
Sequence analysis

YAMDA: thousandfold speedup of EM-based

motif discovery using deep learning

libraries and GPU

Daniel Quang1,2,*, Yuanfang Guan1,† and Stephen C. J. Parker1,2,†

1Department of Computational Medicine and Bioinformatics and 2Department of Human Genetics, University of

Michigan, Ann Arbor, MI 48109, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint last Authors.

Associate Editor: John Hancock

Received on March 28, 2018; revised on May 4, 2018; editorial decision on May 7, 2018; accepted on May 9, 2018

Abstract

Motivation: Motif discovery in large biopolymer sequence datasets can be computationally

demanding, presenting significant challenges for discovery in omics research. MEME, arguably

one of the most popular motif discovery software, takes quadratic time with respect to dataset size,

leading to excessively long runtimes for large datasets. Therefore, there is a demand for fast pro-

grams that can generate results of the same quality as MEME.

Results: Here we describe YAMDA, a highly scalable motif discovery software package. It is built

on Pytorch, a tensor computation deep learning library with strong GPU acceleration that is highly

optimized for tensor operations that are also useful for motifs. YAMDA takes linear time to find

motifs as accurately as MEME, completing in seconds or minutes, which translates to speedups

over a thousandfold.

Availability and implementation: YAMDA is freely available on Github (https://github.com/

daquang/YAMDA).

Contact: daquang@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

De novo motif discovery is a common technique for the analysis

of biopoylmer sequences such as DNA, RNA and proteins. It

involves the identification of enriched short patterns, commonly

referred to as motifs, of monomer letters from a collection of related

sequences. One of the most frequent applications of motif discovery

is to datasets arising from transcription factor (TF) binding experi-

ments, where motifs correspond to sequence-specific binding pat-

terns of TFs.

MEME (Bailey et al., 1994) is a popular probabilistic motif dis-

covery program that uses the expectation-maximization (EM) algo-

rithm to infer motifs as position probability matrices (PPMs), which

describe the probability of each possible letter at each position in the

pattern. Given a background model, a PPM can be converted to a

position weight matrix (PWM) of log odds ratios. MEME uses the

batch version of the EM algorithm, which updates parameters after

a complete pass through the data. In practice, MEME takes quadrat-

ic time relative to the number of letters, leading to prohibitively long

run times for large modern high throughput datasets. The majority

of the runtime is devoted to seed searching because EM is prone to

converging to local optima.

EXTREME is a motif discovery program designed to infer motifs

as accurately as MEME in linear time (Quang and Xie, 2014). To

achieve this goal, EXTREME uses a word-based discriminative algo-

rithm to search for gapped k-mer words that are enriched in a posi-

tive sequence set relative to that of a negative control. Starting

points in the search space are derived from the enriched words.

Moreover, EXTREME replaces MEME’s batch EM with the online

VC The Author(s) 2018. Published by Oxford University Press. 3578

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(20), 2018, 3578–3580

doi: 10.1093/bioinformatics/bty396

Advance Access Publication Date: 22 May 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3578/5001381 by guest on 19 April 2024

https://github.com/daquang/YAMDA
https://github.com/daquang/YAMDA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty396#supplementary-data
https://academic.oup.com/


EM algorithm. In contrast to batch learning, online learning updates

the parameters after each data sample. Online learning converges

faster because it performs multiple parameter updates per data pass

instead of one.

Recent advances in ‘deep learning’ offer solutions for improving

upon MEME. For example, convolutional neural networks (CNNs)

have been shown to be effective for motif discovery (Quang and

Xie, 2016). The convolutional layer consists of a set of learnable

kernels. The kernels are similar to PWMs, except weights are not

constrained to be probabilities or log odds ratios. CNNs are slow to

train; however, training can be accelerated through the use of graph-

ics processing units (GPUs) and tensor libraries that are optimized

for operations like convolution.

2 Software description

YAMDA is a novel program that extends the EXTREME frame-

work by leveraging innovations in deep learning. Specifically,

YAMDA uses deep learning libraries to accelerate EM-related com-

putations. Similar to EXTREME, YAMDA’s seeding step uses a dis-

criminative algorithm to find the 100 most enriched gapped k-mer

words and converts the words to PWM seeds [see Section 4.4 of

Bailey et al. (1994)]. Initial background probabilities are computed

by counting the letter occurrences in the dataset. One ‘mini-batch’

(compromise between batch and online) EM iteration followed by

one batch EM iteration is run on each starting point. To parallelize

these computations across all seeds, PWMs are treated as convolu-

tional kernels, unloading a bulk of the computational burden on the

deep learning libraries and (if available) the GPU. It is for this reason

that we chose to use mini-batch EM instead of online EM, since

mini-batch EM can take advantage of the vectorization. Batch EM

is then run to completion on the seed that yields the highest data

likelihood.

3 Implementation

YAMDA is built on Pytorch (Paszke et al., 2017), a lightweight deep

learning Python package with strong support for GPU acceleration;

however, YAMDA can also run on the CPU. It accepts FASTA

sequences as inputs, and outputs motifs in Minimal MEME format.

4 Examples

To demonstrate the efficacy of YAMDA, we use it analyze the

100 bp summit-centered peak repeat-masked sequences from

ENCODE TF ChIP-seq datasets, and a digital genomic footprint

(DGF) dataset (Quang and Xie, 2014) (Table 1 and Supplementary

Fig. S1). YAMDA is run in GPU and CPU modes, and both modes

are orders of magnitude faster than MEME. Due to MEME’s quad-

ratic runtime, this speedup as a function of input size. In compari-

son, CUDA-MEME (Liu et al., 2010), another GPU-accelerated

implementation of MEME, speedups of less than 1.5, which is

orders of magnitude slower than even YAMDA’s CPU mode. These

results demonstrate the importance of YAMDA’s linear time seed-

ing; a simple linear speedup of the MEME algorithm is not sufficient

since its base runtime grows too fast. Moreover, all of the YAMDA

and MEME example output motifs display significant similarity

ðE < 10�7Þ to known motifs in the JASPAR database (Khan et al.,

2017) according to TOMTOM (Gupta et al., 2007). Visually,

however, the YAMDA motifs more closely resemble the MEME

motifs than the JASPAR motifs, especially for IRF4. This is likely

because motif databases are constantly being updated and therefore

may not always have the target motif, the discovered IRF4 motifs

aligned to the similar JASPAR IRF1 motif. Together, these results

demonstrate how well YAMDA can reproduce MEME’s results

in a fraction of the time. As the latest in a long line of motif discov-

ery programs, YAMDA offers a combination of speed and accuracy

that is ideal for handling the ever-growing volume of sequencing

data.

Acknowledgements

The NVIDIA Corporation donated the Titan Xp GPU used for development.

We thank Vivek Rai for software testing and Tingyang Li for designing the

software logo.

Funding

This work was supported by the National Heart, Lung, and Blood Institute

[U01HL137182] to SCJP.

Conflict of Interest: none declared.

Table 1. Runtimes for YAMDA (GPU and CPU modes), MEME and CUDA-MEME to find one motif

Experiment ChIP POU5F1 ChIP GATA1 ChIP NRSF ChIP IRF4 ChIP HNF4A ChIP FOXA2 DGF

Letters 399 700 407 400 1 024 700 1 777 100 2 080 500 4 098 900 10 487 345

Most similar JASPAR motif Pou5f1::Sox2 Tal1::Gata1 REST IRF1 HNF4A FOXA1 CTCF

JASPAR logo

YAMDA logo

MEME logo

YAMDA-GPU runtime 15 s 18 s 47 s 85 s 81 s 165 s 344 s

YAMDA-CPU runtime 76 s 96 s 249 s 449 s 462 s 981 s 2014 s

CUDA-MEME runtime 3456 s 3868 s 56 261 s 260 000 s* 400 000 s* 3 weeks* 4 months*

MEME runtime 5127 s 5488 s 65 085 s 280 080 s 410 654 s 3 weeks* 4 months*

YAMDA-GPU speedup 341.8 304.9 1384.8 3295.1 5069.8 10 000 30 000

YAMDA-CPU speedup 67.5 57.2 261.4 606.2 888.9 1700 5000

CUDA-MEME speedup 1.5 1.4 1.2 1.1 1.0 1.0 1.0

Note: Motifs are aligned to the most similar JASPAR motifs. Due to limits in time and resources, some runtimes are estimated. Estimated runtimes are marked

with a*.

YAMDA 3579

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3578/5001381 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty396#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty396#supplementary-data


References

Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by expectation maxi-

mization to discover motifs in bipolymers. Proc. Int. Conf. Intell. Syst. Mol.

Biol., 2, 28–36.

Gupta,S. et al. (2007) Quantifying similarity between motifs. Genome Biol., 8, R24.

Khan,A. et al. (2017) Jaspar 2018: update of the open-access database

of transcription factor binding profiles and its web framework. Nucleic

Acids Res., 46, D260–D266.

Liu,Y. et al. (2010) CUDA-MEME: accelerating motif discovery in biological

sequences using cuda-enabled graphics processing units. Pattern Recogn.

Lett., 31, 2170–2177.

Paszke,A. et al. (2017) Automatic differentiation in PyTorch. In NIPS-W.

Quang,D. and Xie,X. (2014) EXTREME: an online EM algorithm for motif

discovery. Bioinformatics, 30, 1667–1673.

Quang,D. and Xie,X. (2016) DanQ: a hybrid convolutional and recurrent

deep neural network for quantifying the function of dna sequences. Nucleic

Acids Res., 44, e107–e107.

3580 D.Quang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/20/3578/5001381 by guest on 19 April 2024


	bty396-TF1

