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Abstract

Motivation: Rapid adoption of high-throughput sequencing technologies has enabled better under-

standing of genome-wide molecular profile changes associated with phenotypic differences in bio-

medical studies. Often, these changes are due to multiple interacting factors. Existing methods are

mostly considering differential expression across two conditions studying one main factor without

considering other confounding factors. In addition, they are often coupled with essential sophisti-

cated ad-hoc pre-processing steps such as normalization, restricting their adaptability to general

experimental setups. Complex multi-factor experimental design to accurately decipher genotype-

phenotype relationships signifies the need for developing effective statistical tools for genome-

scale sequencing data profiled under multi-factor conditions.

Results: We have developed a novel Bayesian negative binomial regression (BNB-R) method for

the analysis of RNA sequencing (RNA-seq) count data. In particular, the natural model parameter-

ization removes the needs for the normalization step, while the method is capable of tackling

complex experimental design involving multi-variate dependence structures. Efficient Bayesian in-

ference of model parameters is obtained by exploiting conditional conjugacy via novel data aug-

mentation techniques. Comprehensive studies on both synthetic and real-world RNA-seq data

demonstrate the superior performance of BNB-R in terms of the areas under both the receiver

operating characteristic and precision-recall curves.

Availability and implementation: BNB-R is implemented in R language and is available at https://

github.com/siamakz/BNBR.

Contact: siamak@tamu.edu or mingyuan.zhou@mccombs.utexas.edu or xqian@ece.tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing technologies have become the basic

practice for genomic studies in life science research (Wang et al.,

2009). In particular, RNA sequencing (RNA-seq), which measures

the expression of each gene or genomic feature of interest by count-

ing the number of sequence reads mapped to them, has been widely

adopted for genotype-phenotype association studies. To identify the

genes that are differentially expressed between different groups of

samples as candidate biomarkers across different phenotypes or

treatment conditions, a large number of statistical methods and

tools have been developed (Anders and Huber, 2010; Dadaneh

et al., 2017; Law et al., 2014; Li and Tibshirani, 2013; Love et al.,

2014; Robinson et al., 2010).

While the majority of differential expression (DE) analyses are

conducted with respect to a main treatment factor, the presence of

potential confounding factors in real-world experiments makes it

desirable to take them into account in the developed tools to derive

unbiased genotype-phenotype association results. There exists a rich
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set of methods on addressing this problem in microarray data ana-

lysis, such as the ones developed based on linear models (Smyth,

2004, 2005).

Unlike microarray data that are based on continuous intensity

measurements, RNA-seq data have unique properties. The sequenc-

ing read counts are often skewed and highly over-dispersed (Datta

and Nettleton, 2014), and most of the existing data are with a small

number of samples due to high data collection cost. Analyzing

RNA-seq data are challenging, especially if taking into account the

potential confounding effects. A number of methods extend the stat-

istical tools developed for microarray data to analyze RNA-seq read

counts. For instance, voom (Law et al., 2014) estimates the mean-

variance relationship of the logarithmic transformation of counts,

and after generating precision weights for each observation, exploits

the empirical Bayes pipeline of limma (Smyth, 2005) for down-

stream analyses. Other statistical methods are specifically designed

for RNA-seq count data. One of the most popular solutions in this

category to account for over-dispersion due to biological variations

is using the negative binomial (NB) distribution. Several DE analysis

methods have employed generalized linear models (GLMs) to adapt

the NB distribution to experiments with complex design. For ex-

ample, two widely used methods, edgeR (Robinson et al., 2010)

and DESeq2 (Love et al., 2014), both use GLMs to model the mean

of the NB distribution as a log-linear function of the covariates. The

gene-wise dispersion parameters are then estimated using adjusted

profile likelihood and GLM coefficients are estimated using Fisher

scoring iterations.

For all these existing RNA-seq analysis methods, a common pre-

processing step is to normalize the sequencing counts to compensate

the variations of the sequencing depths across samples (Soneson and

Delorenzi, 2013). For instance, edgeR (Robinson et al., 2010) either

calculates a trimmed mean of M-values between each pair of sam-

ples or uses an upper quantile of samples for normalization, while

DESeq2 (Love et al., 2014) takes the median of the ratios of

observed sample counts to the geometric mean across samples as a

scaling factor for that specific sample. Normalizing the sequencing

counts, however, makes the performance depend on whether the

introduced normalization is appropriate for the structure of the

RNA-seq data under study (Zyprych-Walczak et al., 2015). In add-

ition to normalization, another common pre-processing practice is

to perform the surrogate variable analysis (SVA) to identify poten-

tial unknown factors that may help model batch effects, and then in-

corporate these surrogate variables (SVs) as additional covariates to

adjust for the consequent DE analysis (Leek et al., 2012; Leek,

2014).

Obviating the need to pre-process the data, BNP-Seq (Dadaneh

et al., 2017) uses a stochastic process based approach to model the

observed sample-gene random count matrix of each group in a

Bayesian non-parametric framework. More specifically, BNP-Seq

algorithms model the gene counts using the gamma-negative bino-

mial process (GNBP), which mixes the NB shape parameter for each

gene with the distribution of the weight of an atom of a gamma pro-

cess, or beta-negative binomial process (BNBP), which mixes the NB

probability parameter of each gene with the distribution of the

weight of an atom of a beta process (Zhou et al., 2016). A limitation

of the BNP-Seq methods is that they are designed for two-group

comparative analysis, which only considers the main treatment fac-

tor, and cannot be applied to experiments with more complex

design.

Given the prevalence of model uncertainty in genomic

studies, a Bayesian approach is often the only course possible

(Boluki et al., 2017a, b; Karbalayghareh et al., 2017). In this

paper, we propose a fully Bayesian negative binomial regression

(BNB-R) method for DE analysis of RNA-seq data from experi-

ments with complex multiple-factor design. Unlike all the existing

DE methods based on the NB distribution, our method does not

rely on ad-hoc approximations of various kinds, such as the fact

that many statistical tests are only asymptotically valid (Law et al.,

2014). BNB-R quantifies the uncertainty of the estimations, and

also allows for the incorporation of prior information. BNB-R dir-

ectly models the influence from covariates of interest for DE ana-

lysis and therefore it does not need the SVA pre-processing step.

Moreover, this new approach does not require the ad-hoc normal-

ization step either, as the model accounts for the sequencing-depth

heterogeneity of different samples automatically, similar to the

mechanisms employed in the BNP-Seq algorithms.

By exploiting two novel data augmentation techniques (Zhou

et al., 2012), closed-form posterior inference of BNB-R model

parameters is derived in a Gibbs sampling procedure. Specifically,

the dispersion parameter of NB distribution is inferred using the

augmentation technique of Zhou and Carin [2015], and regression

coefficients are inferred in closed-forms by utilizing the Polya-

Gamma (PG) distributed auxiliary variable technique of Polson and

Scott [2011], removing the need for non-trivial Metropolis–Hastings

correction steps (Chib and Greenberg, 1995). Comprehensive simu-

lation results using synthetic and real-world RNA-seq datasets dem-

onstrate the dominance of the proposed BNB-R over existing state-

of-the-art tools.

The remainder of this paper is organized as follows. In Section 2,

after presenting notations and a brief review of count regression

methods, we introduce the model, inference, and DE procedure of

BNB-R for genotype-phenotype association with multi-factor ex-

periment design. In Section 3, we present experimental results on

both synthetic and real-world benchmark RNA-seq data and show

that the proposed NB regression algorithm outperforms the state of

the art. We conclude the paper in Section 4.

2 Materials and methods

2.1 Notations and backgrounds
Throughout this paper, we denote scalars, vectors, and matrices

by lower-case, bold lower-case and upper-case letters, respectively.

We parameterize a NB random variable as n � NB r; pð Þ, where r

is the non-negative dispersion and p is the probability parameter.

The probability mass function (pmf) of n is expressed as

fN nð Þ ¼ C nþrð Þ
n!C rð Þ pn 1� pð Þr, where C �ð Þ is the gamma function. The NB

random variable n � NB r; pð Þ can be generated from a compound

Poisson distribution as

n ¼
X‘
t¼1

ut; ut � Log pð Þ; ‘ � Pois �r ln 1� pð Þð Þ;

where u � Log pð Þ corresponds to the logarithmic random variable

(Johnson et al., 2005), with the pmf fU uð Þ ¼ � pu

uln 1�pð Þ ; u ¼ 1; 2; . . ..

As shown in Zhou and Carin [2015], given n and r, the distribution

of ‘ is a Chinese Restaurant Table (CRT) distribution,

‘ jn; rð Þ � CRT n; rð Þ, whose random samples can be generated as

‘ ¼
Pn

t¼1 ut; ut � Bernoulli r
rþt�1

� �
.

2.1.1 Count regression

A basic count regression model is Poisson regression (Winkelmann,

2013), which can be written as
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nj � Pois kj

� �
; kj ¼ exp xT

j b
� �

; (1)

where xj ¼ 1; xj1; . . . ; xjV

� �T
is the covariate vector for sample j

and b ¼ bk0; bk1; . . . ;bkV½ �T is the regression coefficient vector.

Poisson regression makes an assumption of equal-dispersion, i.e.

E njjxj

� �
¼ Var njjxj

� �
, which limits its use in analyzing genomic

count data that are often highly over-dispersed due to biological

variations. To address this issue, a multiplicative random-effect

term �j is commonly added to Poisson regression, expressed as

kj ¼ �j exp xT
j b

� �
, to model over-dispersed counts. In particular,

imposing a gamma prior on this random-effect term leads to a NB

regression model (Hilbe, 2011; Winkelmann, 2013; Zhou et al.,

2012), which assumes a quadratic relationship between the variance

and mean.

2.2 BNB-R: NB regression DE analysis
One important task of RNA-seq data analysis is to identify the genes

that show significant changes in their expression levels under differ-

ent phenotypes or treatment conditions. In this section, a BNB-R

model is developed to discover differentially expressed genes, while

taking into account biological variability, sequencing depth hetero-

geneity and experimental confounding factors simultaneously.

We denote the number of sequencing reads mapped to gene

k 2 f1; . . . ;Kg in sequencing sample j 2 f1; . . . ; Jg by nkj, and model

this count as a NB random variable nkj � NB rj; pkj

� �
. The dispersion

parameter rj, which only depends on the sample index, can be con-

sidered as a parameter reflecting the heterogeneity of counts, due to

the variation of the sequencing depths across different samples. This

can be justified by the gene count expectation E nkj

� �
¼ rj

pkj

1�pkj
,

which is directly proportional to rj. To establish the dependence

between the gene expression and covariates (e.g. phenotypes,

treatments and other potential confounding factors) in different ex-

perimental setups, we impose a linear relationship between the logit

function of the probability and covariates as logit pkj

� �
¼ xT

j bk,

where xj ¼ 1; xj1; . . . ; xjV

� �T
is the covariate vector for sample j and

bk ¼ bk0;bk1; . . . ;bkV½ �T is the regression coefficient vector for gene

k. In our proposed model, the covariate variables can be numerical

or categorical. Consequently, the expected gene expression can be

expressed as E nkj

� �
¼ rj exp xT

j bk

� �
, which resembles the familiar

form of NB GLM (Gardner et al., 1995). Thereby, the effects of

different experimental factors on gene expression are captured

through the regression coefficients bk. In particular, by utilizing

the Bayesian framework, the posterior distributions of different

combinations of the regression coefficients can be estimated via a

Markov chain Monte Carlo (MCMC; Andrieu et al., 2003) infer-

ence procedure to assess how the covariates impact the expression

changes.

To complete the hierarchal model, we place a gamma prior on

each sequencing scaling parameter rj and independent zero-mean

normal priors on the regression coefficients bk. The full model is

expressed as:

nkj � NB rj; pkj

� �
; wkj :¼ logit pkj

� �
¼ xT

j bk

bk �
YV
v¼0

N 0; a�1
v

� �
; av � Gamma c0; 1=d0ð Þ

rj � Gamma a0;1=hð Þ; h � Gamma b0; 1=g0ð Þ:

(2)

In addition to controlling the effects of multiple experimental

factors via the regression coefficients bk, in BNB-R, the precision

parameters of the normal distributions over these coefficients are

shared between all genes to borrow signal strengths, a desirable

property of the model that makes it robust especially in RNA-seq

data analysis with a small sample size. In the following, we present

our efficient MCMC inference of model parameters, which takes ad-

vantage of two novel data augmentation techniques, leading to

closed-form parameter updates.

2.2.1 Parameter inference

We start by the inference of the dispersion parameter rj, by using the

data augmentation technique introduced in Zhou and Carin [2015].

In the first step of MCMC inference, we draw latent counts corre-

sponding to gene expression as

‘kj j�
� �

� CRT nkj; rj

� �
: (3)

It can be shown that the ‘kj can be considered as the Poisson

random count, expressed as ‘kj � Pois �rjln 1� pkj

� �� �
, used in

the compound Poisson representation of the NB distribution

njk � NB rj; pkj

� �
. Hence, by taking advantage of the gamma-Poisson

conjugacy, in each Gibbs sampling iteration, the parameter rj can be

updated as

rjj�
� �

� Gamma
X

k

‘kj þ a0;
1

h�
P

k ln 1� pkj

� �
 !

: (4)

The second challenge is the inference of the regression coeffi-

cients, for which the lack of conditional conjugacy precludes imme-

diate closed-form inference. Resorting to the methods such as

Metropolis–Hastings (Chib and Greenberg, 1995), however,

requires a careful choice of the proposal distributions to avoid suf-

fering from high rejection rates and subsequently slow convergence.

To address these issues, we adopt an augmentation technique

to infer the regression coefficients bk, relying on the PG data aug-

mentation of Polson and Scott [2011]. Denote xkj as a random vari-

able drawn from the PG distribution as xkj � PG nkj þ rj; 0
� �

: We

have Exkj
exp �xkjw

2
kj=2

� �h i
¼ cosh nkjþrjð Þ w2

kj=2
� �

. Thus the likeli-

hood of wkj in Equation (2) can be expressed as

L wkj

� �
/

ewkj
� �nkj

1þ ewkj
� �nkjþrj

/ exp
nkj � rj

2
wkj

� �
Exkj

exp �xkjw
2
kj=2

� �h i
:

(5)

Exploiting the exponential tilting of the PG distribution in

Polson and Scott [2011], we draw xkj as

xkjj�
� �

� PG nkj þ rj;wkj

� �
: (6)

Given the values of the auxiliary variables xkj for j ¼ 1; . . . ; J

and the prior in Equation (2), the conditional posterior of bk can be

expressed as

p bkj�ð Þ / N 0;A�1
� �YJ

j¼1

e
�

xkj
2 wkj�

nkj�rj
2xkj

� �2

; (7)

where A ¼ diag a1; . . . ; aPð Þ. Thus in each Gibbs sampling iteration,

we update the gene-wise regression coefficients bk as

bkj�ð Þ � N lk;RkÞ;ð (8)

where the covariance and mean of this multi-variate normal

distribution are defined as Rk ¼
PJ

j¼1 xkjxjx
T
j þ A

� ��1
and

lk ¼ Rk

PJ
j¼1

nkj�rj

2

� �
xj

� �
, respectively.
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Using the gamma-gamma conjugacy with respect to the gamma

scale parameter, we have

avj�ð Þ � Gamma K=2þ c0;
1

d0 þ
P

k b2
kv=2

 !
; v ¼ 0; . . . ;V:

hj�ð Þ � Gamma b0 þ Ja0;
1

g0 þ
P

j rj

 !
:

(9)

The Gibbs sampling steps in Equations (3)–(9) are summarized

in Supplementary Algorithm 1.

2.2.2 DE analysis

To detect differentially expressed genes using the inferred NB regres-

sion model, we notice in the prior that

E nkj

� �
¼ rj exp xT

j bk

� �
(10)

and in the conditional posterior shown in Equation (4)

E rjj�
� �

¼
P

k ‘kj þ a0

hþ
P

k ln 1þ exp xT
j bk

� �� � : (11)

Thus one may consider that the NB sample-specific dispersion par-

ameter rj, which depends on all the gene counts of sample j through

latent counts ‘kj, accounts for the sequencing depth of sample j, and

the quantity exp xT
j bk

� �
represents the expression of gene k in sam-

ple j after removing the sequencing-depth effect. To assess whether a

certain experimental factor v causes significant expression differen-

ces across samples for gene k, we collect posterior MCMC samples

for regression coefficients bk and use these MCMC samples to meas-

ure the distance between the posterior distributions of exp bk0ð Þ and

exp bk0 þ bkvð Þ. More precisely, we use the symmetric Kullback–

Leibler (KL) divergence defined between two discrete distributions

P and Q as

KL P;Qð Þ ¼
X

x
p xð Þ � q xð Þ½ � log p xð Þ=q xð Þ½ �:

To calculate this distance, we follow the same steps as in Dadaneh

et al. [2017], and construct a discrete probability vector for each

group of collected MCMC samples, referred to as p 1ð Þ and p 2ð Þ for

the first and second groups under comparison, respectively. Finally,

with a small constant set as � ¼ 10�10, we calculate the symmetric

KL-divergence as

KL p 1ð Þ; p 2ð Þ
� �

¼
XN
i¼1

p 1ð Þ
i � p 2ð Þ

i

� �
log

p 1ð Þ
i þ �

p 2ð Þ
i þ �

 !
: (12)

3 Results

To evaluate our BNB-R DE analysis algorithm, referred to as BNB-

R, we compare its performance on both synthetic and real-world

benchmark data with those of edgeR (Robinson et al., 2010),

DESeq2 (Love et al., 2014) and voom included in the package

limma (Law et al., 2014), three widely used methods capable of

handling biomedical studies with complex experimental design. As

it is common in practice, before applying these methods to real-

world RNA-seq data, we first perform a SVA to introduce SVs as

additional covariates to model potential unwanted batch effects

(Leek, 2014) and then use them to adjust for these artifacts for un-

biased DE analysis. We first consider synthetic RNA-seq data in

simulated experiments with multiple factors, and we demonstrate

that the proposed BNB-R consistently outperforms the other

approaches. We then consider the real-world benchmark RNA-seq

data extracted from the SEquencing Quality Control (SEQC) project

(SEQC/MAQC-III Consortium, 2014). While this dataset does

not possess explicit confounding factors, the results support the out-

standing performance of BNB-R for DE analysis method in general.

On both synthetic and real-world RNA-seq count data, different

methods are compared in terms of both the receiver operating char-

acteristic (ROC) and precision-recall (PR) curves and the area under

these curves (AUC). Finally, we test BNB-R on a RNA-seq dataset

of Th17 cell differentiation to study how incorporating the temporal

information can lead to more meaningful biological discoveries.

3.1 Synthetic data
3.1.1 Incorporating covariates improves DE detection

We generate synthetic RNA-seq data with the NB regression genera-

tive model. To make the synthetic data closely resemble real-world

RNA-seq data, the parameters of the NB regression model are first

inferred from the SEQC dataset and then synthetic sequencing

counts are generated using these inferred model parameters.

Throughout the simulations, we consider three experimental factors

as condition, gender and dosage, where condition and gender are

categorical covariates with labels {treated, untreated} and {male,

female}, respectively, and dosage is a numeric covariate in the inter-

val 0; 1½ �, generated uniformly at random for each sample.

In the first simulation setting, the expression of gene k in

sample j is simulated from NB rj;
1

1þexp �xT
j
bk

� �� 	
, where for sample

j 2 f1; 2; . . . ; Jg, the covariate vector is xj ¼ xj0;xj1; xj2; xj3

� �
. The

variable xjv represents the value of covariate v for sample j. In the

first simulation setup, v¼0 corresponds to the intercept term, and

v¼1, 2, 3 correspond to condition, gender and dosage covariates re-

spectively. We use a binary scheme for coding the categorical covari-

ates xj1 and xj2. More precisely, xj1 ¼ 0 if no treatment has been

applied to sample j, and xj1 ¼ 1 if this sample is under treatment.

Also, xj2 ¼ 0 if sample j belongs to a female individual and xj2 ¼ 1 if

it belongs to a male.

The effect of covariate v on the expression level of gene k is

adjusted through the regression coefficient bkv. We simulate this co-

efficient according to a zero-mean normal distribution with preci-

sion parameter av. For the condition covariate, we draw the

precision parameter as a1 � Gamma 1:7e5; 1=1e4ð Þ. Under this set-

ting, the absolute value of bk1 is larger than 0.4 with probability

10%. Thus on average, 10% of the genes exhibit an expression fold-

change of at least exp bk1ð Þ ¼ 1:5 between two different conditions.

In subsequent ROC and PR analyses, we consider gene k as true dif-

ferentially expressed if jbk1j � 0:4 and not differentially expressed

otherwise. The other three precision parameters are simulated as

follows:

a0 � Gamma 2:7e6; 1=1e4ð Þ

a2 � Gamma 3e3; 1=1e4ð Þ

a3 � Gamma 3e5; 1=1e4ð Þ;

(13)

where a0 determines the baseline gene expression independent of ex-

perimental factors, and a2 and a3 adjust the heterogeneity of gene

expressions due to the gender and dosage factors, respectively.

Finally, to simulate the effect of different sequencing depths for dif-

ferent samples, the dispersion parameters rj are independently drawn

from Gamma 50; 1=5ð Þ, which is close to the posterior distribution

of rj inferred from the Beijing Genomics Institute (BGI) dataset of

the SEQC benchmark.
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In the first simulation setting, the gene-expression counts for a

total of K ¼5000 genes and J ¼12 samples, with three males and

three females in each of the two conditions, are generated. We evalu-

ate the performance of BNB-R based on this synthetic data, and

compare it to edgeR, DESeq2 and voom. For BNB-R, model

parameters are inferred via Gibbs sampling, where in each run of

the algorithm, we collect 1000 MCMC samples after 1000 burn-in

iterations and then rank the genes using the symmetric KL-

divergence measure developed in Section 2.2.2. For edgeR, DESeq2

and voom, we follow the standard analysis pipelines and rank the

genes using the computed P-values.

Panels in the top row of Figure 1 illustrate the ROC and PR

curves of BNB-R, edgeR, DESeq2 and voom under the first simula-

tion setting, when all covariates are employed. The AUCs of these

curves are presented in Table 1. The panels in the bottom row of

Figure 1 represent the performance of BNB-R, edgeR, DESeq2 and

voom on the synthetic data when using the condition covariate as

the single experimental factor, while neglecting all the other covari-

ates. Table 2 provides the AUCs of the curves in the latter scenario.

Methods that exploit covariates’ information clearly outperform the

ones that only rely on the condition factor to identify differentially

expressed genes, in terms of both the ROC and PR curves. This ob-

servation demonstrates the benefit of incorporating available experi-

mental design information to better capture the heterogeneity of

gene expression counts. In particular, BNB-R with covariates has

the best performance with a significant margin over all the other

algorithms. This may be explained by the hierarchical structure of

BNB-R, where borrowing information from all genes to estimate

precision parameters makes it robust in modeling overdispersed

count data. In addition, we have also applied the BNBP and GNBP

methods (Dadaneh et al., 2017), which use only the condition factor

to determine DE, to the synthetic data in this simulation (results not

included in Fig. 1 to not overwhelm it but it can be found in the

Supplementary Material). These two methods also perform closely

to the algorithms exploiting only the condition factor, confirming

the observation that integrating additional covariates into a DE

model can achieve more accurate and robust DE analysis for

genotype-phenotype association.

3.1.2 Sensitivity to experimental design

To assess the sensitivity of BNB-R to the experimental design as-

sumption employed in the DE analysis model, we consider a simula-

tion setting with a more complex combination of experimental

factors, including an interaction term between the gender and condi-

tion covariates. Similar to the previous simulation, the expression

of gene k in sample j is drawn from NB rj;
1

1þexp �xT
j
bk

� �� 	
, where for

sample j ¼ 1; 2; . . . ; J, the covariate vector is xj ¼ xj0; xj1; . . . ;xj4

� �T
.

In this simulation setup, the elements xjv in the covariate vector

for v ¼ 0; 1; ::; 4 correspond to intercept, gender, condition, dosage

and the interaction between gender and condition, respectively. We

employ the same binary coding scheme for the categorical covariates

as those used in the previous simulation setting. Thus, for example,

xj4 ¼ 1 if sample j has been under treatment and belongs to a male

individual, and xj4 ¼ 0 otherwise. We also generate the dosage cova-

riates xj3 from a uniform distribution in interval 0;1½ �.
The presence of the interaction term in the regression model

leads to the dependence of gene DE on both the condition and gen-

der covariates. More precisely, in this simulation setting, the

expected expression fold-change of gene k across two treatment con-

ditions, for a female is exp bk2ð Þ and for a male is exp bk2 þ bk4ð Þ.
Hence in ROC and PR analyses, gene k with jbk2j > 0:4 is consid-

ered as truly differentially expressed across conditions for females

and when jbk2 þ bk4j > 0:4, it is considered as truly differentially

expressed across conditions for males. We simulate the regression

coefficient bkv according to a zero-mean normal distribution with

the precision parameter av, and we place the following Gamma dis-

tributions on the precision parameters:

a0 � Gamma 2:7e6; 1=1e4ð Þ

a1 � Gamma 1e6; 1=1e4ð Þ

a2 � Gamma 1:8e5; 1=1e4ð Þ

a3 � Gamma 3e5; 1=1e4ð Þ

a4 � Gamma 1:2e6; 1=1e4ð Þ:

(14)

RNA-seq counts for a total of K ¼5000 genes and J ¼12 sam-

ples, with three males and three females in each treatment condition,

are generated. In this synthetic dataset, 516 genes are differentially

expressed across treatment conditions for females and 653 genes

are differentially expressed for males. First, we evaluate the
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Fig. 1. Left panel: ROC curve, Right panel: PR curve. Performance comparison

of different methods in detecting differentially expressed genes generated

under a NB regression model with covariates: condition, gender and dosage.

Panels in the top row correspond to the case that full covariate information is

used in DE analysis. Panels in the bottom row correspond to the case that

only condition covariate is used in DE analysis

Table 1. AUC of ROC and PR curves presented in the panels, in the

top row of Figure 1

Method AUC-ROC AUC-PR

BNB-R 0.7952 0.3922

edgeR-GLM 0.7563 0.3622

DESeq2 0.7533 0.3587

voom 0.7450 0.3499

Table 2. AUC of ROC and PR curves presented in the panels, in the

bottom row of Figure 1

Method AUC-ROC AUC-PR

BNB-R 0.7343 0.3188

edgeR-GLM 0.7302 0.3087

DESeq2 0.7193 0.2999

voom 0.6832 0.2617
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performance of BNB-R, edgeR, DESeq2 and voom on this synthetic

data, assuming that the true design matrix used for data generation

is provided for all algorithms. Differentially expressed genes are

identified using the same protocol as described in the previous sub-

section. The top and middle panels of Figure 2 illustrate the ROC

and PR curves for the detection of differentially expressed genes

across conditions in males and females, respectively. BNB-R clearly

outperforms the other methods in terms of both ROC and PR, for

gender-specific DE analyses.

Next, instead of assuming knowing the true underlying data gen-

eration mechanism, we exclude the interaction term used for data

generation for DE analysis with different methods and use the cova-

riate vector xj ¼ xj0;xj1;xj2;xj3

� �
for sample j, where the elements

xjv for v ¼ 0; 1;2; 3 represent the same covariates as in the data gen-

eration procedure. As a consequence of using this design, detected

differentially expressed genes are not specific to a gender. Hence to

evaluate the performance of BNB-R, edgeR, DESeq2 and voom

when using this design matrix, we need to compare the detected

genes to those that are truly differentially expressed across condi-

tions independent of gender. In this simulation, there are 400 genes

that are differentially expressed across the treatment conditions for

both male and female groups. We consider these genes as truly dif-

ferentially expressed independent of gender, and the rest of the genes

as not differentially expressed. The ROC and PR curves plotted

based on this setting are shown in the bottom row of Figure 2. In

this case, BNB-R again exhibits the best performance in terms of the

ROC and PR curves, confirming its superior performance even if the

true mechanism of data generation is not fully known.

3.2 SEQC benchmark
In this section, we evaluate the performance of the proposed BNB-R

method using SEQC benchmark (SEQC/MAQC-III Consortium,

2014). Specifically, we use the RNA-seq data from BGI provided in

the R package SEQC on Bioconductor (Gentleman et al., 2004),

containing the counts for about 26 000 genes. In our experiments,

we employ sample groups A and B, which are derived from the

Agilent’s Universal Human Reference RNA and Life Technologies’

Human Brain Reference RNA cell lines, respectively. We collect the

counts from the first flow cells of the sequencing machines on five

replicates for each group.

To evaluate the DE analysis methods, we note that in the

SEQC project, the same RNA samples for a comprehensive group

of control genes are analyzed based on quantitative Reverse

Transcription Polymerase Chain Reaction (qRT-PCR) using

TaqMan assays (Joyce, 2002), which is referred as the TaqMan

benchmark data (Maqc Consortium and Others, 2006; SEQC/

MAQC-III Consortium, 2014). More precisely, for sample groups A

and B, the expression intensity values of 955 selected control genes

have been derived in the TaqMan qPT-PCR analysis for sequencing

benchmarking. In the absence of the knowledge on the genes that

are truly differentially expressed across different conditions, we

follow the approach in Rapaport et al. [2013] to threshold the qRT-

PCR expression ratios across different conditions at a certain value

to define the ground-truth set of differentially expressed genes.

Based on these 955 genes in the TaqMan data, we evaluate the per-

formance of different DE analysis pipelines.

Before applying edgeR, DESeq2 and voom to this dataset, we

first perform a SVA to adjust for un-modeled artifacts such as batch

effects (Leek, 2014). More precisely, we use svaseq function of R

package sva (Leek et al., 2012) with two introduced SVs. In the

downstream DE analysis, we use these two SVs as extra confound-

ing factors for edgeR, DESeq2 and voom. Our experiment shows

that incorporation of the SVs slightly improves the performance of

these methods (Supplementary Fig. S5). Note that although for

BNB-R no explicit experimental factor other than a sample’s group

is used in this experiment, our results suggest the performance of

the proposed BNB-R DE analysis method is superior to those of sto-

chastic processes inspired models in BNP-Seq, all of which achieve

better ROC and PR curves than edgeR, DESeq2 and voom in con-

junction with SVA, as described in detail below.

While truly differentially expressed genes are unknown for the

SEQC RNA-seq data, we rely on the qRT-PCR expression intensity

of the 955 genes in the TaqMan data and set different cut-offs for

the binary logarithm (log2) of the qRT-PCR expression ratio to de-

fine ‘truly’ differentially expressed genes. We increase this log2 cut-

off value gradually from 0.5 to 2, and calculate both AUC-ROC and

AUC-PR. For the analysis of the dataset BGI on a single cluster node

with Intel Xeon 2.5 GHz E5-2670 v2 processor, it took around 2 h

for BNB-R method with 2000 MCMC iterations. The posterior dis-

tributions of the regression coefficients are used to assess DE. In

addition to the methods used for synthetic data, we also include

BNBP and GNBP (Dadaneh et al., 2017), both of which are genera-

tive models designed specifically for a single factor setting. As shown

in the bottom panels of Figure 3, the BNB-R method outperforms all

the other methods in both ROC and PR analyses, followed very

closely by BNBP and GNBP. Note that the performance gains of the

three generative models over the other methods become more sig-

nificant as one increase the log2 cut-off for the qRT-PCR expression

ratio, which reduces the number of genes that are considered as truly

differentially expressed.

To further investigate the experimental results, we fix the log2

cut-off value at 2 for the qRT-PCR expression intensity of the 955

genes in the TaqMan data, and illustrate the ROC and PR curves for

the BGI dataset in the top panels of Figure 3. It is clear the BNB-R

method along with GNBP and BNBP not only have higher AUC-ROC

0 0.5 1
FPR0

0.5

1

TP
R

0 0.5 1
recall0

0.5

1

pr
ec

is
io

n
0 0.5 1

FPR0

0.5

1

TP
R

0 0.5 1
recall0

0.5

1

pr
ec

is
io

n

0 0.5 1
FPR0

0.5

1

TP
R

0 0.5 1
recall0

0.5

1
pr

ec
is

io
n

BNB-R edgeR-GLM DESeq2 voom

Fig. 2. Left panels: ROC curve, Right panels: PR curve. Performance compari-

son of different methods in detecting differentially expressed genes gener-

ated under the NB regression model with covariates: condition, gender,

dosage and interaction of condition and gender. The panels in the top and

middle rows correspond to differentially expressed genes across conditions

for males and females, respectively. The panels in the bottom row corres-

pond to differentially expressed genes for the case that full covariate informa-

tion is not employed, with the interaction term excluded from DE analyses by

all the methods
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and AUC-PR, but also outperform edgeR, DESeq2, and voom used

together with SVA in almost all regions of the ROC and PR curves.

3.3 Case study: Th17 cell differentiation
To further illustrate its potential biological significance when inte-

grating other covariates in BNB-R for biomarker identification

applications, we provide a case study with our BNB-R method on a

RNA-seq dataset of early human T helper 17 (Th17) cell differentia-

tions and T-cell activation (Th0). Th17 cells play an essential role in

the pathogenesis of auto-immune and inflammatory diseases, and

have been the focus of many recent research efforts (Tuomela et al.,

2012). In particular, the knowledge of the early phase of Th17 dif-

ferentiation helps to gain insight into the process of signal propaga-

tion through various pathways and gene regulatory networks (Äijö

et al., 2014). We use the RNA-seq dataset of Tuomela et al. [2016]

and Chan et al. [2016], which contains gene expression profiling of

Th0 and Th17 cells at the following five time points: 0 h, 12 h, 24 h,

48 h and 72 h after cell activation and stimulation, with three bio-

logical replicates at each time point. The data is obtained from Gene

Expression Omnibus, with accession GSE52260.

The design matrix of the analysis is formed from an additive

model formula as in our simulation studies, accounting for condi-

tion and time point factors. More precisely, for sample j ¼ 1; 2; . . . ;

15 the covariate vector is xj ¼ xj0;xj1;xj2

� �T
, where xj0 is the inter-

cept, xj1 is the cell category (i.e. Th0 versus Th17) and xj2 is the sam-

ple time point. We apply BNB-R to identify differentially expressed

genes, where after 1000 burn-in iterations, 1000 posterior samples

are collected to calculate the symmetric KL-divergence between the

posterior distributions of exp bk0ð Þ and exp bk0 þ bk1ð Þ to rank the

genes. The run-time of BNB-R with 2000 MCMC sampling itera-

tions for the Th17 dataset on the cluster node with configuration

provided in Section 3.2 is around 6 h.

We consider the top 100 genes ranked by the symmetric KL-

divergence and perform Gene Ontology (GO) analysis using LAGO

(Boyle et al., 2004) software (available at http://go.princeton.edu/

cgi-bin/LAGO), focusing on the ontology of biological processes.

The top five significantly enriched GO terms discovered by LAGO,

with their corresponding adjusted P-values shown in Table 3, illus-

trating the association between the differentially expressed genes

and immune system activation and response to stimulus.

In a closer look at the results, the top differentially expressed

gene identified by BNB-R is gene COL6A3, an important organizer

of the extracellular matrix proteins, contributing to adipose tissue

inflammation (Pasarica et al., 2009). Also, the up-regulation of

COL6A3 gene in Th17-polarizing cells is confirmed by microarray

and RT-PCR assays in Tuomela et al. [2012]. The third ranked

gene, Leukemia Inhibitory Factor (LIF), belongs to the IL-6 family

of cytokines and resides within the core regulatory circuitry of

T cells (Metcalfe, 2011). The fourth gene, RORC, is a Th17 lineage-

specific transcription factor (Diveu et al., 2009), whose DE is also

verified in the microarray study in Tuomela et al. [2012]. In add-

ition, Western blotting results in Tuomela et al. [2012] show that

genes BATF, CTSL1, VDR, KDSR, ATP1B1 and BASP1 were highly

expressed in Th17 cells compared with their expression in Th0 cells

at various time points during the first 3 days of polarization. The

rankings of these genes obtained by our BNB-R are 11, 13, 15, 20,

24 and 41, respectively, which confirms the significance of their ex-

pression changes. Moreover, microarray studies of Tuomela et al.

[2012] found out the up-regulation of CXCR5 and LMNA in CD4þ
T cells cultured under Th17-polarizing conditions compared with

Th0 cells, and flow cytometric detection of CD52 at 48 h and 72 h

showed down-regulation of this protein in CD4þ T cells cultured

under Th17-polarizing conditions. These genes are ranked 14, 44

and 60, respectively, in our DE analysis, supporting their potential

roles in Th17 cells differentiation process.

Next, to examine how incorporating the time course information

changes the DE analysis results, we apply BNB-R on the Th17 data-

set, considering only the condition factor but ignoring the temporal

information of different samples. Although out of the top 100 differ-

entially expressed genes, there are 84 genes common between these

two differential analysis results, the GO analysis, when the time fac-

tor is neglected, results in a total of 36 significantly enriched terms

with known annotations, which is less than 40 annotated enriched

terms when including the time factor. Some of the GO terms missed

include cytokine-mediated signaling pathway, positive regulation of

JAK-STAT, STAT cascades and T cell activation involved in immune

response, which are all related to the immune system and can poten-

tially lead to new hypotheses. In addition, BNB-R considering the

time factor leads to smaller P-values overall in comparison to the

analysis without time information, and hence more significantly

enriched GO terms. For instance, the adjusted P-value obtained for

T cell differentiation by the former analysis is 1:910e� 4, while the

latter returns 2:554e� 3.

4 Conclusions

We propose a BNB-R method for DE analysis of sequencing

count data. On one hand, BNB-R is capable of handling complex

experiments involving multiple factors. On the other hand, it does

not require an ad-hoc normalization pre-processing step. By taking

advantage of novel data augmentation techniques, BNB-R possesses
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Fig. 3. Top row: ROC and PR curves for a fixed cut-off, Bottom row: AUC of

ROC and PR curves for different cut-off values. Performance comparison of

different methods in detecting differentially expressed genes on real-world

benchmark RNA-seq data from the SEQC project. edgeR, DESeq2 and voom

are applied in conjunction with SVA with two SVs

Table 3. Top five enriched GO terms associated with top 100

differentially expressed genes in TH17 dataset detected by BNB-R

GO-ID Term P-value

GO: 0002376 Immune system process 4.74695e–13

GO: 0046649 lymphocyte activation 3.33415e–11

GO: 0006955 Immune response 3.90728e–11

GO: 0045321 Leukocyte activation 1.6007e–10

GO: 0050896 Response to stimulus 1.89798e–10
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efficient closed-form Gibbs sampling update equations and ranks

differentially expressed genes based on a symmetric KL-divergence

measure, exploiting the full posterior distributions of the model

parameters. Experimental results on both synthetic and real-world

RNA-seq data demonstrate the state-of-the-art performance of

BNB-R in DE analysis of RNA-seq data.
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