
Sequence analysis

Generic accelerated sequence alignment in

SeqAn using vectorization and multi-threading

René Rahn1,*, Stefan Budach2, Pascal Costanza3, Marcel Ehrhardt1,

Jonny Hancox4 and Knut Reinert1,2,*

1Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany,
2Otto-Warburg-Laboratory, RNA Bioinformatics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany,
3ExaScience Lab, IMEC, 3001 Leuven, Belgium and 4Health & Life Sciences, Intel Corporation, SW7 2AZ London, UK

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on January 23, 2018; revised on March 29, 2018; editorial decision on April 27, 2018; accepted on May 2, 2018

Abstract

Motivation: Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics

analyses. In this paper, we present a generically accelerated module for pairwise sequence align-

ments applicable for a broad range of applications. In our module, we unified the standard dynamic

programming kernel used for pairwise sequence alignments and extended it with a generalized

inter-sequence vectorization layout, such that many alignments can be computed simultaneously

by exploiting SIMD (single instruction multiple data) instructions of modern processors. We then

extended the module by adding two layers of thread-level parallelization, where we (a) distribute

many independent alignments on multiple threads and (b) inherently parallelize a single alignment

computation using a work stealing approach producing a dynamic wavefront progressing along

the minor diagonal.

Results: We evaluated our alignment vectorization and parallelization on different processors,

including the newest IntelV
R

XeonVR (Skylake) and IntelV
R

Xeon PhiTM (KNL) processors, and use

cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genu-

inely improve the performance of vectorized alignments. We could run single alignments 1600

times faster on the Xeon PhiTM and 1400 times faster on the XeonVR than executing them with our

previous sequential alignment module.

Availability and implementation: The module is programmed in Cþþusing the SeqAn (Reinert

et al., 2017) library and distributed with version 2.4 under the BSD license. We support SSE4,

AVX2, AVX512 instructions and included UME: SIMD, a SIMD-instruction wrapper library, to ex-

tend our module for further instruction sets. We thoroughly test all alignment components with all

major Cþþ compilers on various platforms.

Contact: rene.rahn@fu-berlin.de or knut.reinert@fu-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aligning biological sequences is among the most prominent algorith-

mic components in bioinformatics pipelines and tools. It is part of

various applications in genomics, such as adaptor trimming (Roehr

et al., 2017), read mapping (Langmead and Salzberg, 2012; Li,

2013; Siragusa et al., 2013; Weese et al., 2012), genome assembly

(Holtgrewe et al., 2015; Li et al., 2012b), variant detection (Emde

et al., 2012; Rausch et al., 2012), local alignment (Kehr et al., 2011)

as well as multiple sequence alignments (Notredame et al., 2000;

Rausch et al., 2008) and in proteomics, e.g. protein database search

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3437

Bioinformatics, 34(20), 2018, 3437–3445

doi: 10.1093/bioinformatics/bty380

Advance Access Publication Date: 3 May 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/


(Buchfink et al., 2015; Hauswedell et al., 2014; Ye et al., 2011) and

many more. This shows that there is a large range of applications

for the alignment problem which differ in several aspects [scoring

schemes (Pearson, 2013), banding conditions (Chao et al., 1992),

etc.] but all share in the core the same algorithm.

In its standard form, the algorithm was already described in

Needleman and Wunsch (1970). It is based on dynamic program-

ming (DP) and computes the sequence alignment for a given pair of

sequences for the so-called linear gap costs. Gotoh (1990) refined

the DP algorithm to allow affine gap costs. The algorithm consists

of an initialization step and a recursion followed by a traceback to

obtain the final alignment.

In the following description, we will concentrate on the most

common variant, the case of affine gap costs. Given two sequences

s1 and s2, with js1j ¼ n and js2j ¼ m over an alphabet R, a score

function rða; bÞ, which compares two characters a and b, with

a; b 2 R and gap penalties xo for opening a gap and xe for extending

a gap. A sequence of length 0 is called the empty sequence and

denoted as �. Further, let s½i� 2 R be the ith character of a sequence s.

In this work we assume zero-based indices when working with

sequences. A global alignment between s1 and s2 using affine gap

costs can be then computed as follows:

The best alignment can then be determined by inspecting the

lower, rightmost cell of M, i.e. M½n;m�. The total runtime of the al-

gorithm is Oðn�mÞ, while the score, without the traceback, can be

computed in OðmÞ space.

Given the many implementation variants, it would be prudent to

have a common core computation in a library that (a) can be the

basis for the various versions of pairwise alignment and (b) which

can be parallelized. We developed SeqAn (Döring et al., 2008;

Reinert and Gogol-Döring, 2009; Reinert et al., 2017), a general

purpose sequence library written in Cþþ containing many efficient

and generic algorithms and data structures for various sequence

analysis tasks, e.g. alignments, online searches, indices and offline

searches, etc. SeqAn’s alignment module implements among the

standard DP algorithms many efficient variants of the aforemen-

tioned DP problem. Table 1 assembles an overview over the rich fea-

ture set of SeqAn’s alignment module.

This generic implementation makes SeqAn’s alignment module

uniquely versatile and ready for use in many of the above-mentioned

applications. However, the quadratic run time of the DP algorithms

can quickly become the bottleneck in processing large datasets.

Thus, in the past decade it was of great interest to accelerate the

standard DP algorithms on modern hardware or to run them on

HPC (high-performance computing) environments.

Different techniques have been developed and optimized over

time to accelerate the DP algorithm on various platforms. In general

we differentiate between the two levels of parallelism: thread level,

and vector level. Thread-level parallelization refers to the procedure

of splitting a process into multiple threads and concurrently execut-

ing them on multiple cores on one processor. Vector-level

parallelization is the process of simultaneously executing a single in-

struction on multiple data (SIMD) using dedicated register instruc-

tions, also called SIMD instructions. Here the data are packed into

extended registers of sizes up to 512 bit such that special arithmetic-

al, logical, bit or other operations can be applied on the data in par-

allel (Intel, 2016; Jeffers et al., 2016).

The complexity of both approaches for the DP problem depend

on the underlying execution layout. For sequence alignments there

are two main execution layouts: The inter-sequence and the intra-

sequence layout. The former can be used when many sequence align-

ments can be computed. The problem is then trivially parallelizable,

since there are typically no dependencies between the different align-

ment instances. The latter focuses on accelerating a single-alignment

computation and has to deal with the data dependency that origi-

nates from the recursion shown in Figure 1. Interestingly, both lay-

outs can benefit from thread-level and vector-level parallelization.

1.1 Previous work
Much effort has been put into exploring optimal vectorization

strategies for alignment algorithms. Several intra-sequence execution

layouts of the Smith-Waterman algorithm (local alignment) were

investigated, vectorizing either over the minor diagonals of the align-

ment matrix (Wozniak, 1997), or along the query sequence by

means of a sequential (Rognes and Seeberg, 2000) or striped (Farrar,

2007) vector pattern. As an alternative, the inter-sequence layout

aligns a single query sequence against a vector of subject sequences

(Alpern et al., 1995; Rognes, 2011) making each alignment

Table 1. The different configuration options for our pairwise sequence alignment module

Algorithm Global Local Free-end gaps Banded global Banded local Banded free-end gaps

Gap function Linear gaps Affine gaps Dynamic gaps

Traceback Score only Single best All best Right gap projection Left gap projection

Specialized Split breakpoint Banded chain alignment Affine X-drop Hirschberg Myers’ bitvector Myers’ Hirschberg

Note: We implemented the standard global and local alignment and a free end-gap version, where every border of the DP matrix can be configured individually

for free end-gaps, as well as the banded version of all of them. Our current implementation supports three different gap functions and five traceback options

reporting only the score (the traceback is completely disabled), one of the traces of the optimal solution or all of them, while for the latter option an ambiguous

gaps placement can be resolved by either a left or right projection (see Supplementary Fig. S2). All these options can be combined arbitrarily creating an exception-

ally comprehensive repertoire of DP algorithms containing more than 500 variants. The fourth row shows some special DP implementations available in SeqAn.

Most of them are implemented by utilizing our unified DP core (see Section 1 in the Supplementary Material)

Fig. 1. Pseudocode for computing a pairwise sequence alignment with affine

gap costs

3438 R.Rahn et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data


computation independent and thus achieving potentially higher

speedups than the intra-sequence scheme (Daily, 2016; Rucci et al.,

2017).

Thread-level parallelization for the inter-sequence layout can be

applied if many alignments need to be computed, which is a com-

mon use case in bioinformatics pipelines. The workload can be eas-

ily partitioned in chunks and then computed concurrently on the

different cores of the multi-core processor, manycore processor or

accelerator (Blazewicz et al., 2011; Daily, 2016; Rognes, 2011). For

the thread-level, intra-sequence layout, strategies have been imple-

mented that are similar to the intra-sequence vectorization layout,

including a wavefront-based model progressing along the minor di-

agonal (Edmiston et al., 1988; Liu et al., 2001) a striped (Li et al.,

2012a) or a sequential layout (Khajeh-Saeed et al., 2010).

Most of the work focussing on vector-level and thread-level par-

allelization for alignment algorithms was done in the context of

accelerating the Smith-Waterman kernel for either protein database

searches or pairwise sequence alignments of long input sequences on

either CPUs with SIMD vectorization (Farrar, 2007; Rognes, 2011;

Rognes and Seeberg, 2000), GPUs (Khajeh-Saeed et al., 2010;

Korpar and �Siki�c, 2013; Li et al., 2012a; Liu et al., 2013; Sandes

and de Melo, 2013), cell broadband engines (Sarje and Aluru, 2008;

Szalkowski et al., 2008) or on more recent architectures like the

Xeon PhiTM from IntelV
R

(Liu and Schmidt, 2014; Liu et al., 2014;

Rucci et al., 2017). However, the algorithmic components are hard

to reuse since they are hidden within these applications and many

tools work with outdated instruction sets. Hence, it is crucial for the

bioinformatics community to expose these algorithms as a reusable

library, which is well maintained, offers an user-friendly and stable

application programming interface (API), and supports various

kinds of target applications.

The SSW library (Zhao et al., 2013) was one of the first general-

purpose libraries that implemented the striped vectorization layout by

Farrar (2007) for local alignments only. Recently, the Parasail

library was published, which implements several different strategies

for the intra-sequence vectorization layout and also extended them for

the global and semi-global case (Daily, 2016). Libssa (Frielingsdorf,

2015) and Opal, formerly SWIMD (�So�si�c, 2014), are two software

libraries that implement an inter-sequence vectorization layout follow-

ing the approach of Rognes (2011). They both offer local and global

alignment computations. Opal also implements two variations of the

semi-global alignment with different free end-gap settings. Libssa,

similar to SSW, computes also a trace of the optimal alignment after

the highest scoring subject sequence has been identified. All mentioned

libraries support SIMD instructions for SSE4. Parasail, Opal and

Libssa also implement the AVX2 instructions and only Parasail add-

itionally supports a first version of 512bit instructions, known as

IntelV
R

IMCI (initial many core instructions) only available for the first

generation of Xeon PhiTM coprocessors (KNC), and AltiVec instruc-

tions. All libraries support an additional integer saturation mode,

which executes the alignment with the smallest possible bit range and

reruns alignments with a higher bit range, if an integer underflow/

overflow was detected during the matrix computation. While Parasail

and SSW are actively developed, it seems that Opal and Libssa are not

further maintained.

1.2 Our contribution
One of our major design goals for SeqAn is the genericity of data

structures and algorithms, while still being highly efficient. With this

key paradigm in mind, we redesigned and refactored SeqAn’s align-

ment algorithm such that all different DP variants listed in Table 1

are unified in one central DP kernel. We make use of template meta-

programming (Vandevoorde and Josuttis, 2002) and tag dispatching

to select the most performant execution models for the chosen align-

ment configuration at compile time. Thus, we reduce the overhead

of redundant kernel implementations, which makes the entire code

easy to maintain and to extend, e.g. by adding a new gap function

like the affine-like dynamic gap model (Urgese et al., 2014) or by

adding a banded version of the algorithms. This versatility is the first

main contribution of this work.

In addition, we extended the DP kernel to generically support an

inter-sequence vectorization layout (see Fig. 2). While existing meth-

ods only support one-versus-many alignments (Frielingsdorf, 2015;

Rognes, 2011; �So�si�c, 2014), we generalized the layout to also sup-

port many-versus-many alignments. By implementing a templatized

vector alphabet type, which wraps either SSE4, AVX2 or AVX512

instructions we were able to inherently vectorize almost all of the

DP features mentioned in Table 1. Furthermore, we implemented a

wrapper for the UME::SIMD library (Karpi�nski and McDonald,

2017), which allows our alignment kernels to be accelerated with

the IMCI (https://software.intel.com/en-us/node/694272, accessed

November 13, 2017), NEON (ARM, 2007) or AltiVec (Freescale

Semiconductor, 1999) instruction sets too.

On top of our vectorized DP kernel, we implemented two layers

of thread-level parallelization, which can be selected by the user.

The first follows the inter-sequence layout, which assumes that

many independent alignments can be computed, favorably with

equal-sized sequences, which is usually the case when working with

reads from various sequencing technologies (Metzker, 2010). The

second implements an intra-sequence layout based on a dynamic

wavefront model using a dependency graph on sub-alignments in

combination with a work stealing algorithm (Blumofe and

Leiserson, 1999) rather than parallelizing the for-loop over the

minor diagonals (Edmiston et al., 1988; Liu and Schmidt, 2014; Liu

et al., 2001, 2014). We then combined the vectorized DP kernel

with the thread-level parallelization to multiply the performance

gains from both acceleration methods.

Finally, we extended the wavefront model by a generic alignment

scheduler in order to asynchronously process many alignments of ar-

bitrary size. Conceiving and implementing these features as part of

SeqAn’s DP unit creates a truly generic intra- and inter-sequence

accelerated alignment module that runs on any general-purpose

multi-core CPU as well as on manycore processors such as the new

Xeon PhiTM (see Fig. 3).

In this paper, we will describe the design of the wavefront

method as well as its adaption to vectorized DP kernel and the gen-

eric alignment scheduler. We will then compare our implementation

to Parasail for three different use cases using the newest IntelV
R

pro-

cessor Skylake.

In addition, we provide a detailed description of the implementa-

tion of the unified generic DP kernel and which design strategies

were realized to achieve high efficiency in the Supplementary

Material. Further, we will explain the adaptions made to vectorized

and parallelized DP implementation based on the unified DP kernel.

Then evaluate the different alignment parallelization modes on dif-

ferent use cases using three CPU architectures. We will then investi-

gate the three use cases from this paper with respect to three

different processor architectures and its implications for SeqAn’s

alignment library.

In general, we will show that our methods outperform existing

strategies for all applied use cases on all tested platforms by factors

from 3 to 17 and that we could speedup alignment computations up

to a factor of 1600 compared with a sequential scalar execution. We

Generic acceleration of pairwise sequence alignments 3439

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://software.intel.com/en-us/node/694272, accessed November 13, 2017
https://software.intel.com/en-us/node/694272, accessed November 13, 2017
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data


further show first results for a vectorized sequence alignment using

the AVX512-BW instruction, which extends the AVX512 instruc-

tion set with byte and word-packed integer operations (Intel, 2016).

2 Materials and methods

In the subsequent sections, we will describe our generic vector- and

thread-level parallelization for the alignment module, where we take

advantage of the generic design of the DP kernel.

2.1 Vector-level parallelization
In our vectorization scheme, we follow the inter-sequence layout, in

which many alignments are executed in one vector unit concurrent-

ly. Opposed to known implementations (Rognes, 2011), we general-

ized the inter-sequence vectorization layout, to calculate alignments

in a many-to-many fashion, i.e. we allow multiple query sequences

to be aligned against multiple subject sequences packed in one

vector.

Figure 2 shows this layout in a toy example, where sequence hi is

aligned against sequence vi for i 2 ½0 . . . 4Þ. Here, we compute in a

single pass over the alignment matrix 4 alignments using SIMD

instructions. The vectorized DP kernel is entirely implemented

by means of the generically unified DP core, allowing us to vectorize

most of the variants listed in Table 1. In Section 2 of the

Supplementary Material, we give a more detailed description of the

adaptions we made to the original version of the unified DP core.

2.2 Thread-level parallelization
To target a maximal number of bioinformatic domains, we imple-

mented two parallelization schemes, following the inter-sequence

and the intra-sequence layout. The former assumes a set of pairwise

sequence alignments to be computed. In this case, the set of pairwise

alignments will be split into subsets that can be computed concur-

rently on multiple cores. The latter approach follows the wavefront

parallelization model, where a single alignment is parallelized along

its minor diagonal (Liu et al., 2014). However, in contrast to current

implementations, we use a more generic framework that utilizes a

dependency graph in combination with a work stealing approach to

generate a dynamic wavefront model.

2.2.1 Dynamic wavefront parallelization

Similar to Liu et al., we split the DP matrix into tiles of size b � b,

where b is an user configurable constant, producing many sub-

alignments. There are q ¼ djs1 jþ1
b e many tiles in horizontal direction

and r ¼ djs2 jþ1
b e tiles in vertical direction. We then generate a directed

acyclic dependency graph G ¼ fV;Eg with V being the set of nodes,

where each v 2 V maps to exactly one tile ti;j, with i 2 ½0; qÞ and

j 2 ½0; rÞ and E being the set of directed edges connecting those tiles

in G (see Supplementary Fig. S3). In particular, we add an outgoing

edge for every node v, such that every tile ti;j is connected with its

successors tiþ1;j and ti;jþ1. Except for the nodes mapping to ti;r�1;

tq�1;j and tq�1;r�1, which have an out-degree of 1, respectively 0, all

nodes v are connected to exactly two successor nodes. We assign every

node v a dependency count initialized to its corresponding in-degree.

To put it differently, the mapped tile ti;j of node v is scheduled

for execution if all its predecessors have finished their computation,

i.e. v’s dependency count equals 0. We implemented a thread-safe

task scheduler, which allows threads to add and pull tasks from the

scheduler concurrently. The parallel execution of the alignment is

triggered when the source mapping to t0;0 is scheduled for execution

by the parent thread. Due to a work stealing mechanism the

execution of the tiles follows a dynamic wavefront progressing from

the source toward the sink of the dependency-graph (see Fig. 3). A

condition variable is used to broadcast that the computation of the

sink (tq�1;r�1) has completed. The parent thread waits until it gets

notified by its associated condition variable and passes the result to

a user-definable callback function.

Two matrix wide buffers, i.e. for the horizontal dimension (bufh),

and the vertical dimension (bufv) respectively, are used to synchronize

the state of the alignment cells with the successor nodes. Thereby, the

execution in the dependency graph guarantees that there is no race

condition on the buffer values, as it is not possible that two tiles in the

same column or same row of the dependency graph are executed con-

currently by different threads. Supplementary Figure S4 depicts the

partitioning of the DP matrix and how the buffers are accessed during

the wavefront execution.

2.2.2 Integrating inter-sequence vectorization

To gain substantial speed-ups, we take advantage of our tiling strat-

egy by gathering scheduled sub-alignments, which are by definition

independent and align them using our generalized inter-sequence vec-

torization layout described in Section 2.1. Therefore, the current

thread extracts l many sub-alignments from the task scheduler, with l

being the number of packed alignments per SIMD vector, and exe-

cutes them with our generically vectorized many-to-many alignment

core (threads 1, 2, 3 in Fig. 3). If less than l tasks are available, the

current thread extracts only one thread and computes it using the sca-

lar DP kernel, e.g. thread 4 in Figure 3. Thus, the workload is dynam-

ically split between scalar and vectorized alignments to efficiently deal

with the beginning and the end of the matrix where there might be

not enough sub-alignments available for a vectorized execution.

Due to splitting the matrix in smaller computational blocks, we

can reduce the required bit range for the score to 16 bits without

risking a score underflow/overflow for longer sequences. By sub-

tracting an offset from the buffered values in the current tile before

it is computed in the vectorized kernel and re-adding it before writ-

ing the computed values back into the corresponding buffers, each

tile can be computed with 16 bit scores as long as b is small enough.

The following formula gives an estimate for the largest possible

value of b using 16 bit ranges, where m is the positive score for

match and mm and x the negative scores for mismatch and gaps

respectively:

b <
215 � 1

m
þ 1 (1)

Fig. 2. Inter-sequence vectorization. The sequences on the left side (array-

of-structures layout) are converted into an array of SIMD vectors on the right

side (structure-of-arrays layout), i.e. the number of matrix calculations is

reduced from four to one by computing four elements packed into one SIMD-

vector simultaneously

3440 R.Rahn et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data


b < max

� 215

mm
þ 1

� 215

2 � x
þ 1

8>>><
>>>:

(2)

The largest positive score difference to the first cell can only be

reached if all elements on the main diagonal match [see Equatioin (1)].

The largest negative score depends on the settings for mm and x

[Equation (2)] and either the mismatches along the main diagonal ac-

count for the most negative distance or the summed gaps along the

horizontal and vertical direction. Note that for affine gaps the distance

must be slightly adapted but the given equation for linear gaps gives al-

ready a good estimate.

2.2.3 Generalized alignment scheduler

We implemented an asynchronous alignment scheduler that

maintains a set of processed alignments using a pool of helper

threads. Each helper thread is responsible for the preparation and

management of a single alignment, i.e., generating the dependency

graph, setting up the tile buffers, extracting the solution from the

thread-local storages and continuing the process by invoking

the user-defined callback function. The number of helper threads

can be configured at runtime and can be larger than the number of

worker threads that do the actual alignment computation.

Thus, given many alignments, it is possible to add them dynamical-

ly and to produce enough work for the wavefront model, such that

most alignments are computed in vectorized mode, resulting in

a highly scalable and extremely flexible alignment execution

framework. Figure 3 shows a simplified version of four different

alignments computed concurrently with the generalized alignment

scheduler.

2.2.4 Execution policies

Providing a flexible and user-friendly interface is a crucial concern of

SeqAn’s library design. To satisfy these requirements we implemented

an execution policy as the central data structure to configure the

options for the different parallelization strategies. The user can choose

between three modes for the thread-level parallelization: sequenced,

chunked and wavefront mode. The sequenced mode executes the

alignment without parallelization. The chunked policy splits a set of

alignments into chunks of equal size and executes the chunks concur-

rently. The wavefront mode uses the above-described dynamic align-

ment scheduler. In addition, the user can combine any of the thread-

level parallelization policies with scalar execution or vector-level par-

allelization. In the Supplementary Material, Listing S1 demonstrates

the efficiency and the usability of the execution policies.

3 Results

We implemented a benchmark application (https://github.com/

rrahn/align_bench.git (14 February 2018, date last accessed)) to

evaluate the performance of our generic vectorized and parallelized

pairwise sequence alignment module. The data for this evaluation is

stored on a separate ftp server (ftp://ftp.mi.fu-berlin.de/pub/

rmaerker/align_bench/ (14 February 2018, date last accessed)).

We evaluated three common use cases: overlap alignments of

short Illumina reads, local alignment of large-scale sequences and

semi-global alignment of PacBio reads.

For all benchmarks we used the affine gap model with a score of

6 for match, –4 for mismatch, and –1, respectively –11, for the gap

extension and gap open penalties. To be comparable with other soft-

ware we run all experiments with disabled traceback.

We compared our implementation if applicable with Parasail in

version 2.0.2 which was the most recent version available at the

Fig. 3. Generalized wavefront model to compute multiple pairwise sequence alignments split in many sub-alignments. The gray tiles are already computed. The

colored (filled) tiles are ready for execution and wait in the task scheduler for the next available thread. If a thread becomes available it tries to pick l¼4 many

sub-alignments from the scheduler and computes them vectorized. In this example this applies to thread 1, 2 and 3. The sub-alignments can come from different

alignments, e.g. the blue tiles (vertical bars) currently processed by thread 2 originate from three different alignment instances. If not enough tiles are available

the thread picks solely a single tile. Here thread 4 could grab at most three tiles and therefor continues in the scalar mode computing just one sub-alignment.

Also there is no limitation on the size of the sequences to be aligned, such that a single alignment can consist of just one tile

Generic acceleration of pairwise sequence alignments 3441

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://github.com/rrahn/align_bench.git
https://github.com/rrahn/align_bench.git
http://ftp://ftp.mi.fu-berlin.de/pub/rmaerker/align_bench/
http://ftp://ftp.mi.fu-berlin.de/pub/rmaerker/align_bench/


time of this evaluation. We also tried available applications based

on Libssa and Opal, however, both tools only work for protein

sequences and only facilitate the database search problem, such that

we had to exclude them from the benchmarks.

All benchmarks were performed on a two socket IntelV
R

XeonVR

Gold 6148 CPU (abb. SKX) with 40 physical cores at a base fre-

quency of 2.4 GHz. We tested our algorithms with SSE4, AVX2 and

AVX512 instructions. The platform run a centos 7 unix kernel. The

IntelV
R

turbo boost feature was disabled. All benchmark applications

were compiled with gþþ-7.2.0. We used the environment variable

GOMP_CPU_AFFINITY to pin each thread to the cores in a

round-robin fashion if the program used OpenMP threads. In our

wavefront model, we generically use native threads using STD’s

thread support library and programmatically pinned the threads by

accessing the native thread handlers.

In addition, we performed the benchmarks on a IntelV
R

XeonVR

E5-2650 V3 CPU (abb. HSW) with 20 cores and a IntelV
R

Xeon

PhiTM 7250 CPU (abb. KNL) with 68 cores. A detailed comparison

of the benchmarks with respect to the different architectures can be

found in Section 3 of the Supplementary Material. In the following

we will keep the analysis limited to the SKX results.

3.1 Overlap alignments of Illumina reads
In this use case we computed 12 497 500 pairwise sequence align-

ments of 150 base long Illumina single-end reads simulated with

Mason in version 2.0.8 (Holtgrewe, 2010) using chromosome 10 of

GRCH38 as the reference genome. We used the chunked execution

policy for this data on all 40 threads using 16 bit score width, which

performed best in our benchmarks and also included Parasail results

to compare both library implementations. We run SeqAn using glo-

bal, semi-global and local alignment using the non-banded and the

banded algorithm. The band was configured with a bandwidth of

16 (8 bases to either site) to represent an error rate of 5%. We com-

pared our results with the respective alignment mode of Parasail.

We tried all possible configurations and chose the one with the best

results. Note that Parasail supports SIMD vectorization only up to

AVX2, such that there is no data available for AVX512 and it also

does not support vectorized banded alignments.

The fastest algorithm was the banded version of SeqAn using

AVX512 finishing the computation in 0.24 s (AVX2: 0.4s; SSE4:

0.61s). The timings for the banded local alignment were similar:

AVX512: 0.26s; AVX2: 0.42s; SSE4: 0.74s. The banded version was

roughly three times faster than the non-banded case for the global

alignment (AVX512: 0.68s; AVX2: 1.35s; SSE4: 2.68s) as well as

for the local alignment (AVX512: 0.80s; AVX2: 1.55s; SSE4: 3.26s).

Compared with Parasail this is 5 up to 17 times faster for the global

alignment (AVX2: 4.00s; SSE4: 3.88s) and the local alignment

(AVX2: 3.96s; SSE4: 4.11s). In total SeqAn achieves a peak per-

formance of roughly 420 giga cell updates per second (GCUPS),

while Parasails peak performance was 77.86 GCUPS. In other

words, we can run about 50 million alignments per second with the

affine gap model on the respective CPU. A more detailed description

of this benchmark can be reviewed in the Supplementary Table S1.

3.2 Local alignment of large-scale sequences
In the second use case we aligned long genomic sequences locally as

described by Liu et al. (see Table 2 for a description of the used

data). We used the wavefront execution policy computing a single

pairwise alignment on all 40 threads and varied the parameter for

the block size. Table 3 presents the results for the block sizes that

achieved the best results on each platform. We did not compare

with Parasail as it cannot parallelize over a single sequence, such

that we could not produce results that completed in time.

We can observe that for smaller sequences a smaller block size

yields better results. Although D4.4M and D4.6M are over 4 Mbp

long, the vectorization adds another factor to the number of blocks

along the minor diagonal, which is 32 on the SKX. Thus, the block

size needs to be reduced in order to produce enough work, so that

all threads can execute vectorized sub-alignments. At the same time,

setting the block size too small will increase the runtime as the over-

head for initializing the vectorized kernel, e.g. gathering the respect-

ive buffer values from the selected tiles or transforming the

sequences into vectors, becomes too large in proportion to the exe-

cution time. On the SKX we observed a block size of 3000 to per-

form best for long sequences giving a peak performance of �258

GCUPS which is 1400 times faster than the sequential scalar execu-

tion. This super-linear speedup is related to caching effects and a

less-optimized scalar DP kernel. In Section 3.1 of the Supplemental

Material we evaluate these observations experimentally.

3.3 Aligning PacBio reads
The third use case involves the alignment of PacBio reads, which are

typically very heterogeneous in their length. We used a simulated

dataset using using PBSim in version 1.0.3 (Ono et al., 2013)

(Table 4 lists the PBSim configuration) and a real dataset obtained

from the bam file hg002_gr37_chr22.bam (ftp://ftp-trace.ncbi.nih.

gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_

MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_22.bam,

accessed November 14, 2017) for the genome HG002 of the

Ashkenazim trio (Zook et al., 2016). In the benchmark, we real-

igned the PacBio reads with their corresponding reference region as

if to simulate a verification step for a read mapper. The simulated

data contained 66 860 sequences with the smallest sequence having

a length 2341 bases and the longest 52 668 bases and in average a

length of 20 011 bases. The real dataset contained 277 598

Table 2. Large-scale sequences of different sizes used to evaluate

the vectorized wavefront model

ID Accession no. Length Genome description

D4.4M NC_000962.3 4 411 532 Mycobacterium tuberculosis H37Rv

D4.6M NC_000913.3 4 641 652 Escherichia coli K12 MG1655

D23M NT_033779.4 23 011 544 Drosophila melanogaster chr. 2L

D33M BA_000046.3 32 799 110 Pan troglodytes DNA chr. 22

D42M NC_019481.1 42 034 648 Ovis aries breed Texel chr. 24

D50M NC_019478.1 50 073 674 Ovis aries breed Texel chr. 21

Table 3. Performance evaluation of the vectorized wavefront align-

ment for single large-scale sequence alignments on the SKX

SKX (t¼ 40; avx512)

b time GCUPS Factor

D4.4M vs. D4.6M 2000 137.61 148.81 816.87

D23M vs. D33M 2500 3155.64 239.18 1312.96

D23M vs. D42M 3000 3831.22 252.47 1385.95

D23M vs. D50M 3000 4601.75 250.40 1374.56

D33M vs. D42M 3000 5327.20 258.80 1420.70

D33M vs. D50M 3000 6384.45 257.25 1412.15

D42M vs. D50M 3000 8147.52 258.34 1418.16

Note: The factor column is based on the GCUPS sampled for the sequential

scalar algorithm on the respective platform.

3442 R.Rahn et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data
http://ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_22.bam
http://ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_22.bam
http://ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_22.bam


sequences with the smallest sequence having a length of 42 bases

and the longest 61 989 bases and in average a length of 8238 bases.

For the simulated data we chose a block size of 2000 as trade-off

for the different sequence lengths and scheduled t� l many align-

ments in parallel to add enough work for the vectorized wavefront

model. Here, t is the number of threads and l the number of align-

ments packed into one vector according to the used instruction set

and score width. We also compared against Parasail using the scan

algorithm with fixed integer width of 32, which was the fastest con-

figuration. The 16 bit mode could not be used, as it is not guaran-

teed that all alignments can be computed in the score range of 16-bit

integers due to their lengths.

As can be seen in Figure 4, SeqAn outperforms Parasail in all

cases on the SKX. Moreover, our generalized alignment scheduler

scales very well with the number of threads reaching a peak per-

formance of 217 GCUPS on the SKX, which is three times faster

than the best result of Parasail (68 GCUPS). As a comparison, with

the same instruction set SeqAn is roughly twice as fast as Parasail.

Table 5 shows the peak performance for the alignment of the

real PacBio dataset on the SKX. We achieved the best performance

with a block size of 1500. There are many more smaller sequences

in the dataset, such that the optimal performance was reached with

a smaller block size. However, the performance remained stable and

SeqAn with SSE4 is as fast as Parasail with AVX2 and up to a factor

3 faster using AVX512.

4 Discussion

In this paper, we presented a fully generic vectorized and parallel-

ized pairwise sequence alignment module within the SeqAn library

that can be used to inherently accelerate a broad spectrum of appli-

cations in bioinformatics. Our generic design enables us to combine

many variations of the core DP algorithm thus making it, to the best

of our knowledge, the most comprehensive library for pairwise se-

quence alignments available. We provide different levels of parallel-

ism and made them accessible through a user-friendly interface. We

used this generic design to add an inter-sequence vectorization lay-

out and combined it with an inter- and intra-sequence thread-level

parallelization scheme. The tiling approach allowed us to optimize

the vectorization by using 16 bit integers. This allowed us to signifi-

cantly speedup the computation of many bioinformatics use cases

including the alignment of PacBio reads and contigs with lengths of

several mega bases. Although not specialized for any target plat-

form, we could show that our design performs and scales overly well

on general purpose CPUs as well as on high-performance manycore

processor such as the XeonVR PhiTM (see Supplementary Material). In

addition, we evaluated for the first time the performance of the new

AVX512-BW instruction set available on the recently published

IntelV
R

Skylake processors, and showed that it effectively improves

the performance in all tested use cases. In addition to exploiting the

advantage of AVX512 instructions, we could further show that we

substantially outperform existing implementations in any of the

tested use cases on any of the used processor architectures.

Encouraged by the very good results we will steadily improve

and integrate our new alignment module in several applications.

For instance, we will implement a banded version of the dynamic

wavefront model which can be used for example to verify PacBio

reads in a PacBio aligner application more efficiently. Other applica-

tions that can be improved are our multiple sequence aligner seqan::

t-coffee (Rausch et al., 2008), which needs to progressively align

hundreds of sequences, or Lambda which is high-sensitive protein

aligner (Hauswedell et al., 2014).

Therefore, we will among others, improve the traceback com-

putation for the vector-level parallelization and also develop an

optimized trace method for the wavefront alignment. To compute

alignments with scoring matrices more efficiently, we will also

adapt the idea of a profile score as described in Rognes (2011) to

our generalized inter-sequence vectorization layout. Furthermore,

we will add the saturated execution mode, where in case of a score

overflow or underflow the invalid alignments are recalculated with

a larger integer range, which seems to work very well for protein

alignments.

Table 4. Configuration of PBSim

Parameter Value

Reference GRCH38 chr10

Mode CLR

qc model Default

Depth 10

Length mean 20 000

Length-sd 5000

Length-min 100

Length-max 60 000

Fig. 4. Performance and scalability comparison of aligning the PacBio-Sim

data on the SKX

Table 5. Comparison of SeqAn’s generalized wavefront alignment

with Parasail on the SKX using the PacBio-Real dataset

SKX (t¼ 40)

Time GCUPS Factor

seqan_sse4 403.76 65.60 1.6

seqan_avx2 218.83 121.05 2.8

seqan_avx512 137.86 192.14 4.4

parasail_sse4 607.58 43.60 1.0

parasail_avx2 400.35 66.16 1.5

parasail_sat 686.29 38.60 0.9

Note: Parasail with SSE4 was selected as the base line for the factor column.

Generic acceleration of pairwise sequence alignments 3443

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty380#supplementary-data


5 Conclusion

The need for such a library is eminently important as topical CPU

architectures and HPC environments continuously increase their

vectorization and multi-threading capabilities. Thus, integrating all

these features into SeqAn, uniting a large set of efficient data struc-

tures and algorithms with stable and user-friendly interfaces, which

are extensively tested on numerous platforms and compilers, enables

application developers to exploit such high-performance systems

more efficiently, paving the way for coping with the tremendous

growth of data sizes, by reducing cost and time for the development

of novel applications.

Acknowledgements

We gratefully thank the Konrad Zuse Institute in Berlin and in particular

Thomas Steinke and Matthias Noack, for providing and assisting us in access-

ing their test development system running the Xeon PhiTM. Furthermore, we

thank Intel
VR

for providing us access to the newest Intel
VR

Xeon processor and

for financing the SeqAn IPCC and we thank the German Network for

Bioinformatics Infrastructure (de.NBI) for financing the SeqAn infrastructure

support.

Funding

This work was supported by the Intel
VR

Parallel Compute Center at FU Berlin.

Conflict of Interest: none declared.

References

Alpern,B. et al. (1995) Microparallelism and high-performance protein match-

ing. In: Proc. IEEE/ACM SC95 Conf., San Diego, California, USA, pp.

1–16.

ARM. (2007) CortexTM – A8 Technical Reference Manual. Arm limited,

Cambridge, England, UK.

Blazewicz,J. et al. (2011) Protein alignment algorithms with an efficient back-

tracking routine on multiple GPUs. BMC Bioinformatics, 12, 181.

Blumofe,R.D. and Leiserson,C.E. (1999) Scheduling multithreaded computa-

tions by work stealing. J. ACM, 46, 720–748.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using

DIAMOND. Nat. Methods, 12, 59–60.

Chao,K.M. et al. (1992) Aligning two sequences within a specified diagonal

band. Bioinformatics, 8, 481–487.

Daily,J. (2016) Parasail: SIMD C library for global, semi-global, and local

pairwise sequence alignments. BMC Bioinformatics, 17, 81.

Döring,A. et al. (2008) SeqAn an efficient, generic Cþþ library for sequence

analysis. BMC Bioinformatics, 9, 11.

Edmiston,E.W. et al. (1988) Parallel processing of biological sequence com-

parison algorithms. Int. J. Parallel Program., 17, 259–275.

Emde,A.K. et al. (2012) Detecting genomic indel variants with exact

breakpoints in single- and paired-end sequencing data using splazers.

Bioinformatics, 28, 619–627.

Farrar,M. (2007) Striped Smith-Waterman speeds database searches six times

over other SIMD implementations. Bioinformatics, 23, 156–161.

Freescale Semiconductor. (1999) AltiVecTM Technology Programming

Interface Manual. Freescale Semiconductor, Austin, Texas, USA.

Frielingsdorf,J.T. (2015) Improving optimal sequence alignments through a

simd-accelerated library. Master’s Thesis, University of Oslo, Library, Oslo,

Norway.

Gotoh,O. (1990) Optimal sequence alignment allowing for long gaps. Bull.

Math. Biol., 52, 359–373.

Hauswedell,H. et al. (2014) Lambda: the local aligner for massive biological

data. Bioinformatics, 30, i349.

Holtgrewe,M. (2010) Mason – a Read Simulator for Second Generation

Sequencing Data. Freie Universität, Berlin.

Holtgrewe,M. et al. (2015) Methods for the detection and assembly of

novel sequence in high-throughput sequencing data. Bioinformatics, 31,

1904–1912.

Intel. (2016) IntelV
R

64 and IA-32 Architectures Software Developer’s Manual.

Intel, Santa Clara, California, US.

Jeffers,J. et al. (2016) Knights landing architecture. In: Lawrence, L. (ed.),

IntelV
R

Xeon PhiTM Processor High Performance Programming, Knights

Landing Edition. Morgan Kaufmann, Cambridge, MA, p. 662.

Karpi�nski,P. and McDonald,J. (2017) A high-performance portable abstract

interface for explicit SIMD vectorization. In: Proc. 8th Int. Work. Program.

Model. Appl. Multicores Manycores - PMAM’17, Austin, TX, USA,

pp. 21–28.

Kehr,B. et al. (2011) STELLAR: fast and exact local alignments. BMC

Bioinformatics, 12, S15.

Khajeh-Saeed,A. et al. (2010) Acceleration of the Smith-Waterman algorithm

using single and multiple graphics processors. J. Comput. Phys., 229,

4247–4258.

Korpar,M. and �Siki�c,M. (2013) SW#-GPU-enabled exact alignments on gen-

ome scale. Bioinformatics, 29, 2494–2495.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with bwa-mem. arXiv preprint arXiv: 1303.3997.

Li,J. et al. (2012a) Pairwise sequence alignment for very long sequences on GPUs.

In: 2012 IEEE 2nd Int. Conf. Comput. Adv. Bio Med. Sci. ICCABS 2012. Las

Vegas, NV, USA.

Li,Z. et al. (2012b) Comparison of the two major classes of assembly algo-

rithms: overlap-layout-consensus and de-bruijn-graph. Brief. Funct.

Genomics, 11, 25–37.

Liu,Y. and Schmidt,B. (2014) Swaphi: Smith-Waterman protein database

search on xeon phi coprocessors. In: 2014 IEEE 25th International

Conference on Application-Specific Systems, Architectures and Processors

(ASAP), IEEE, Zurich, Switzerland, pp. 184–185.

Martins,W.S. et al. (2000) A multithreaded parallel implementation of a dy-

namic programming algorithm for sequence comparison. Biocomputing,

311–322.

Liu,Y. et al. (2013) CUDASWþþ 3.0: accelerating Smith-Waterman protein

database search by coupling CPU and GPU SIMD instructions. BMC

Bioinformatics, 14, 117.

Liu,Y. et al. (2014) SWAPHI-LS: Smith-Waterman algorithm on Xeon Phi

coprocessors for Long DNA Sequences. In: 2014 IEEE Int. Conf. Clust.

Comput. Clust. 2014, Madrid, Spain, pp. 257–265.

Metzker,M.L. (2010) Sequencing technologies – the next generation. Nat.

Rev. Genet., 11, 31–46.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similiarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Notredame,C. et al. (2000) T-coffee: a novel method for fast and accurate

multiple sequence alignment. J. Mol. Biol., 302, 205–217.

Ono,Y. et al. (2013) PBSIM: PacBio reads simulator–toward accurate genome

assembly. Bioinformatics, 29, 119–121.

Pearson,W.R. (2013) Selecting the right similarity-scoring matrix. Curr.

Protoc. Bioinformatics, 43, 3–5.

Rausch,T. et al. (2008) Segment-based multiple sequence alignment.

Bioinformatics, 24, i187–i192.

Rausch,T. et al. (2012) DELLY: structural variant discovery by integrated

paired-end and split-read analysis. Bioinformatics, 28, i333–i339.

Reinert,K. and Gogol-Döring,A. (2009) Biological Sequence Analysis using

the SeqAn Cþþ Library. 1st edn. CRC Press.

Reinert,K. et al. (2017) The SeqAn Cþþ template library for efficient sequence

analysis: a resource for programmers. J. Biotechnol., 261, 157–168.

Roehr,J.T. et al. (2017) Flexbar 3.0 – SIMD and multicore parallelization.

Bioinformatics, 33, 2941–2942.

Rognes,T. (2011) Faster Smith-Waterman database searches with inter-sequence

SIMD parallelisation. BMC Bioinformatics, 12, 221.

Rognes,T. and Seeberg,E. (2000) Six-fold speed-up of Smith-Waterman se-

quence database searches using parallel processing on common microproc-

essors. Bioinformatics, 16, 699–706.

3444 R.Rahn et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024



Rucci,E. et al. (2017) First experiences optimizing smith-waterman on Intel’s

knights landing processor. arXiv preprint arXiv: 1702.07195.

Sandes,E.F.O. and de Melo,A.C.M.A. (2013) Retrieving smith-waterman

alignments with optimizations for megabase biological sequences using

GPU. IEEE Trans. Parallel Distrib. Syst., 24, 1009–1021.

Sarje,A. and Aluru,S. (2008) Parallel biological sequence alignments on

the cell broadband engine. In: IEEE International Symposium on Parallel

and Distributed Processing, 2008. IPDPS 2008, IEEE, Miami, FL, USA,

pp. 1–11.

Siragusa,E. et al. (2013) Fast and accurate read mapping with approximate

seeds and multiple backtracking. Nucleic Acids Res., 41, e78.
�So�si�c,M. (2014) An simd dynamic programming C/Cþþ library. Ph.D. thesis,

Fakultet Elektrotehnike i ra�cunarstva, Sveu�cili�ste u Zagrebu.

Szalkowski,A. et al. (2008) SWPS3 – fast multi-threaded vectorized

Smith-Waterman for IBM Cell/B.E. and X86/SSE2. BMC Res. Notes, 1, 107.

Urgese,G. et al. (2014) Dynamic gap selector: a Smith Waterman sequence

alignment algorithm with affine gap model optimisation. Proc. IWBBIO,

Granda, Spain, pp. 1347–1358.

Vandevoorde,D. and Josuttis,N.M. (2002) Cþþ Templates: The Complete

Guide. Addison-Wesley/Longman Publishing Co., Inc. Boston, US.

Weese,D. et al. (2012) RazerS 3: faster, fully sensitive read mapping.

Bioinformatics, 28, 2592–2599.

Wozniak,A. (1997) Using video-oriented instructions to speed up sequence

comparison. Bioinformatics, 13, 145–150.

Ye,Y. et al. (2011) RAPSearch: a fast protein similarity search tool for short

reads. BMC Bioinformatics, 12, 159.

Zhao,M. et al. (2013) SSW library: an SIMD Smith-Waterman C/Cþþ library

for use in genomic applications. PLoS One, 8, e82138–e82133.

Zook,J.M. et al. (2016) Extensive sequencing of seven human

genomes to characterize benchmark reference materials. Sci. Data, 3, 160025.

Generic acceleration of pairwise sequence alignments 3445

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3437/4992147 by guest on 20 April 2024


	bty380-TF1
	bty380-TF2
	bty380-TF3

