope of study.

Results: In this paper, we propose a machine-learning-based tool, named PBRpredict, to predict

residues in peptide-binding domains from protein sequence alone. To develop a generic predictor,

we train the models on peptide-binding residues of diverse types of domains. As inputs to the mod-

els, we use a high-dimensional feature set of chemical, structural and evolutionary information

extracted from protein sequence. We carefully investigate six different state-of-the-art classification

algorithms for this application. Finally, we use the stacked generalization approach to non-linearly

combine a set of complementary base-level learners using a meta-level learner which outper-

formed the winner-takes-all approach. The proposed predictor is found competitive based on stat-

istical evaluation.

Availability and implementation: PBRpredict-Suite software: http://cs.uno.edu/~tamjid/Software/

PBRpredict/pbrpredict-suite.zip.

Contact: thoque@uno.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the exponential growth of biological data and the enormous

complexities involved in their modeling, data mining and machine

learning became essential for the modern life science research.

Development of computational tools that can extract patterns from

sequence data for which the true labels can only be determined

through experimental structures is crucial in proteomics. As of June

2017, the RefSeq database (release 82) (Pruitt et al., 2007) of the

National Center for Biotechnology Information (NCBI) contains

725 times more protein sequences than that of structures available

in RCSB Protein Data Bank (PDB) (Berman et al., 2000). Therefore,

prediction of biologically relevant patterns from sequence only

through appropriately mining and modeling the available data using

machine learning algorithms, can produce Supplementary Material

at a faster rate. With a view to the above consideration, in this art-

icle, we attempt to build a stacking approach based ensemble model

(Wolpert, 1992) to predict peptide-binding residues from protein

sequence.

Protein–protein interactions (PPIs) play a key role in the bio-

logical processes as well as pathogenic processes in a living cell. A

major portion of PPIs involve recognition of short peptides by

globular Peptide-Recognition Domain (PRD) that can induce
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binding with peptides and can form transient complexes (London

et al., 2010; Malhis and Gsponer, 2015). Human proteome contains

millions of peptide-motifs that are typically disordered in an un-

bound state and undergo disorder-to-order transition while bound

to appropriate partners. Peptide–protein interactions are involved in

a wide range of molecular activities (Scott and Pawson, 2009;

Toogood, 2002). Moreover, 22% of human disease mutations occur

in disordered regions of proteins with such motifs (Uyar et al.,

2014). The peptide-binding tendency of proteins with different

PRDs can be utilized to scan a proteome to identify the peptide-

motifs that may bind a PRD. Therefore, fast identification of

peptide-binding residues or regions in proteins containing PRDs that

promote transient interactions is a pre-requisite for identifying pep-

tide-motifs and is crucial for assembling peptide-mediated

interactomes.

Computational and experimental techniques have been devel-

oped and used to identify peptide–protein interactions (Chen et al.,

2015; Franceschini et al., 2012; Weatheritt et al., 2012). However,

the problem under consideration of this study is to identify the resi-

due patterns in the protein sequence that can recognize short pepti-

des. Given a protein’s structure, tools have been developed to

predict peptide-binding sites, e.g. Pepsite (Petsalaki et al., 2009),

Peptimap (Lavi et al., 2013), PepBind (Das et al., 2013). However, a

sequence-based approach has further implications as most of the

structures are unavailable. Despite much progress, the sequence-

based computational efforts have been taken to predict a few PRDs,

i.e. MHC molecules (Hoof et al., 2009; Nielsen and Andreatta,

2016). We found one tool in the literature called SPRINT

(Taherzadeh et al., 2016) that predicts peptide-binding sites on mul-

tiple PRDs, i.e. MHC, PDZ, SH2, and SH3 from sequence.

For this study, we collected a set of protein complexes containing

sequences with a wide range of PRDs, like MHC I/II, PDZ, SH2,

SH3, WW, 14-3-3, Chromo and Bromo, Polo-Box, Phospho-

Tyrosine Binding (PTB), Tudor, enzyme inhibitor, antibody-antigen

and others. Using a comprehensive set of sequence-based features,

we model the peptide-binding residue patterns in a variety of PRDs

using a sophisticated ensemble technique, stacked generalization.

The proposed peptide-binding residue predictor is named

PBRpredict. Furthermore, we develop two complementary versions

of the initial model by tuning the classification thresholds, keeping

the other parameters and overall framework the same, to improve

the model’s capacity to recognize potential binding sites. The final

three models are called PBRpredict-strict, PBRpredict-moderate and

PBRpredict-flexible, which are combined in the PBRpredict-Suite.

We carried out rigorous performance evaluations of the developed

models using statistical metrics and case-studies and found the suite

effective in predicting peptide-binding residues from protein

sequence.

2 Experimental setup

In this section, we describe the data preparation steps, including

data collection, definition and annotation of peptide-binding resi-

dues and regions in protein sequence, aggregation of features to en-

code protein residues to identify binding residues and the statistics

used for performance evaluation.

2.1 Data preparation
For this study, we collected a set of globular protein receptors which

were experimentally found to bind with short peptide chains (5–25

residues long) in a complex. We explored PDB to assemble a set of

peptide-protein complex structures using the following criteria: (i)

experimental method: x-ray crystallography; (ii) molecule type: pro-

tein (no DNA, RNA or hybrid); (iii) number of chains (both asym-

metric unit and biological assembly): �2 and (iv) structures with at

least one 5–25-residues long chain. The residues of receptor proteins

that are involved in peptide-binding are then annotated as binding

(‘b’), otherwise as non-binding (‘n’).

Our initial search with above criteria resulted in 6043 protein

complexes which contain in total 25 557 chains. We filtered the

dataset to remove complexes that have one or more subunit chains

with unknown amino acid residues, ‘X’ or ‘Z’, because the necessary

chemical features (Meiler et al., 2001) are not available for these res-

idues. Moreover, a multimeric protein (homomeric and heteromeric)

can contain multiple entries of identical chains. In such cases, we

kept only one unique copy of a chain that maximizes the number of

peptide-binding residues. In the feature generation steps, we used

SPINE-X (Faraggi et al., 2012) to generate predicted values of the

two backbone angles, phi and psi. We removed those chains for

which SPINE-X failed to produce the required features. Finally, we

clustered the remaining sequences at sequence identity below 40%.

From each cluster, a representative sequence with maximum

peptide-binding residues was chosen in the non-redundant dataset of

644 receptor protein chains, named as rcp644, freely available with-

in the software package.

2.1.1 Peptide-recognition domains in the dataset

A wide range of PRDs were included in the rcp644 dataset of recep-

tor chains that mediate peptide–protein interactions, for example,

the major histocompatibility complex (MHC I and II) domain can

recognize peptide fragments derived from the pathogen. The PDZ

domain generally binds to C-terminal peptide-motifs. The Src

Homology 2 (SH2) and PTB domains recognize phosphorylation of

tyrosine (pTyr or pY). The PTB domain can bind to the N-P-x-Y

motif as well. The Src Homology 3 (SH3) domain binds to Pro-rich

motifs and peptide-motifs, such as R-x-x-K. The 14-3-3, WW, Polo-

box, BRCA1 C Terminus (BRCT), forkhead-associated (FHA)

domains recognize different type phosphorylation or post-

translational modifications (PTMs) of threonine (pThr or pT) and

serine (pSer or pS). The chromatin organization modifier (Chromo),

Bromodomain and Tudor domain bind to methylated or acetylated

peptides, such as Tudor domain can recognize PTMs on lysine

(meLys or meK) and arginine (meArg or meR) by methylation.

Chromo domain can also recognize meLys and Bromo domain rec-

ognize PTMs on lysine by acetylation (acLys or acK). The enzyme/

inhibitor complexes with hydrolase, kinase, isomerase, phosphatase,

protease and so on. Further, we included antibody-antigen, amyloid

fibrils, membrane or transmembrane protein and nuclear receptor

complexes in the dataset. The count of sequences with different

domains and the distribution of positive (peptide-binding) and nega-

tive (non-binding) class type residues of those sequences are reported

in Supplementary Table S1.

2.1.2 Training and test sets

The training set is composed of 475 protein chains, named

rcp_tr475. It contains 400 relatively longer chains (25 residues) and

75 shorter chains (25 residues). The set consists of 89 512 residues

of which 12.0% (10 709 residues) were peptide-binding and rests

(78 803) were non-binding residues. The training set was further

divided into 2-folds (243 and 232 chains), in which we included

50% of the sequences with each PRD. These 2-folds were utilized to
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prepare meta-level training set using independent prediction outputs

by base-level models (details in Section 3.2).

The independent test set contains 169 chains, called as

rcp_ts169. It has 146 long chains and 23 short chains. Moreover, it

has a total of 26 977 residues including 5162 (14.1%) peptide-

binding samples (positive) and 21 815 (85.9%) non-binding samples

(negative). The count of sequences with different PRDs included in

the training and test sets is reported in the Supplementary Table S1.

2.2 Data mining and annotation
A putative interaction between two amino acids is determined based

on their atomic distances in the crystal structure. Specifically, we

annotated an amino acid residue as peptide-binding residue if at

least one of its heavy atoms stays within six angstrom distance from

a heavy atom of a peptide residue (Jones and Cozzetto, 2015). To

consider the heavy atoms only, we ignored the hydrogen atoms

while determining interactions. Further, we did not account two ad-

jacent amino acids on the either side of a target residue to skip the

covalent bonded stable interaction and stored only the transient

interaction which was relevant with the induced-binding in a

peptide-protein complex (Malhis and Gsponer, 2015).

After annotating the residues as either peptide-binding (‘b’) or

non-binding (‘n’), we applied a smoothing strategy to have regions

of binding residues. We smoothed-out maximum three-residue long

non-interacting regions that fall within two consecutive interacting

regions or residues. Therefore, we surmise that the resulting regions

are the ‘potential’ areas that contain the residues of interaction. We

call such labeling as synthetic annotation, which was assigned on

top of the actual annotation. With synthetic annotation, the propor-

tion of peptide-binding/non-binding residues in rcp644 dataset

changed from 12.5/87.5 to 17.1/82.9%. Figure 1 shows a sample

synthetic annotation of a chain with PDZ domain (PDB ID: 4JOE).

The rationale behind generating such synthetic annotation is: we

have disjoint residues of interaction with non-interacting residues in

between due to the geometrical orientation of the side chain atoms.

Notwithstanding, it is tedious to capture these 3D structural details

from 1D primary sequence alone and to subsequently guide a ma-

chine learning algorithm. To reduce the complexity, we localized the

binding residues in a region so that the predictor-algorithm can be

better informed about their characteristics from the sequential ar-

rangement. In this way, we have less chance of missing a binding

site as the contiguous residues can reinforce the residue-level as well

as region-level prediction.

2.3 Feature set generation
We encoded the amino acid residues of the primary protein sequence

using 60 features (f) of six groups as described below:

• Residue profile (f1; f60): the residue profile was created with

the amino acid type and the terminal (t) residue indicator.

A total of 20 different amino acids were encoded using 20

numbers. Further, we encoded five residues of N-terminal as

ð�1:0;�0:8;�0:6;�0:4;�0:2Þ and C-terminal as ðþ1:0;þ0:8;

þ0:6;þ0:4;þ0:2Þ, respectively, whereas rest of the residues

were labeled as 0.0. Thus, residue profile contributes two fea-

tures per residue.
• Chemical profile (f2–f8): seven physicochemical properties of

amino acids were collected from Meiler et al. (2001).
• Conservation profile (f9–f28, f37–f57): we executed three itera-

tions of PSI-BLAST (Altschul et al., 1990) against NCBI’s non-

redundant database to generate position specific scoring matrix

(PSSM) of size sequence length�20, which gave us 20 features.

These 1D scores given by PSSM was further extended to higher

dimension by computing monogram (MG, 1 feature) and bigram

(BG, 20 features) (Sharma et al., 2013). We used PSSMs, MG

and BGs as conservation profile to predict peptide-binding

residues.
• Structure profile (f29 – f34): we used six sequence-based predicted

structural properties; three secondary structure (SS) probabilities,

specifically helix (H), beta (B) and coil (C), two backbone angles,

phi (/) and psi (w), and one solvent accessible surface area (ASA)

using tools called MetaSSpred (Islam et al., 2016), REGAd3p

(Iqbal et al., 2015) and SPINE-X (Faraggi et al., 2012),

respectively.
• Flexibility profile (f35 – f36, f58): we created a flexibility profile

with two backbone angle fluctuations, dphi (@/) and dpsi (@w),

and one disorder probability (drp) which were predicted using

DAVAR (Zhang et al., 2010) and DisPredict (Iqbal and Hoque,

2015), respectively. These features are useful to capture the pat-

tern of conformational changes that may result from coupled-

binding between a short peptide and a globular receptor.
• Energy profile (f59): the transient bonds between peptide and re-

ceptor involve formation and dissolution of atomic interactions

that require change in free energy. To capture the state of free en-

ergy contribution of residues, we used Position Specific

Estimated Energy (PSEE) which is computed from protein se-

quence (Iqbal and Hoque, 2016) using the pairwise contact ener-

gies from Miyazawa and Jernigan, 1985 and predicted ASA

(Iqbal et al., 2015).

We further computed the importance of the individual features

and analyzed the contribution of different feature categories in pre-

dicting peptide-binding residues, reported in the Supplementary

Material, Section 4. The outcome suggested that the structural pro-

file, flexibility profile and energy profile are the three most domin-

ant feature categories; however, all the 60 features are useful. Thus,

we used all 60 residue-wise features. Finally, we applied a sliding

window of size 25 centering the target residue to include the proper-

ties of 12 residues on either side of the target, describing the local en-

vironment. Thus, we fed 60� 25 ¼ 1500 features per residue to

train our predictor. The window size was selected through a separ-

ate set of experiments (see the Supplementary Material, Section 5).

Fig. 1. The actual (left) and synthetic (right) annotations of peptide-binding

residues (highlighted) are shown on a protein’s (PDB ID: 4JOE) tertiary struc-

ture (green) bound to a peptide (pink). The binding residues of the two

regions are marked in yellow and orange, respectively. Before smoothing,

the binding residues were disjoint (left), whereas in synthetic annotation

(right), the binding residues are contiguous. We viewed the 3D structure

using PyMOL (Schrödinger, 2015) (Color version of this figure is available at

Bioinformatics online.)
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2.4 Evaluation criteria
For the binary classification problem studied in this article, we con-

sider the peptide-binding residues as the positive-class and the non-

binding residues as the negative-class. Then, we computed the recall

or sensitivity [true positive rate (TPR)], specificity [true negative rate

(TNR)], fall-out or over-prediction rate [false positive rate (FPR)],

miss rate TNR, balanced accuracy (ACC), precision (PPV), F1 score

and Mathews correlation coefficient (MCC) to evaluate and com-

pare the proposed predictor. Moreover, we plotted the he ROC

curves and precision-recall curves, and computed the Area under

ROC curve (AUC) to assess for probability assignment. The defin-

ition of the metrics are described in the Supplementary Material,

Section 2.

3 Predictor framework

We applied stacked generalization (Wolpert, 1992) to develop the

peptide-binding residue predictor (PBRpredict). Stacking is an en-

semble technique to minimize the generalization error and has been

successfully applied in several machine learning tasks (Nagi and

Bhattacharyya, 2013). To the best of our knowledge, this study has

first explored stacking for identifying the pattern of protein se-

quence that induces binding with peptides.

Stacking framework involves two-tier learning. The classifiers of

the first tier and the second tier are called base-learner and meta-

learner, respectively. Multiple base-learners are employed in the first

tier. In the second tier, the outputs of the base-learners are combined

using another meta-learner. Here, the underlying idea is: different

base-learners can incorrectly learn different regions of the feature

space, effectively due to the no-free-lunch theorem (Wolpert and

Macready, 1997). A meta-learner, which is usually non-linear, is

then applied to correct the improper training of the first tier. Thus,

the meta-learner is trained to learn the error of the base-learners.

Therefore, it is desirable to use classifiers as base-learners that can

generate uncorrelated prediction outputs.

3.1 Base-level training and validation
We explored six different machine leaning algorithms as base-

learners which are Support Vector Machine (SVM), Random

Decision Forest (RDF), Extra Tree (ET) Classifier, Gradient

Boosting Classifier (GBC), K Nearest Neighbors (KNN) and

Bagging (BAG). The models were trained on the full rcp_tr475 data-

set using M ¼ 60� 25 features and were tested on the test dataset

(rcp_ts169). Guided by the performance of these six algorithms (see

Section 4.1), we finally employed SVM, GBC and KNN in the base-

level of the stacking and used Logistic Regression (LogReg) as

meta-learner to combine probability distributions generated at

the base-level.

Let us assume, Ntrain and Ntest are the total number of residues

of the training and test sets. Then the base-models, MODELSVM,

MODELGBC and MODELKNN, were trained using the feature ma-

trix of size Ntrain �M where the per-residue feature vector was,

X0 ¼ ðf 01; f 02; . . . ; f 060�25Þ. We tuned the parameters of SVM and

developed the model using libSVM package (Chang and Lin, 2011),

while the rest of classifier models were built and tuned using scikit-

learn (Pedregosa et al., 2011). The algorithms and the involved

parameters are described in the Supplementary Material, Section 3.

3.2 Meta-level training and validation
We used 63 per-residue features to train the meta-level learner; 3

probability outputs of MODELSVM (pSVM), MODELGBC (pGBC)

and MODELKNN (pKNN), and the 60 features of the target residue.

We combined the independent prediction outputs of the base-

models into the training feature matrix for the meta-learner through

blending, shown in Figure 2. We divided the train set of 475 chains

into 2-folds of 243 and 232 chains so that Ntrain ¼ Nfold1 þNfold2.

Here, Nfold1 and Nfold2 are the number of residues of 243 and 232

chains, respectively.

At first, Nfold1 number of residues with M number of features

were used to develop the three base models, which were used to pre-

dict Nfold2 number of residues. Conversely, Nfold2 number of resi-

dues with M number of features were used to develop another set of

base models and the predicted probability values for Nfold1 number

of residues were generated using these models. Thereafter, the inde-

pendently predicted probabilities were combined to generate the

data matrix of size Ntrain � 63 to train the LogReg where the per-

residue feature vector was, X00 ¼ ðpSVM; pGBC;pKNN ; f1; f2; . . . ; f60Þ.
To test the meta-learner, we predicted the 169 chains of the test

set by the MODELSVM, MODELGBC and MODELKNN which were

trained using full training set and generated pSVM, pGBC and pKNN.

With these three probabilities and the 60 features for Ntest number

of residues, 169 chains were predicted by the meta-learner.

3.3 PBRpredict-Suite
PBRpredict-Suite is a collection of three PBRpredict models of similar

framework, namely PBRpredict-strict, BRpredict-moderate, and

PBRpredict-flexible, that were developed using same learning algo-

rithms and feature set combinations in both levels of stacking.

However, the predictors apply different threshold values to convert the

probability outputs (or confidence score) into binary outputs. We

named the predictors according to the imposed restriction level via

thresholding in identifying the positive-class (peptide-binding residues).

Let us denote the set of thresholds used by SVM, GBC, KNN

and LogReg as (tsvm, tgbc, tknn, tlogreg). With that, the definition of

the three predictors within PBRpredict-Suite are given below.

• PBRpredict-strict: the traditional value of 0.5 is used as thresh-

olds by all the learners. Thus (tsvm, tgbc, tknn, tlogreg) ¼ (0.5, 0.5,

0.5, 0.5).

Fig. 2. Blending of the outputs of SVM, GBC and KNN to generate independ-

ent prediction outputs on two different folds of the full training set. These out-

puts are then used as training features for the meta-level LogReg classifier.

The objects and arrows associated with fold 1 and fold 2 are indicated by

solid line and dashed line, respectively
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• PBRpredict-moderate: here, we apply a moderate set of values as

thresholds, (tsvm, tgbc, tknn, tlogreg) ¼ (0.3, 0.34, 0.35, 0.3).
• PBRpredict-flexible: in this model, the classification thresholds

for all the learners are further relaxed, (tsvm, tgbc, tknn,

tlogreg) ¼ (0.17, 0.21, 0.21, 0.2).

The framework of the PBRpredict-Suite is illustrated in Figure 3.

The threshold values for the moderate and flexible models were stat-

istically chosen to correct certain percentage of the false negative

(FN) prediction outputs of the strict model (see Section 4.3).

Moreover, the original probabilities given by the learners of moder-

ate and flexible predictors are scaled to [0.5, 1.0] for positive-class

and to [0.0, 0.5] for negative-class from the new range defined by

the modified thresholds. Altogether, these three models performed

promisingly in different cases (see Results). The models are imple-

mented and integrated into a single PBRpredict-Suite software pack-

age, which outputs per-residue binary annotation and real-value

probability. The software also outputs a summary file that reports

the peptide-binding tendency per-chain averaged over the predicted

peptide-binding residues and all residues.

4 Results

In this section, we report the results of parameter selection for the

predictor models. Further, we discuss the performance of

PBRpredict-Suite models and compare it with SPRINT (Taherzadeh

et al., 2016).

4.1 Evaluation and analysis of the base learners
Here, we analyze the performances of the six classifiers, SVM, RDF,

ET, GBC, KNN and BAG that we explored in the base-level of

stacked generalization. The models were trained using rcp_tr475

dataset and were evaluated using independent test set, rcp_ts169.

The predicted annotations were compared against the synthetic

annotations of peptide-binding residues that were used to train the

models.

Table 1 compares the binary prediction output of the learners

and highlights that the optimized RBF-kernel SVM model gave out-

standing performance in this application. The RBF-kernel SVM

model gave the best recall (completeness of a classifier in predicting

peptide-binding residues), miss-rate (rate of misclassifying a peptide-

binding residue as non-binding), balanced accuracy (ACC) scores of

values 0.547, 0.453 and 0.753. The closest competitor of SVM in

terms of recall and ACC was the ET classifier.

The RDF predicted the non-binding residues most accurately in

terms of specificity (0.982) and BAG gave the best precision score of

0.829 (correctness of a classifier in predicting peptide-binding resi-

dues). However, SVM model outperformed the other predictors in

terms of two critical measures used to assess a binary classifier,

MCC (regarded as the most effective measure for binary classifica-

tion on an imbalanced dataset) and F1 score (balances between cor-

rectness and completeness of a classifier) with values of 0.579 and

0.637, respectively. These scores are 11.35% and 15.62% better

than those provided by the closest competitor, ET. On the other

hand, GBC and KNN performed similarly, which were comparative-

ly lower than the other predictors.

Figure 4 compares the ROC and precision-recall (PR) curves pro-

duced by the six base-learners. The ROC and PR curves can assess

the performance of a classifier throughout its entire operating range

by evaluating the probability distribution at different thresholds.

The curves in Figure 4a illustrates that the ET and RDF gave the

highest and the second-highest AUC values of 0.887 and 0.881, re-

spectively. The SVM was a close competitor with AUC value of

0.879. The KNN provided the lowest AUC value of 0.789.

Figure 4a highlights the complementary competitiveness of SVM

with RDF and ET classifier at different points. The sensitivity of

SVM was lower than those of RDF and ET classifier at a range of

high specificity (0.5–0.9), whereas at a range low specificity (0.0–

0.45), SVM was better than RDF and ET. Another tree based ensem-

ble learner, BAG showed a similar performance to those of RDF and

Fig. 3. PBRpredict-Suite framework including PBRpredict-strict, PBRpredict-

moderate and PBRpredict-flexible. The abbreviations used are explained in

Section 3

Fig. 4. (a) ROC and (b) precision-recall curves given by six base-learners on

peptide-binding residue prediction (rcp_ts169 dataset). The AUCs under the

ROCs are given in the plot (a)

Table 1. Performance of the base-learners

Metric ET RDF SVM GBC KNN BAG

Sensitivity/recall (TPR) 0.418 0.365 0.547 0.373 0.348 0.398

Specificity (TNR) 0.977 0.982 0.959 0.977 0.965 0.981

Fall-out rate (FPR) 0.023 0.018 0.041 0.023 0.035 0.019

Miss rate (FNR) 0.582 0.635 0.453 0.627 0.652 0.602

Accuracy (balanced) 0.697 0.673 0.753 0.675 0.657 0.689

Precision 0.809 0.829 0.762 0.791 0.701 0.829

F1_Score 0.551 0.506 0.637 0.507 0.465 0.538

MCC 0.520 0.491 0.579 0.480 0.420 0.515

Note: Best score values are bold faced.
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ET. The PR curves in Figure 4b highlight that the precision of GBC,

RDF and BAG were initially better than SVM and ET at a range low

recall (0.0–0.4). However, SVM and ET gave better precision at

higher recall (0.5–0.9). We also observed that the curves of KNN

classifier were the least competitive.

We further performed a pair-wise correlation analysis of the

residue-wise probabilities, given by these six learners on rcp_ts169

dataset, results reported in Table 2. We computed the Persons cor-

relation coefficient (q ¼
P

XYffiffiffiffiffiffiffiffiffiffi
X2 :Y2
p ) between the two sets of probabilities

given by two classifiers. According to the working principle of stack-

ing, it is desirable to use learners with complementary strengths in

the base-level and therefore can provide uncorrelated outputs. In

this way, the meta-level learner (LogReg) can learn about the im-

proper training of the base-learners.

Table 2 shows that the tree-based ensemble learners, ET, RDF

and BAG are highly correlated with each other, however, are less

correlated with GBC, SVM and KNN. Therefore, a potential set of

complementary learners is, ET, SVM, GBC and KNN. On the other

hand, SVM is found less-correlated with GBC and KNN classifiers

with correlation values of 0.627 and 0.556, respectively. Note that,

from the results reported in Table 1, we found that SVM is the best

representative classifier for this application and the GBC and KNN

are less competitive. Therefore, another potential set is: SVM, GBC

and KNN classifiers. We have further verified different sets of base-

learners in the section below.

4.2 Evaluation of the stacked models
Here, we evaluated different set of base-learners and features at

meta-level before finalizing PBRpredict model.

4.2.1 Combination of different base-learners

We evaluated four different combination of base-learners for

stacked models (sM):

• sM1 with ET, SVM, GBC, KNN, RDF and BAG (all six

learners).
• sM2 with ET, SVM, GBC and KNN. The RDF and BAG, which

were highly correlated with ET (Table 2) are discarded.
• sM3 with ET, SVM and GBC. The least performing KNN classi-

fier while tested as a sole model is not considered in this set.
• sM4 with SVM, GBC and KNN. Here, we combined the best

performing base-learner, SVM with two relatively less competi-

tive classifiers, GBC and KNN.

For all cases, the meta-level learner was LogReg, which was

trained using rcp_tr475 dataset. Here, two different folds of the

dataset were independently predicted by the base-learner models to

generate probabilities while the models were trained on the other

fold. Finally, the LogReg models were evaluated using independent

test set, rcp_ts169.

The performance comparison among four stacked models,

shown in Table 3, clarifies that our assumption about the effective

set of base-learners was reasonable. The model using all six base-

learners (sM1) was outperformed by the stacked models with

reduced number of complementary base-learners. After removing

BAG and RDF classifiers from the set (sM2), we got a slight im-

provement in MCC score. The sM3 with ET, SVM and GBC only

provided the highest specificity/TNR (0.96) and precision (0.765)

and the lowest fall-out rate (0.04). On the other hand, the stacking

of SVM, GBC and KNN in sM4 gave the highest recall (TPR), ACC

and F1 score of values 0.553, 0.756 and 0.640, respectively. We pri-

oritized the balanced prediction capacity of a model in this classifi-

cation task that can be measured by ACC and F1 score. Therefore,

we utilized the base-learner set of sM4, SVM, GBC and KNN, to de-

velop the PBRpredict-Suite predictors.

4.2.2 Combination of different features

During the selection of base-learners, results reported in Table 3, we

used only the probability outputs generated from the base-learners

as the features in the meta-level. Here, we further want to include

additional features to boost up the capacity of meta-learner. We

tested two different feature plans to train the meta-learner of sM4

stacked model that combines SVM, GBC and KNN.

• Feature plan 1: contains the three probabilities generated by the

base-learners only.
• Feature plan 2: contains the 3 probabilities and the 60 features

(Section 2.3) of the target residue.

The outputs of feature plan 1 and 2 were complementary, shown

in Table 4. The meta-learner of plan 1 gave better specificity, which

emphasizes the predictors’ capacity to identify non-binding residues.

In contrast, the meta-model of plan 2 provided better recall that

focuses the predictor’s ability to accurately identify the binding resi-

dues. Moreover, the model with feature plan 2 resulted in balanced

prediction in terms of ACC, MCC and F1 score. Therefore,

the PBRpredict-Suite models use SVM, GBC and KNN as the

Table 2. Pairwise correlation analysis of the probability distributions

given by the base-learners on rcp_ts169

Classifiers ET RDF SVM GBC KNN BAG

ET — 0.891 0.794 0.652 0.600 0.890

RDF — — 0.734 0.676 0.610 0.910

SVM — — — 0.627 0.556 0.760

GBC — — — — 0.558 0.693

KNN — — — — — 0.603

Note: Correlation values less than 0.7 are bold faced.

Table 3. Comparison of stacked models with different set of

base-learners on rcp_ts169 dataset

sMs TPR TNR FPR FNR ACC PPV F1 score MCC AUC

sM1 0.551 0.959 0.041 0.449 0.755 0.762 0.639 0.581 0.898

sM2 0.551 0.959 0.041 0.041 0.755 0.762 0.640 0.582 0.897

sM3 0.546 0.960 0.040 0.454 0.753 0.765 0.638 0.580 0.896

sM4 0.553 0.959 0.041 0.447 0.756 0.760 0.640 0.581 0.886

Note: sM1 uses ET, SVM, GBC, KNN, RDF and BAG as base-learners.

sM2 uses ET, SVM, GBC and KNN as base-learners.

sM3 uses ET, SVM and GBC as base-learners.

sM4 uses SVM, GBC and KNN as base-learners.

Best values are marked in bold.

Table 4. Comparison of stacked models with different set of

features on rcp_ts169 dataset

Feature set Recall Specificity ACC Precision F1 score MCC AUC

Plan 1 0.553 0.959 0.756 0.760 0.640 0.581 0.886

Plan 2 0.558 0.958 0.758 0.759 0.643 0.584 0.882

Note: Best values are marked in bold.
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base-learners that were trained using ð60� 25Þ features and LogReg

as meta-learner that was trained using 63 features.

4.3 Finalizing the PBRpredict-Suite models
In the proposed PBRpredict-Suite, we included three models to pre-

dict protein’s peptide-binding residues: PBRpredict-strict,

PBRpredict-moderate and PBRpredict-flexible, which use different

thresholds for classification. In this section, we discuss the develop-

ment of these three different predictor models.

We named the stacked model sM4 with 63 features in the meta-

level (Section 4.2) as PBRpredict-strict. This model provided a well-

balanced performance when compared with the state-of-the-art

predictor which is supported by both statistics (Section 4.4) and

case-studies (Section 4.5). However, we call this model ‘strict’ in

predicting the positive-class (peptide-binding residues) as it resulted

in fine fall-out rate/FPR even at the cost of compromised recall score

(TPR). Moreover, we observed that the PBRpredict-strict model

provides conservative performance in identifying the binding resi-

dues in full-length sequence, relatively longer than the structure-

specific shorter sequence, to avoid the false positive (FP) predictions

or over-prediction (see Supplementary Fig. S4). Note that, we

included only the structure-specific sequences from PDB in our

training dataset, as we needed the experimental structures to extract

the interaction information and annotate the protein sequence.

However, we intend to design models that can identify peptide-

binding sites in sequences with domains that are not known to the

training set as well as within the full-length protein sequence with

no experimentally solved structure. Therefore, we tuned our model

further to improve the recall/TPR or positive-class prediction accur-

acy of our model.

We attempted to relax the classification threshold to recover the

positive-class type (peptide-binding) residues that are falsely pre-

dicted as negative-class (non-binding). To understand the probabilis-

tic behavior of the learners, we visualized the distributions of the

probabilities generated by the classifiers for four different prediction

types: true positives (TP), FP, true negative (TN) and FN using the

threshold value 0.5 (see Supplementary Fig. S3). We noted that care

must be taken in lowering the threshold from 0.5, which may con-

vert certain TNs into FPs. We empirically observed such behavior of

the classifiers in our experiments where we checked seven different

threshold values: 0.45, 0.4, 0.35, 0.3, 0.25, 0.2 and 0.15 (results not

shown). This experiment did not result in any certain value of the

threshold as the recall continues to increase with the lower threshold

value at a cost of very high over-prediction which is not desirable.

Thus, we finally chose the thresholds according to certain statistics

on the probabilities of FNs given by the classifiers as our aim is to

correct FNs by assigning a different threshold to segregate the posi-

tive and negative-class.

We quantified the mean probabilities of FNs (meanðFNprÞ) along

with the standard deviations (stdðFNprÞ) which are 0.172 6 0.122

for SVM, 0.209 6 0.130 for GBC, 0.208 6 0.138 for KNN and

0.199 6 0.105 for the LogReg. We checked the median values

(medianðFNprÞ) as well which are 0.139 for SVM, 0.187 for GBC,

0.222 for KNN and 0.191 for the LogReg. Then, we considered the

meanðFNprÞ þ stdðFNprÞ; meanðFNprÞ and medianðFNprÞ values as

different sets of thresholds.

We report the performances of SVM, GBC and KNN on

rcp_ts169 dataset using these modified thresholds in the

Supplementary Table S3. The results showed that for all the classi-

fiers, the recall, miss-rate and accuracy (ACC) scores improved with

lower threshold values. The models with the traditional threshold

(0.5) produced the most balanced performance for SVM and KNN

with the highest MCC scores. On the other hand, the models with

thresholds equal to meanðFNprÞ þ stdðFNprÞ provided the best F1

scores for all the classifiers and the best MCC for GBC. Moreover,

the fall-out or over-prediction rates with these threshold values were

reasonable, specifically no >7.5%. On the other, the medianðFNprÞ
values were lower than the meanðFNprÞ values for the SVM and

GBC. Therefore, the use of medianðFNprÞ values as thresholds

resulted in outstanding recall scores, however at a cost of very high

fall-out rate which was not desirable. In addition, the performances

of KNN models with meanðFNprÞ and medianðFNprÞ as thresholds

were similar. Therefore, we did not consider the medianðFNprÞ value

as the threshold in the meta-level.

In Table 5, we report the results of the stacked models with

modified threshold values on the rcp_ts169 dataset. The stacked

model for which the meanðFNprÞ þ stdðFNprÞ and the meanðFNprÞ
are used as thresholds for all the base-level and meta-level learners

are named as PBRpredict-moderate and PBRpredict-flexible, re-

spectively. The actual threshold values are reported in the footnote

of Table 5.

The output shows that the PBRpredict-strict with the threshold

value of 0.5 resulted in the lowest fall-out rate with the highest

MCC score (a balanced measure to assess a binary classifier), how-

ever, the recall score was lower as well as the miss rate was higher

than those of other models in the suite. In PBRpredict-moderate, the

thresholds were relaxed and set to a relatively lower values, defined

by the meanðFNprÞ þ stdðFNprÞ. Subsequently, the TPR was

increased by 19.4% at a cost of 4.54% decrease in the TNR. In add-

ition, the F1 score and ACC were also improved by 2.19 and 4.27%

for the PBRpredict-moderate than those of PBRpredict-strict model.

In the PBRpredict-flexible model, the thresholds were even further

lowered and set to meanðFNprÞ. Therefore, all the FN predictions

(miss rate) of PBRpredict-strict with probability values greater than

or equal to the meanðFNprÞ were corrected by the PBRpredict-

flexible at a cost of high fall-out rate of around 16%.

4.4 Performance comparisons
In this section, we compare the performance of PBRpredict-Suite

models with SPRINT (Taherzadeh et al., 2016). SPRINT is a

Table 5. Comparison of PBRpredict-Suite models on rcp_ts169

dataset

Metric PBRpredict-

strict

PBRpredict-

moderate

PBRpredict-

flexible

Recall/TPR 0.558 0.666 0.774

Specificity/TNR 0.958 0.915 0.841

Fall-out rate/FPR 0.042 0.085 0.159

Miss rate/FNR 0.442 0.334 0.226

Accuracy/ACC 0.758 0.790 0.808

Precision 0.759 0.649 0.536

F1 score 0.643 0.657 0.633

MCC 0.584 0.575 0.541

AUC 0.882 0.884 0.886

Note: Best values are bold faced.

PBRpredict-strict thresholds: SVM(0.5), GBC(0.5), KNN(0.5),

LogReg(0.5).

PBRpredict-moderate thresholds: SVM(0.3), GBC(0.34), KNN(0.35),

LogReg(0.3).

PBRpredict-flexible thresholds: SVM(0.17), GBC(0.21), KNN(0.21),

LogReg(0.2).
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sequence-based predictor of protein-peptide binding residues that

uses an SVM with optimized parameter set. Moreover, the dataset,

model parameter set and feature set for SPRINT are different than

those of PBRpredict. We ran SPRINT through its webserver on our

test dataset, rcp_ts169. However, SPRINT server could generate the

predictions on 146 sequences out of 169, and failed for the rest.

Thus, we compared the performance of the proposed models with

that of SPRINT (Taherzadeh et al., 2016) on the 146 sequences

only.

The comparison while evaluated against the synthetic annotation

(with smoothing) is reported in Table 6. We observed that SPRINT

could result in higher recall value than that of PBRpredict-strict

model. Note that, we named this model ‘strict’ as it does not com-

promise the rate of FP (fall-out rate) even at a cost of lower recall

score. The recall score of PBRpredict-strict was found 10.69% lower

than that of SPRINT. On the other hand, the fall-out rate of

SPRINT, which defines the rate of miss-classification of non-binding

residues as peptide-binding residues or tendency of over-prediction,

was 86.52% higher than that of PBRpredict-strict. Moreover, the

PBRpredict-strict gave more precise and balanced performance with

15.42, 138.34, 132.50 and 51.99% higher balanced accuracy

(ACC), precision, F1 score and MCC, respectively than those given

by SPRINT. Further, the PBRpredict-moderate and flexible over-

comes the shortcomings of the strict model. The PBRpredict-

moderate and flexible provided 7.3 and 25.3% higher recall scores

than that of SPRINT, respectively, while keeping the fall-out rate

72.3 and 48.3% lower than that of SPRINT. Thus, the three models

in together made the PBRpredict-Suite comprehensive in identifying

peptide-binding residues.

In Table 7, we report the performance comparison while the pre-

dictions were evaluated against actual annotation (without

smoothing). A similar result was obtained where SPRINT gave com-

petitive recall and miss-rate with PBRpredict-strict and moderate,

however at a cost of higher fall-out rate, specifically 77 and 62.2%

higher than that of PBRpredict-strict and moderate.

Notwithstanding, PBRpredict-flexible resulted in 12.1% higher re-

call score than that of SPRINT even with 38.12% lower fall-out

rate. In addition, PBRpredict-Suite models gave a better balanced

scores in case of assessing against actual annotation as well.

Specifically, the ACC, precision, MCC and F1 score given by

PBRpredict-strict were 6.79, 109.82, 74.72 and 43.99% higher than

those of SPRINT, respectively. These differences in performance are

even higher when SPRINT was compared with PBRpredict-

moderate as this model gave the best MCC and F1 score. The sur-

prisingly superior performance given by SPRINT only in case of re-

call when compared to PBRpredict-strict, despite falling far behind

it in terms of balanced measures such as MCC and F1 score provides

us a clue that SPRINT suffers from over-prediction problem.

Figure 5 presents the ROC curves generated by SPRINT and

PBRpredict-Suite models while the predictions are evaluated against

both synthetic and actual annotations. The curves show the TPR

(sensitivity)/FPR (one specificity) output pairs at different classifica-

tion thresholds. The ROC curves given by different models of the

PBRpredict-Suite nearly overlapped with each other. The curves

highlight the strength of PBRpredict models in achieving a high TPR

of �80% (rate of correct prediction of peptide-binding residues) at a

very low rate (20%) of FPR. On the other hand, SPRINT gave

TPR � 80% at a cost of high FPR � 60% only. This performance

gap persists when the predictions are compared against the actual

annotation as well. Therefore, the synthetic annotation of the non-

binding residues (negative-class) as peptide-binding (positive-class)

in between disjoint peptide-binding regions did not contribute to

over-prediction, rather better guided a machine learning technique

to identify the binding residues from collective information of the

residues at close vicinity. Moreover, the AUC scores given by

PBRpredict-Suite models were at least 24.7 and 13% higher than

those of SPRINT while evaluated against synthetic and actual anno-

tation, respectively.

4.5 Case-studies
4.5.1 Structure-specific sequences from rcp_ts169 dataset with

known domains

Here, we performed case-studies with four different proteins with

different PRDs. The structure-specific chains of these proteins were

picked from rcp_ts169 test set that share less than 40% similarity

with any chain of the training set. However, chains with similar do-

main type were present in the training set. We applied the

Table 6. Comparison of SPRINT and PBRpredict-Suite models,

evaluated against synthetic annotation

Performance PBRpredict PBRpredict PBRpredict SPRINT

Metric Strict Moderate Flexible —

Recall/TPR 0.547 0.658 0.768 0.613

Specificity/TNR 0.958 0.915 0.841 0.692

Fall-out rate/FPR 0.042 0.085 0.159 0.308

Miss rate/FNR 0.453 0.342 0.232 0.387

Accuracy/ACC 0.753 0.786 0.804 0.652

Precision 0.754 0.642 0.529 0.316

MCC 0.576 0.567 0.534 0.248

F1 score 0.634 0.650 0.626 0.417

Note: Best values are bold faced.

Table 7. Comparison of SPRINT and PBRpredict-Suite models,

evaluated against actual annotation

Performance PBRpredict PBRpredict PBRpredict SPRINT

Metrics Strict Moderate Flexible —

Recall/TPR 0.544 0.662 0.776 0.692

Specificity/TNR 0.928 0.882 0.806 0.686

Fall-out rate/FPR 0.072 0.118 0.194 0.314

Miss rate/FNR 0.456 0.338 0.224 0.308

Accuracy/ACC 0.736 0.772 0.791 0.689

Precision 0.548 0.472 0.390 0.261

MCC 0.474 0.475 0.450 0.271

F1 score 0.546 0.552 0.519 0.379

Note: Best values are bold faced.

Fig. 5. Comparison of ROC curves and AUC values given by SPRINT and

PBRpredict-Suite models on 146 chains when evaluated against (a) synthetic

and (b) actual annotation, indicated using solid and dotted lines, respectively.

The AUC values under the ROCs are reported in the legend
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PBRpredict-strict that uses the traditional threshold and SPRINT to

predict the peptide-binding residue in each protein, and mapped the

prediction outputs on the structure using PyMOL (Schrödinger,

2015). For a fair analysis and comparison on the structure-specific

sequences, we applied the strictest model of the suite.

1. MHC-I Domain (PDB ID: 1LD9): here, we picked the 3D struc-

ture of an H-2Ld protein (green), shown in Figure 6, while inter-

acting with a peptide (cyan). Prediction of PBRpredict-strict

(Fig. 6b) for this case was perfect with recall and MCC of 1.0

and 0.99, respectively. On the other hand, the visual illustration

of SPRINT prediction in Figure 6c shows the over-predicted

binding residues (pink) throughout the full chain with a MCC of

�0.123 and recall of 0.59.

2. SH2 Domain (PDB ID: 2CIA): Figure 7 shows the structure of

human Nck2 protein with SH2 domain (green) in complex with

a phosphotyrosine peptide (cyan). PBRpredict-strict (Fig. 7b)

was statistically better than SPRINT (Fig. 7c) in this case with

recall and MCC scores of 0.75 and 0.77, whereas these scores

for SPRINT were 0.63 and 0.55, respectively.

3. Polo-Box Domain (PDB ID: 4LKL): Figure 8 shows crystal struc-

ture of the polo-like kinase with polo-box domain (green) in

bound with five-residue long peptide (cyan). PBRpredict correct-

ly predicted 89% of the peptide-binding residues (recall) and

gave an MCC score of 0.76. To compare, SPRINT gave

reasonable recall of 0.74, however, resulted in low MCC (0.23)

due to over-prediction (Fig. 8c).

4.5.2 Structure-specific sequences with unknown domains

In this section, we studied the performance of different PBRpredict-

suite models in identifying peptide-binding residues of domains that

are not known to the training set. We picked three domains for

which no homologous are present in the training set: The malignant

brain tumor (MBT) domain, VHS (VPS-27, Hrs and STAM) domain

and CW domain. We collected the structures with these domains

from PDB following similar steps described in Section 2.1. We re-

spectively found 8, 9 and 10 structures of complexes in which chains

with MBT, VHS and CW domains were bound to peptides. After fil-

tering out the chains with a similar domain that shared >40% se-

quence similarity, we had 6, 4 and 7 sequences with MBT, VHS and

CW domains, respectively. Then, we extracted the interaction infor-

mation from the structures based on the atomic distance (Section

2.2) and annotated the structure-specific protein sequences. We per-

formed these case-studies to understand the proposed model’s cap-

acity to go beyond the PRDs that are known to the training set.

1. MBT Domain: The MBT domain recognizes the PTMs, i.e.,

methylation on lysine, on histone tails. The MBT domains are

involved in transcriptional repression and have critical roles in

diseases (Bonasio et al., 2010). Table 8a shows that the

PBRpredict-strict model identified only 19.7% of the peptide-

binding residues (TPR) of this domain, however, resulted in very

low FPR. The moderate predictor could correct some of the in-

correctly predicted binding residues, therefore the recall and ac-

curacy scores improved with a reasonable FPR value of 0.081.

On the other hand, the model with the most flexible threshold

values resulted in the highest recall, ACC and F1 scores.

2. VHS Domain: the VHS domains are mostly found in the N-ter-

minal of many proteins and have crucial roles in membrane tar-

geting (Lohi et al., 2002). VHS domain recognizes short peptide-

motifs, i.e. D/ExxLL. The results, reported in Table 8b, show

that the PBRpredict-flexible model recognized the highest num-

ber of peptide-binding residues of four VHS domain proteins

with the highest recall (0.583), accuracy (0.576) and F1 score

(0.354) values. On the other hand, the strict model gave the low-

est recall score, however, almost perfectly predicted the non-

binding residues with only two FPs (FPR: 0.004). The accuracy

of the moderate model was in between the strict and flexible

models.

(a) (b) (c)

Fig. 6. (a) Peptide-binding residues (red) of the MHC domain (green), bound

to a peptide (cyan) in PDB 1LD9. The prediction outputs of PBRpredict-strict

(yellow) and SPRINT (magenta) are shown in (b) and (c), respectively (Color

version of this figure is available at Bioinformatics online.)

(a) (b) (c)

Fig. 7. (a) Peptide-binding residues (red) of the SH2 domain (green), bound to

a peptide (cyan) in PDB 2CIA. The prediction outputs of PBRpredict-strict (yel-

low) and SPRINT (magenta) are shown in (b) and (c), respectively (Color ver-

sion of this figure is available at Bioinformatics online.)

(a) (b) (c)

Fig. 8. (a) Peptide-binding residues (red) of the Polo-Box domain (green),

bound to a peptide (cyan) in PDB 4LKL. The prediction outputs of PBRpredict-

strict (yellow) and SPRINT (magenta) are shown in (b) and (c), respectively

(Color version of this figure is available at Bioinformatics online.)

Table 8. Performance of PBRpredict-Suite models on unknown

PRDs

Model TPR TNR FPR FNR ACC F1 score

(a) MBT domain

PBRpredict-strict 0.197 0.991 0.009 0.803 0.594 0.199

PBRpredict-moderate 0.351 0.919 0.081 0.649 0.635 0.319

PBRpredict-flexible 0.511 0.802 0.198 0.489 0.656 0.327

(b) VHS domain

PBRpredict-strict 0.553 0.959 0.756 0.760 0.640 0.581

PBRpredict-moderate 0.558 0.958 0.758 0.759 0.643 0.584

PBRpredict-flexible 0.558 0.958 0.758 0.759 0.643 0.584

(c) CW domain

PBRpredict-strict 0.553 0.959 0.756 0.760 0.640 0.581

PBRpredict-moderate 0.558 0.958 0.758 0.759 0.643 0.584

PBRpredict-flexible 0.558 0.958 0.758 0.759 0.643 0.584

Note: Best values are marked in bold.
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3. CW Domain: the CW domain recognizes the lysine methylation

on the N-terminal histone tails which have a key role in the

tissue-specific gene expressions and chromatin regulations

(Hoppmann et al., 2011). Table 8c shows the performances of

the three PBRpredict-Suite models in recognizing the residue pat-

terns of this domain averaged over seven chains. We observed a

similar output where the strict and the flexible models recog-

nized the lowest and the highest percentage of the binding resi-

dues, respectively. On the other hand, the PBRpredict-moderate

model resulted in a modest recall value.

The results of the above case-studies on the domains that were un-

seen by the PBRpredict-Suite models during training advocate the

strength of the proposed models in locating potential peptide-binding

sites within sequences for which the cognate domains are not known

to the models. Therefore, the predictors, especially the moderate and

the flexible models, can be useful in determining possible peptide-

binding sites from protein sequence when no putative interaction in-

formation is known. In the Supplementary Material (Section 7), we

have further studied the performance of PBRpredict-Suite models on

53 protein chains that are independent of the training set.

4.5.3 Full-length sequences with unknown domains

In this section, we study the full-length protein sequences with

PBRpredict-Suite models. Here, we want to evaluate the ability of

the proposed models in identifying potential peptide-binding resi-

dues in proteins for which no experimental or template structure is

available. For this study, we chose the Gid4 protein. Recently, Chen

et al., 2017 discovered that the Gid4 subunit of the ubiquitin ligase

GID in the yeast Saccharomyces cerevisiae targets the gluconeogenic

enzymes, and recognizes the N-terminal proline (P) residue and the

short five-residue-long adjacent sequence motifs. The authors Chen

et al., 2017 identified such interactions through in vitro experiments

with two-hybrid assays.

We computationally predicted the potential residues in the Gid4

protein that may mediate such interactions with gluconeogenic

enzymes to degrade them and down-regulate the gluconeogenesis.

We collected three Swiss-Prot reviewed proteins from UniProt,

GID4_YEAST (ID: P38263), GID4_HUMAN (ID: Q8IVV7) and

GID4_MOUSE (ID: Q9CPY6), and ran the PBRpredict-Suite models

on these sequences to identify possible peptide-binding residues. As

PBRpredict-strict model produce conservative output on full-length

proteins (Supplementary Fig. S4), here we show the predicted

peptide-binding residues given by PBRpredict-moderate and flexible

only. We report the results on GID4_YEAST below and on

GID4_HUMAN and GID4_MOUSE in the Supplementary Figures

S8 and S9.

GID4_YEAST (UniProtKB – P38263): Figure 9a and b shows the

possible binding residues in blue identified by the PBRpredict-

moderate and PBRpredict-flexible model in GID4_YEAST. The

moderate and flexible model found 34 and 71 binding-residue

respectively with a similar average confidence of 0.58 (mean prob-

ability values generated for the binding residues).

The above case-studies show that the PBRpredict-Suite can be a

useful tool in revealing the amino acid compositions that mediates

crucial interactions with peptide-motifs from sequence alone when

no structure is available. Such residue patterns can be further uti-

lized for their cognate peptide identification. The above outcomes

can further guide the experimental determination of the complex

structure of these proteins by truncating the portion of the chain

with potential peptide-binding sites.

5 Conclusions

In this paper, we presented the development and benchmarking of a

suite of machine learning based PBRpredicts using protein sequence

information alone. With the aim to model the residue patterns of a

variety of PRDs, we collected and mined protein structure data to

extract the true annotation. Three compatible learning algorithms,

SVM, gradient boosting and KNN classifier, were trained using a set

of intriguing features and the resulting models were further com-

bined using logistics regression. Such model stacking technique bet-

ter generalized the sequence pattern of diversified types of PRDs.

The results and case-studies demonstrated that different PBRpredict-

Suite models can generate well-balanced and biologically relevant

predictions. Importantly, our evaluations showed that the proposed

tool is capable of recognizing residue-patterns of unknown domains

in different length sequences. Thus, it is worth utilizing the tool fur-

ther in proteome-wide discoveries of new PRDs that can be verified

experimentally.
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