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Abstract

Motivation: Transcription factor (TF) binds to the promoter region of a gene to control gene expres-

sion. Identifying precise TF binding sites (TFBSs) is essential for understanding the detailed mecha-

nisms of TF-mediated gene regulation. However, there is a shortage of computational approach

that can deliver single base pair resolution prediction of TFBS.

Results: In this paper, we propose DeepSNR, a Deep Learning algorithm for predicting TF binding

location at Single Nucleotide Resolution de novo from DNA sequence. DeepSNR adopts a novel

deconvolutional network (deconvNet) model and is inspired by the similarity to image segmenta-

tion by deconvNet. The proposed deconvNet architecture is constructed on top of ‘DeepBind’ and

we trained the entire model using TF-specific data from ChIP-exonuclease (ChIP-exo) experiments.

DeepSNR has been shown to outperform motif search–based methods for several evaluation met-

rics. We have also demonstrated the usefulness of DeepSNR in the regulatory analysis of TFBS as

well as in improving the TFBS prediction specificity using ChIP-seq data.

Availability and implementation: DeepSNR is available open source in the GitHub repository

(https://github.com/sirajulsalekin/DeepSNR)

Contact: yufei.huang@utsa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factor (TF) binding sites are specific DNA sequences

that control gene expression through interaction with TF proteins.

Revealing the dynamic regulatory systems by TFs signifies one of the

major challenges in biological research. Precise mapping of TF binding

sites (TFBSs) on a genomic scale plays a pivotal role in delineating tran-

scription regulatory network and remains a long sought goal in genom-

ic annotations (Guo et al., 2014; Salekin et al., 2016, 2017). Chromatin

immunoprecipitation (ChIP) that yields a set of statistically enriched

high occupancy binding regions is the most widely used method to rec-

ognize protein–DNA binding locations (Peng et al., 2007; Tuteja et al.,

2009). However, unequal size of randomly clipped DNA fragments

in ChIP technology largely limits the resolution of ChIP-seq data.

To overcome this limit, ChIP-exo technique was developed that uses k
phage exonuclease to digest the 50 end of TF-unbound DNA after ChIP

(Rhee and Pugh, 2011). In ChIP-exo, k exonuclease digestion leaves

homogenous 50 ends of DNA fragments at the actual two boundaries

of TFBS, and after sequencing and mapping reads to the reference gen-

ome two borders of TFBS could be defined. The k exonuclease treat-

ment augments signal-to-noise ratio by eliminating unwanted DNA,

which allows the discovery of low affinity binding sites.

With the advent of rapidly increasing genomic sequences,

sequence-based computational methods have been developed and

proven to be valuable in predicting TFBS (Guo et al., 2014; Stormo,
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2000). The computational methods generally scrutinizes user pro-

vided input sequences in order to identify TF binding motifs that are

statistically over-represented in binding sites with respect to back-

ground sequence. Predicting the binding location based on motif suf-

fers from several shortcomings. First, motifs are typically short

10–15 bp sequences and therefore prediction using binding motifs is

unlikely to generate predictions with high specificity. Moreover,

motifs represent only the enriched binding sequence patterns and

thus cannot explain all possible bindings of a TF. Finally, even if the

motif search methods succeed in determining the anchor position of

a putative binding site, they cannot predict the actual width of

TFBS. The specificity of protein–DNA binding does not depend only

on DNA sequence, but it also depends on methylation and 3D struc-

tures of DNA and TF protein macromolecules (Rohs et al., 2010)

which explains the failure of motif searches in predicting true TFBS.

To enable precise prediction of TFBS, we designed in this paper a

deep learning based model called DeepSNR. Deep learning, the most

active field in machine learning, has been proven to achieve record-

breaking performances in image and speech recognition (Graves

et al., 2013; Zeiler and Fergus, 2014), natural language understanding

(Sutskever et al., 2014; Xiong et al., 2016), and most recently, in com-

putational biology (Alipanahi et al., 2015; Hassanzadeh and Wang,

2016; Quang and Xie, 2016; Zhou and Troyanskaya, 2015). The two

recent methods, DeepBind (Alipanahi et al., 2015) and DeepSEA

(Zhou and Troyanskaya, 2015), successfully applied deep learning to

model the sequence specificity of TF binding with a performance su-

perior to the best existing motif based statistical methods.

Convolutional neural network (CNN) was adopted by these methods

to capture the features essential for accurate characterization of motifs

for target TFs. DeeperBind (Hassanzadeh and Wang, 2016) and

DanQ (Quang and Xie, 2016) employed recurrent neural network

(RNN) along with CNN to learn the spatial dependencies of detected

motifs and yielded improved prediction performance in comparison

with DeepBind and DeepSEA, respectively. In spite of their success in

determining the presence of binding site in a given DNA sequence,

these approaches cannot report the precise binding location. Our pro-

posed method intends to bridge the gap by identifying TF binding lo-

cation at single nucleotide resolution from 100 bp long input DNA

sequence that is known to contain TFBS (e.g. ChIP-seq regions).

DeepSNR is inspired by the similarity between ascertaining the TF

binding location from 100 bp long sequences and image segmentation

method. Similar to pixel-level image segmentation where each pixel is

categorized as belonging to target object (e.g. dog, car and human) or

background, DeepSNR classifies each nucleotide in a DNA sequence

as putative binding site or background sequence and thereby achieves

base pair resolution prediction. Recently, deconvNet (Noh et al.,

2015) has achieved remarkable success in semantic image segmenta-

tion that aims to predict a category label for every image pixel. In that

study, the authors built the deconvNet on top of the CNN obtained

from VGG 16-layer net. Comparatively, the multi-layer deconvolu-

tion network in DeepSNR is composed of convolution layers adopted

from DeepBind, deconvolution, unpooling and rectified linear unit

layers (Fig. 1). Instead of relying on the similarity of binding sequen-

ces for deriving the binding preference of a TF, DeepSNR accurately

captures the inherent complex interactions between TF and DNA and

thus enables it to precisely locate the binding site.

The entire deconvNet is trained using the data generated by

ChIP-exo experiment and can be applied to individual sequences to

pinpoint the TFBS location. When tested, DeepSNR attained out-

standing result that substantially surpasses binding motif based algo-

rithms in terms of precision, recall, F-Score and IoU. For instance,

the trained DeepSNR model for CTCF achieved 83% median

F-Score over 19 600 test sequences while MatInspector managed to

record only 58%. We further discovered that the trained model

automatically detects the location of motif sequence in pursuit of

identifying binding site. When we applied DeepSNR on ChIP-seq

data, it rendered us with unique display of distribution of TF bind-

ing motif over the ChIP-seq binding area which was possible to visu-

alize because of the base-pair resolution prediction of DeepSNR

(Supplementary Fig. S2).

We have also demonstrated the capacity of DeepSNR in improv-

ing the specificity of ChIP-seq peak calling results by an independent

motif enrichment analysis that confirms the presence of highly

enriched motif sequence in DeepSNR predicted binding region

(Table 1). Moreover, the capability of DeepSNR in pinpointing the

motif sequence in ChIP-seq data makes it suitable for playing a role

in regulatory analysis of TFBS.

2 Materials and methods

This section discusses the architecture of DeepSNR model and

describes the overall TFBS discovery algorithm.

2.1 Model design/architecture
Figure 1 illustrates the detailed configuration of DeepSNR which is

composed of three parts—convolutional, deconvolutional and out-

put networks. The input of DeepSNR is 100 bp long DNA sequences

that are known to contain a binding site of the TF of interest. The

100 bp DNA sequence is represented by a 4�100 binary matrix,

with rows corresponding to A, C, G and T (one-hot encoding).

While the convolutional network corresponds to feature extractor

that learns the inherent features imperative for TF-DNA binding,

the deconvNet is a shape generator that locates the binding site

using the feature extracted from the convolution network. The out-

put network of the model is used to generate a 100 bit binary se-

quence, indicating whether each nucleotide belongs to binding site

(1) or background sequence (0).

The convolutional part of DeepSNR model is a replica of

DeepBind (Alipanahi et al., 2015) network, which consists of one

convolutional layer, followed by rectification and pooling operation,

Fig. 1. DeepSNR model architecture
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and one fully connected network augmented at the end to transform

feature vectors into a scalar binding score. Our deconvNet is a mir-

rored version of the convolution network, and has a series of

unpooling, deconvolution and rectification layers. Contrary to

convolutional network that reduces the size of activations through

feedforward step; deconvNet enlarges the activations through com-

binations of unpooling and deconvolution operations. The last layer,

the sigmoid output layer, makes binary predictions for each of the

100 nucleotides. We get the maximum for each base pair over the

output of deconvolution layer before employing the sigmoid func-

tion and then we apply a threshold to map the final output to 0/1.

To implement max-unpooling and deconvolution operations, we

followed the similar procedure described in Noh et al. (2015) and

Zeiler and Fergus (2014). The model records the position of max-

imum activation while performing the pooling operation and later

this information is used in unpooling procedure to assign each

stimulus back into appropriate location. The unpooling layer is es-

pecially important because retaining the place of maxima assists in

capturing the binding motif and the binding site associated 3D con-

textual information and proves to be critical for precise localization

of TFBS. The output of deconvolution layer associates a single input

activation with multiple outputs, as illustrated in Noh et al. (2015).

The deconvolution layer employed in our model is fundamentally

the reverse operation of convolution and used to learn the shape

details of TFBS. Integrating this layer in the architecture helps

DeepSNR to capture the overall breadth of a binding site, thus

improving the completeness of the model.

2.2 Training the DeepSNR model
The entire deconvolutional network is comprised of seven layers and

contains a lot of associated parameters. In addition, the parameter

search space for predicting binding location is enormous because

TF-DNA binding is a very complicated phenomenon depending on

DNA sequence, 3D structure of DNA and TF protein and their in-

trinsic complex interactions. Therefore, we trained DeepSNR in two

stages as in Noh et al. (2015), so that the model progressively learns

the essential features to recognize TFBS and tunes to optimum set of

parameters. For the first stage of training, we constructed the train-

ing set such that the binding sites were placed at the center of 100 bp

long input sequence. By doing so, we limited the search space signifi-

cantly and forced the model to learn the intricate details of TF-DNA

binding. We initialized the weights in convolutional network using

DeepBind pre-trained for specific TF, while the weights in

deconvNet were initialized with random samples from zero-mean

Gaussians. Initializing the weights with DeepBind convolutional net-

work is very important because it assists the model to converge with

minimum iterations and mitigates vanishing gradient problem. In

the second stage, we imposed the model with more challenging

training samples by placing the binding site in random locations

within input sequence as described in the next section. Weights

learned from the first stage of training were used to initialize all the

layers in this stage and they were fine-tuned making the network ro-

bust to TF binding location. Another major challenge in training a

deep network is the modification of weight distributions due to the

parameter updates of preceding layers which amplifies through

propagation across layers (Ioffe and Szegedy, 2015). Hence, we per-

formed batch normalization at the output of convolutional and

deconvolutional layer to better optimize our network.

To train the model, we minimized the sigmoid cross-entropy loss

which essentially leads to binary logistic regression. The standard

stochastic gradient descent (SGD) was employed for optimization,

where the learning rate was set to 0.01. The SGD method estimates

the training objective gradient using only a subset of training exam-

ples. The batch size determines how many training pairs to sample

for each parameter update step. In our implementation, the batch

size was equal to 100 samples. The network converges after ap-

proximately 15 000 and 20 000 iterations, respectively, in first and

second stage and the training takes less than an hour in a single com-

puter with 12 G memory. We implemented the proposed network

based on tensorflow. Lastly, a threshold was set at the output layer

of DeepSNR architecture to return binary outcome that indicates

whether a nucleotide belongs to binding site or not. We learned

the threshold using validation set such that average F-Score

(Supplementary Section S1) is maximized over the whole set and

then, applied it on the test set for performance evaluation of

DeepSNR.

2.3 Data for training DeepSNR
We employed published human CTCF ChIP-exo data (accession

number: SRA044886) for training and testing the proposed

DeepSNR. Engaging the highly sensitive ChIP-exo experimental

data is imperative to train DeepSNR because it aids our model to

Table 1. Motif enrichment analysis result of DeepSNR prediction on ChIP-seq data

E-score where DeepSNR predicted TFBS(1), NO TFBS(0) and GEM predicted binding event

Motif found TFBS NO TFBS GEM

3.6e–1241 Not enriched Not enriched

1.7e–1132 3.8e–002 5.3e–617

8.5e–795 1.2e–047 1.5e–590

Not enriched Not enriched 9.2e–3043

Note: CTCF motifs are significantly enriched where DeepSNR predicted binding site within ChIP-seq peak in comparison to locations where it did not.
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learn essential contextual information to precisely locate TFBS. We

applied MACE (Wang et al., 2014) to the ChIP-exo data to identify

genome-wide mapping of CTCF binding sites (CBSs). MACE identi-

fied total 110 183 CBSs across the whole genome. After investigat-

ing the size distribution of those sites, we observed that 59 425 sites’

width was equal to 49 bp in accordance with the previously studied

results (Rhee and Pugh, 2011; Wang et al., 2014). Hence, we uti-

lized these 49 bp long TFBSs and added 51 bp flanking regions from

two sides to make each sample 100 bp long. The flanking regions

provide extra contextual information about TFBS to the model. The

test set contains 19 600 randomly selected samples and the rest of

the samples were used for training (34 925 sites) and validation

(5000 sites). The training, testing and validation samples are strictly

non-overlapping.

Each training sample consists of a 100 bp sequence from the

human hg19 reference genome and is paired with a label vector of

same size indicating TFBS location. To construct training samples,

we used the same training and validation set in both training stages

with only one difference. While in the first stage, we placed the

49 bp long binding region at position 26–74 bp of a 100 bp input se-

quence for all the training and validation samples, the binding sites

were positioned contiguously anywhere between 10 and 90 bp for

the second stage of training. For the 19 600 samples of test set, the

input sequences were generated in the same procedure as second

stage and we utilized it to assess the performance of DeepSNR only

after both stages of training were completed.

We also trained separate DeepSNR models to predict binding lo-

cation of androgen receptor (AR) and glucocorticoid receptor (GR)

TFs. Supplementary Table S1 summarizes the dataset information of

these TFs.

3 Results

MatInspector (Cartharius et al., 2005) and MATCH (Kel et al.,

2003) are two of the widely used DNA sequence-based computa-

tional approaches for determining the location of TFBS. These meth-

ods scan input DNA sequences using position weight matrix (PWM)

model of the desired TF and assign matrix similarity score (MSS) for

each K-mer. After assigning MSS, a cut-off threshold is set to decide

putative binding site. To evaluate the effectiveness and efficiency of

our proposed approach, we compare the performance of DeepSNR

with MatInspector on the CTCF dataset derived from ChIP-exo ex-

periment. Performance comparison analysis with MATCH is elabo-

rated in Supplementary Section where we observed that

MatInspector and MATCH perform quite similarly as both the

methods rely on motif search for predicting TFBS and this finding

aligns with previous studies (Kel et al., 2003).

There are several methods that can also provide base pair reso-

lution prediction of TFBS using ChIP-seq data such as GEM (Guo

et al., 2012), PeakZilla (Bardet et al., 2013) and PICS (Zhang et al.,

2011). However, all of these methods were designed to identify

read-enriched regions from ChIP-seq data and require ChIP-seq read

distribution information to predict binding location. For instance,

GEM empirically models the likelihood of a set of ChIP-seq reads

being generated from a set of protein–DNA binding events. In the

process of discovering high resolution binding event, the model gen-

erates positional prior utilizing the binding event read count.

Contrarily, DeepSNR is designed to identify TF binding region using

DNA sequences only and it is not a peak calling method. Therefore,

directly comparing the prediction performance of DeepSNR with

those methods is not appropriate. Nevertheless, we analyzed the

binding event prediction capability of GEM and DeepSNR using an

independent ChIP-seq data to exhibit the superiority of our algo-

rithm (Section 3.4).

3.1 Performance evaluation scheme
The goal of the proposed algorithm is to precisely identify the TFBS

location from 100 bp long DNA sequence at single bp resolution.

That is, for each nucleotide of input sequence, we aim to determine

whether the base-pair categorizes to putative binding site or context-

ual sequence. Hence, we employed Intersection-over-Union (IoU)

between ground-truth and predicted location as one of the evalu-

ation metric to assess performance. IoU is very popular in the field

of pixel-level image segmentation since it discerns a proposed solu-

tion with respect to the ground truth in perceptually meaningful

way. We have also compared the performance of DeepSNR

and MatInspector in terms of precision, recall and F-Score

(Supplementary Section S1).

To assess the efficacy of DeepSNR in regard to the metrics men-

tioned above, we distinctly tested the performance of each independ-

ently trained DeepSNR model for CTCF, GR and AR TFs. Since,

our method yields 1/0 for each nucleotide in a sequence, we calcu-

lated precision, recall, F-Score and IoU for each of the input sequen-

ces individually for further analysis. For CTCF, the whole test set

which comprises 19 600 distinct DNA sequences of 100 bp length

each was used to estimate the performance of DeepSNR. On the

other hand, the performance of MatInspector was assessed slightly

differently. When we run MatInspector over 19 600 test sequences

with all the parameters set to optimized values as determined by the

algorithm, we found that the method was able to detect TFBS only

in 2942 sequences. We investigated the missed sequences using

MEME (Machanick and Bailey, 2011) and FIMO (Grant et al.,

2011) and learned that those sequences contain highly enriched

CTCF motifs, albeit a degenerate version. This maybe explains the

failure of MatInspector in discovering any binding site for those

sequences. However, we used these 2942 sequences to measure the

performance of MatInspector and compared the results with

DeepSNR which were calculated based on 19 600 test sequences,

though it is advantageous for MatInspector algorithm.

3.2 Performance analysis of DeepSNR and

MatInspector
In this section, we comprehensively analyze the performance of

DeepSNR and MatInspector using the ground truth TFBSs locations

derived from CTCF ChIP-exo dataset. Since, ChIP-exo reports TFBS

location at single nucleotide sensitivity, using it as ground truth

helps eliminating any ambiguity in performance comparison be-

tween different methods. The box plots in Figure 2(a) show median

values of evaluation metrics when calculated over all sequences as

described in the previous section. It is clear that DeepSNR outper-

forms MatInspector to a large extent. The median recall of

DeepSNR over all test sequences is 91% and it achieves sensitivity

greater than 98% for at least 25% of the sequences under consider-

ation. On the other hand, the best recall recorded by MatInspector

for any sequence is merely 55%. The large difference in recall score

between two methods emphasizes that DeepSNR is very sensitive in

locating TFBS at base-pair resolution and it can successfully predict

the total width of binding site instead of identifying just the anchor

position.

The median specificity of our system against false positives seems

to be lower than MatInspector. However, DeepSNR demonstrates a

precision higher than 73% for at least 10 000 test sequences whereas
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the median precision of MatInspector is 81% despite the fact that

the statistics was measured across 2947 sequences only. Combining

the precision and recall evaluation metrics in the F-Score measure

shows that DeepSNR significantly improved the prediction perform-

ance of locating TFBSs by 25% compared with MatInspector.

Furthermore, DeepSNR accomplishes the F-Score as high as 98%

for some of the test sequences. Finally, the DeepSNR has IoU greater

than 68% on half of the test sequences while MatInspector achieves

a median IoU score of only 40%. The higher IoU of DeepSNR indi-

cates that the method is sensitive enough to recognize nucleotides

belonging to true TFBSs without conceding to precision, which is a

remarkable feat. This pattern extends to the remaining TFs as

DeepSNR outperforms MatInpector by 23.8% and 48.5% respect-

ive improvement of IoU for GR and AR (Supplementary Fig. S1).

The center position of TFBS is also important for downstream ana-

lysis. Hence, we also investigated distance between the centers for

predicted sites and the centers of ground truth binding sites of test

dataset. As evident from Figure 2(b), the distance density plot for

DeepSNR predicted center binding region is highly focused at the

vicinity of zero in comparison to MatInspector. We found that

DeepSNR displayed distance mean 0.69 bp and SD 10.23 bp while

the mean and SD for MatInpector were found to be 1.95 bp and

20.37 bp, respectively (P-value¼2e–5). The narrower peak of

DeepSNR illustrates that the center nucleotide of predicted binding

sites mostly coincide with the center of true binding site. Overall,

these results demonstrate that the proposed deep learning model

successfully captures TF-DNA binding interactions and improves

the prediction of binding location.

3.3 DeepSNR precisely locates binding motif
To rigorously understand the significance of the results predicted by

the trained DeepSNR model, we investigated the output of max-

pooling layer at output network for 19 600 CTCF test sequences.

The pooling layer yields 100 scaler numbers (scores) upon which the

sigmoid function and a threshold is applied to produce binary out-

come corresponding to each base-pair of an input sequence. We sur-

mised that the base-pairs having higher scores may indicate

biologically significant nucleotides for TF binding. Hence, mutation

map scheme (Alipanahi et al., 2015) was deployed to identify the

most significant nucleotide (Ntms) for TF binding (Supplementary

Section S3). Then, we assessed distance of Ntms from the nucleotide

having maximum score (Ntmax) as computed by DeepSNR or

(Ntms – Ntmax). Figure 3(a) shows the histogram of distances meas-

ured across 19 600 CTCF test sequences. It is evident from the histo-

gram that in a large portion (57%) of test sequences the nucleotide

whose mutation predominantly impacts the binding affinity is posi-

tioned at 10–18 bp apart from Ntmax. Interestingly, a previous study

showed that nucleotides 4–8 and 10–18 within core motif of a CBS

are the most critical determinant for CTCF binding (Plasschaert

et al., 2014; Renda et al., 2007). Since the nucleotides maximally

influencing the CTCF binding because of point mutations are com-

monly placed at a distance of 10–18 bp from Ntmax, we deduced

that the base achieving maximum score according to DeepSNR

(Ntmax) marks the first nucleotide of CTCF binding motif in CBS.

To further validate our implication that Ntmax truly indicates the

first nucleotide of CTCF core motif within CBS, we performed motif

enrichment analysis using MEME within 20 bp downstream from

Ntmax. CTCF binding motifs are known to be �20 bp long

(Plasschaert et al., 2014; Rhee and Pugh, 2011). Hence, we selected

20 bp only to impose the most stringent criteria in the motif enrich-

ment analysis and we found the CTCF motifs to be highly enriched

even with such a short input sequence (Fig. 3b). The result demon-

strates that Ntmax indeed denotes the first nucleotide of CTCF motif

in a binding site.

Fig. 3. (a) Probability distribution of distance of the most significant nucleo-

tide (Ntms) for TF binding identified by DeepBind from the nucleotide having

maximum score (Ntmax) according to DeepSNR. (b) CTCF motif found as high-

ly present in motif enrichment analysis on all test sequences for very short re-

gion, only 20 bp downstream from Ntmax

Fig. 2. (a) Performance comparison of DeepSNR and MatInspector. (b)

Distribution of the distance of center nucleotide for DeepSNR and

MatInspector from that of ground truth binding sites
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3.4 Increasing resolution of ChIP-seq data using

DeepSNR
ChIP has emerged as the most widely used assay over the last decade

for genome-scale mapping of TF-DNA footprints and gene regula-

tion. Although ChIP-seq method is an effective approach to decode

regulatory relationships, it cannot resolve TF-DNA binding interac-

tions at basepair resolution. Generally, size of the binding regions

determined from ChIP-seq data are on the order of hundreds of base

pairs. Taking advantage of single nucleotide resolution prediction

capability of DeepSNR, the specificity of ChIP-seq data can be

improved to base pair resolution. Notably, the deep learning model

trained for one cell of a particular TF is feasible to be applied on any

other cell lines.

To exhibit the performance of DeepSNR on ChIP-seq data, we

collected human CTCF ChIP-seq peak calling result for CD4 cell

line published in Martin et al. (2011). The ChIP-seq dataset was ori-

ginally generated by Cuddapah et al. (2009) and the peak calling

reports 20 272 peak regions each of which is 400 bp wide. When we

applied DeepBind and DeepSNR concurrently on ChIP-seq data (see

Supplementary Section S4), DeepBind confirmed CTCF binding in

11 750 peak regions (58% of all peaks). Hence, we restricted our

further analysis to these peaks only. For each predicted binding site

location by DeepSNR, we calculated the distance between Ntmax

(described in Section 3.3) and center of ChIP-seq binding region, the

histogram of which is plotted in Supplementary Figure S2. As evi-

dent, peak of the histogram is centered around –10 bp which implies

that the first nucleotide of CTCF motif and therefore, the binding

motif coincides with the ChIP-seq summit for most of the sites.

Considering that CTCF motif is �20 bp long, center nucleotide of

the motif detected by DeepSNR overlaps with ChIP-seq peak.

However, for a significant number of ChIP-seq binding region, the

binding motif (or binding site) is located far apart from ChIP-seq

summit. This precise display of motif distribution within ChIP-seq

peak region came into picture owing to the base pair resolution pre-

diction of DeepSNR, which is otherwise not possible to visualize.

Since, ChIP-seq summit doesn’t necessarily represent TF-DNA bind-

ing location as shown in Supplementary Figure S2, DeepSNR can

significantly reduce false positives/negatives in the analysis of ChIP-

Seq data that results from consistently choosing the peak center as

the putative TFBS. Besides, application of DeepSNR on ChIP seq

data delivers an unprecedented knowledge of the span of binding

site which is not possible to attain using any motif search based

methods.

To verify the credibility of DeepSNR prediction results on ChIP-

Seq peaks, we performed independent motif enrichment analysis using

nucleotide sequences where DeepSNR predicted ‘1’ and the sequences

where it predicted ‘0’ within 400 bp wide ChIP-seq binding region.

Table 1 presents the motifs derived from this analysis for CTCF.

The striking difference in E-value (estimated statistical signifi-

cance of a motif) between the CTCF motifs for positions where

DeepSNR predicted protein–DNA binding (column 2) and those

where it did not predict any binding (column 3) advocates for the ef-

ficacy of DeepSNR in pinpointing the binding location. While the

CTCF motifs were identified as significantly enriched (E-values:

10�1132, 10�795) in DeepSNR predicted binding sequences, the en-

richment scores were comparatively negligible in rest of the regions

(E-values: 10�47, 10�2) demonstrating that DeepSNR is truly effect-

ive in predicting putative TF-DNA binding position.

To gauge the supremacy of DeepSNR comparing to the contem-

porary high resolution peak calling algorithms, we also applied

GEM on the same ChIP-seq data (Cuddapah et al., 2009) to predict

TF binding event and performed motif enrichment analysis on 61 bp

surrounding region as exercised in their original work. As seen in

Table 1, GEM also discovers similar motifs as DeepSNR but the en-

richment is not as prominent. Though the short motif was signifi-

cantly enriched, this motif is not a complete representation of CTCF

binding event due to missing the critically important nucleotides

described in Section 3.3. We realized that the enrichment of this

motif is mostly attributed to the incompetence of GEM in capturing

the entire width of a TFBS. It is likely that for most of the binding

events predicted by GEM, the complete binding site is not fully

encompassed within 61 bp region of the center nucleotide, which

explains the detection of such shorter motif. We also investigated

the role of the most enriched motif identified by DeepSNR which

was not discovered by GEM and notably displays weaker enrich-

ment of the second Cytosine. It has been observed in previous stud-

ies that methylation of this Cytosine (m5C) drastically reduces the

affinity of CTCF binding which could be perished completely by

increased methylation (Hashimoto et al., 2017; Renda et al., 2007).

Hence, the absence of this Cytosine may prohibit methylation, even-

tually leading to the higher TF binding activity. We conjectured that

identification of this novel motif helps DeepSNR in locating CBSs

that will be generally neglected by other methods due to their inabil-

ity in detecting such motif.

3.5 DeepSNR recognizes functionally active regulatory

sequence
TF proteins and DNA interacts with each other to regulate the tran-

scription. One of the major impediments in unravelling the function

of TF binding sites is to complement TFBS predictions with a high-

throughput experimental approach that directly validates the func-

tional contribution made by transcriptional regulatory motifs

(Elnitski et al., 2006). In Whitfield et al. (2012), the authors carried

out a large-scale systematic functional analysis, at base-pair reso-

lution, of predicted TF binding sites in four immortalized human

cell lines (K562, HT1080, HCT116 and HepG2) by performing

transient transfection assays on promoters.

There are 168 functionally verified 16 bp short regulatory

sequences reported along with their genomic coordinates across four

cell lines for CTCF. We wanted to investigate whether DeepSNR is

sensitive enough to recognize these short controlling sequences

when it is concealed inside 100 bp long genomic sequence.

Therefore, combining adjacent nucleotides from human genome we

extended each of these tiny sequences to the length of 100 bp for

three instances such that they were placed in three different loca-

tions (27–42, 42–57 and 58–73 bp). Next, we applied trained

DeepSNR model of CTCF TF on 168 sequences of each separate

cases and recorded the nucleotide position of maximum score at the

output of second max-pooling layer (Ntmax of Section 3.3). The

histogram of Ntmax across 168 sequences of each scenario are plot-

ted in Figure 4 depicting that DeepSNR responds actively to the

change of locations of the most critical segment of input sequence

required for TF regulation. The peak of histogram plots follows the

positioning of the regulatory sequence which illustrates that

DeepSNR is very accurate in recognizing the controlling sequence

from noisy background sequence.

More intriguingly, the distance between histogram peak and the

first nucleotide of regulatory sequence is 10 bp for all the cases

which is reminiscent of the result discussed in previous section. In

the process of determining transcriptional activity of a regulatory se-

quence the nucleotides making the greatest contribution to the TF-

DNA binding were mutated such that it abolishes the binding
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(Whitfield et al., 2012) and transient transfection promoter activity

assays were performed later on both wildtype and mutant sequences

in order to determine substantial differences in transcriptional mech-

anism. It implies that the nucleotides pivotal for TF-DNA binding

also govern the regulation orchestration of the TF binding site.

These nucleotides are eventually part of the binding motif and for

CTCF, they are mostly located at 10 bp onwards within the motif se-

quence. Since, DeepSNR responds very sensitively to the positioning

of regulatory (or motif) sequence, the model can play a role in the

analysis of TF regulation scheme by locating the regulatory sequence

in promoter region.

4 Conclusion

Computational prediction of TF binding location from a genomic

sequence remains a substantial challenge for the research commu-

nity. While in previous decades genetic analyses focused on experi-

mentally discovering TF–DNA binding (ChIP-seq, ChIP-exo, etc.),

due to the availability of deep sequencing the search using computa-

tional methods has meanwhile become a research focus. We devel-

oped DeepSNR, a deep learning framework to identify TFBS which

performs better than sequence based approaches because it automat-

ically learns the dependencies between nucleotides at different posi-

tions within the binding site description. DeepSNR is accomplished

by successfully combining several technologies such as deconvNet,

DeepBind and ChIP-exo that have been proved to achieve ground-

breaking performance in their respective domain. In addition, this is

the first application of deconvNet to address a computational biol-

ogy problem. The proposed model determines TFBS at base-pair

resolution with high precision and recall which makes it suitable to

discover regulatory sequences and to improve the specificity of

ChIP-seq data. Currently, the state-of-the art methods for determin-

ing functional importance of TF utilize PWMs to identify regulatory

(or motif) sequence as one of the initial procedures (Whitfield et al.,

2012). It is not surprising that regulatory sequences derived using

such technique exhibit highly different success rates in modeling TF-

DNA binding. We have shown that DeepSNR responds very sensi-

tively to the position of regulatory sequences when hidden at various

places inside noisy background sequence. Therefore, instead of rely-

ing on PWM, DeepSNR can be applied to identify the location of

regulatory sequence.

Because of the limited availability of ChIP-exo data and to en-

sure wide applicability of DeepSNR, we focused on training the

model with lone TF on every occasion. However, predicting the

binding location of multiple TFs simultaneously is an area that

worth exploration in future. It can be expected that prediction of

multiple TFs’ altogether might lead us to fully understand gene regu-

lation and concurrent expression of genes as observed in expression

array analysis.
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