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Abstract

Motivation: Molecular analyses suggest that myeloma is composed of distinct sub-types that have

different molecular pathologies and various response rates to certain treatments. Drug responses

in multiple myeloma (MM) are usually recorded as a multi-level ordinal outcome. One of the goals

of drug response studies is to predict which response category any patients belong to with high

probability based on their clinical and molecular features. However, as most of genes have small

effects, gene-based models may provide limited predictive accuracy. In that case, methods for

predicting multi-level ordinal drug responses by incorporating biological pathways are desired but

have not been developed yet.

Results: We propose a pathway-structured method for predicting multi-level ordinal responses

using a two-stage approach. We first develop hierarchical ordinal logistic models and an efficient

quasi-Newton algorithm for jointly analyzing numerous correlated variables. Our two-stage ap-

proach first obtains the linear predictor (called the pathway score) for each pathway by fitting all

predictors within each pathway using the hierarchical ordinal logistic approach, and then combines

the pathway scores as new predictors to build a predictive model. We applied the proposed

method to two publicly available datasets for predicting multi-level ordinal drug responses in MM

using large-scale gene expression data and pathway information. Our results show that our

approach not only significantly improved the predictive performance compared with the corre-

sponding gene-based model but also allowed us to identify biologically relevant pathways.

Availability and implementation: The proposed approach has been implemented in our R package

BhGLM, which is freely available from the public GitHub repository https://github.com/abbyyan3/BhGLM.

Contact: nyi@uab.edu or zhuangwenzhuo@suda.edu.cn

1 Introduction

Multiple myeloma (MM) is a malignant plasma cell disorder with

approximately 30 770 new cases are expected to be diagnosed and

12 770 deaths are expected to occur in the United States in 2018

(American Cancer, 2018; Kyle and RajKumar, 2008; Terragna

et al., 2016). One of the major advances in the treatment regimen of

MM patients has been the introduction of novel agents, such as the

proteasome inhibitors (e.g. bortezomib) and immunomodulatory
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drugs (e.g. thalidomide), leading to the significant improvement in

both overall survival and progression-free survival in MM in the last

decade (Fonseca et al., 2017; Hofman et al., 2017). However, the

heterogeneity exists in the patients’ response to those new treat-

ments, and molecular features responsible for the variability in re-

sponse remain undefined (Kumar et al., 2008; Malek et al., 2017;

Rajkumar, 2011). Molecular analyses suggest that myeloma is com-

posed of distinct sub-types that have different molecular pathologies

and various response rates to certain treatments (Mulligan et al.,

2007). Previous studies found that gene expression profiling is asso-

ciated with the drug response variability of bortezomib, resulting in

various disease prognoses (Mulligan et al., 2007; Terragna et al.,

2016). However, most of the discovered genes have small effects,

and thus contribute a trivial portion to complex drug response

(Geeleher et al., 2014). It urges more efforts to develop predictive

models using multiple molecular markers of MM patients to provide

more precise prognostic and predictive classifiers for a specific ther-

apy (Kumar et al., 2008).

Drug responses in MM are usually recorded as a multi-level or-

dinal outcome (Mulligan et al., 2007; Terragna et al., 2016).

According to European Group for Bone Marrow Transplantation

criteria, drug responses in MM were classified as achieving complete

response (CR), partial response (PR), minimal response (MR), no

change (NC) and progressive disease (PD; Blade et al., 1998). One

of the goals of drug response studies is to predict which response cat-

egory any patients belong to with high probability based on their

clinical and molecular features. However, previous analyses, as in

Mulligan et al. (2007) and Terragna et al. (2016), combined the

five-level ordinal drug responses to form a binary outcome and only

predicted two response categories. Such analyses fail to use full data

information and can be arbitrary in selecting the recode strategy

(Warner, 2008). To avoid these problems and obtain more inform-

ative and accurate prediction, therefore, it is desirable to directly

analyze the multi-level drug response, rather than a simplified binary

outcome.

Predictive modeling with molecular profiling requires statistical

methods to properly handle at least thousands of molecular predic-

tors. Since most of the genes have small effects on drug responses,

gene-based models may provide limited predictive accuracy. One

possible way to improve drug response prediction is to incorporate

valuable biological information. It has been noted that the genetic

nature of cancer is pathway-based, that is, oncogenes can be

grouped into pathways based on biological functions such as cell

survival, proliferation and metastatic dissemination (Barillot, 2012;

Huang et al., 2014). Therefore, incorporating pathway information

into predictive modeling could allow us to combine weak signals

from a number of genes within each pathway and thus increase the

power in prediction and prognosis.

Various pathway-based models for predicting censored survival

outcomes have been proposed and widely used (Abraham et al.,

2010; Eng et al., 2013; Huang et al., 2014; Lee et al., 2008; Reyal

et al., 2008; Teschendorff et al., 2010). Especially, we have pro-

posed an efficient two-stage approach to incorporate pathway infor-

mation into the prognostic models using large-scale gene expression

data for cancer survival prediction, which can be directly applicable

in MM survival prediction (Zhang et al., 2017). However, methods

for predicting multi-level ordinal drug responses by incorporating

biological pathways have not been developed yet.

In this article, we propose a pathway-structured method for pre-

dicting multi-level ordinal responses by extending our two-stage ap-

proach for cancer survival prediction. We first develop hierarchical

ordinal logistic models and an efficient quasi-Newton algorithm for

jointly analyzing numerous correlated variables. Our two-stage ap-

proach first obtains the linear predictor (called the pathway score)

for each pathway by fitting all predictors within each pathway using

the proposed hierarchical ordinal logistic approach, and then com-

bines the pathway scores as new predictors to build a predictive

model. We applied the proposed method to two publicly available

datasets for predicting multi-level ordinal drug responses in MM

using large-scale gene expression data and pathway information

(Mulligan et al., 2007; Terragna et al., 2016). Our results show that

our two-stage approach not only significantly improved the predict-

ive performance compared with the corresponding gene-based

model but also identified biologically relevant pathways.

2 Materials and methods

2.1 Hierarchical ordinal logistic models
2.1.1 The model

Let yi be the ordinal outcome for the ith individual and xij the gene ex-

pression value for the ith individual and jth gene, where i¼1, ���, n

and j¼1, ���, J. The property of ordinal outcomes is that there exists a

clear ordering of the response categories, but no underlying interval

scale between them. Thus, it does not make sense to treat ordinal

responses as numeric values. For notational convenience, we code the

ordinal outcome as the integers 1, 2, ���, K, with K being the number

of categories. The commonly used method for analyzing the ordinal

outcome is the ordinal logistic regression(Gelman and Hill, 2007;

Venables and Ripley, 2002), which can be expressed as:

Pr yi¼kð Þ¼

1� logit�1 Xib�c1ð Þ if k¼1

logit�1 Xib�ck�1ð Þ� logit�1 Xib�ckð Þ if 1< k<K

logit�1 Xib�cK�1ð Þ if k¼K

8>><
>>:

(1)

where the vector Xi¼(xi1, � ��, xiJ) includes the expression measures

of the J genes, b¼(b1, � ��, bJ)
T is a vector of the effects and the

parameters ck, called cut-points or thresholds, are constrained to

increase, c1 < �� �< cK�1, because the probabilities defined in

Equation (1) are non-negative.

The ordinal logistic regressions are usually fitted by the max-

imum likelihood procedure as implemented by the function polr in

the R core package MASS (Venables and Ripley, 2002). However,

the classical ordinal regressions are not appropriate for jointly ana-

lyzing a large number of and/or highly-correlated predictor varia-

bles, due to the problems of non-identifiability and overfitting. One

of the approaches to overcoming the problems is hierarchical model-

ing, that is, the parameters in the model are themselves modeled (i.e.

given a prior distribution; Gelman et al., 2014; Gelman and Hill,

2007). Hierarchical modeling constraints the coefficients to lie in

reasonable ranges, which allows the model to be reliably fitted and

to identify important predictors. We employ the commonly used

Cauchy prior distribution on the coefficients in the ordinal logistic

regression:

p bj

� �
¼ Caucy 0; sð Þ ¼ 1

ps

1

1þ b2
j =s

2
(2)

The scale parameter s controls the amount of shrinkage in the coeffi-

cient estimate; smaller s induces stronger shrinkage on small coeffi-

cients and forces more coefficients towards zero. Cauchy priors are

long-tailed, thus performing less shrinkage for large coefficients and

leading to robust inferences (Gelman et al., 2008). We will discuss
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the choice of the scale shortly. For the cut-point parameters ck, we

use a uniform prior.

2.1.2 The algorithm

We fit the hierarchical ordinal models by finding the posterior

modes of the parameters, i.e. estimating the parameters by maximiz-

ing the posterior density. The logarithm of the posterior density can

be expressed as:

log p b; cjy;Xð Þ /
Xn

i¼1

log Pr yijXib; cð Þ½ � þ
XJ

j¼1

log p bj

� �
(3)

where the first term is the log-likelihood defined by the ordinal logistic

model Equation (1), and the second term includes the logarithms of

Cauchy prior densities for the coefficients. If the prior on the coefficients

is uniform (i.e. the classical ordinal regression), the posterior mode cor-

responds to the maximum likelihood estimate of the parameters.

We use the quasi-Newton algorithm, called BFGS, to estimate

the posterior mode (bb;bc) by iteratively maximizing the log posterior

density. The quasi-Newton algorithm is an extension of the

Newton–Raphson algorithm, which requires the vector of deriva-

tives and matrix of second derivatives of the log posterior density.

The BFGS algorithm forms an approximation of matrix of second

derivatives using only gradient information, thus avoiding costly

computation and storage. We develop the quasi-Newton algorithm

by adding the derivatives and second derivatives of the log Cauchy

priors to those of the log posterior density. The derivatives and se-

cond derivatives of the log Cauchy priors cane easily calculated ex-

plicitly. We implement our algorithm by altering the commonly

used function polr in the R package MASS, which fits classical or-

dinal logistic regressions using the quasi-Newton algorithm.

The quasi-Newton algorithm also can return covariance matrix

Cov bb;bc� �
. Thus, we can test the hypothesis H0: bj¼0 by using the

statistic Uj=bbj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bbj

� �r
, which approximately follows the stand-

ard normal distribution. The proposed quasi-Newton algorithm is

stable and fast, usually taking seconds for fitting a hierarchical or-

dinal logistic model with hundreds of covariates.

2.1.3 Model assessment

After fitting a hierarchical ordinal logistic model, we obtain

the estimate (bb;bc) and then can estimate the probabilities:

pik ¼ Pr yi ¼ kjXi
bb;bc� �

; i ¼ 1; . . . ; n; k ¼ 1; . . . ;K. Denote yik¼ I

(yi¼k) as the binary indicator response for the k-th category. With

the estimated probabilities pik, we can evaluate the fitted model

using the following measures:

i. Deviance: d ¼ �2
Pn

i¼1 log pik. Deviance measures the overall

quality of a fitted model.

ii. AUC (area under the ROC curve). We can calculate AUC for

the k-th category using yik and pik, i ¼ 1, ���, n, as usual. Then

the AUC for all the categories is defined as 1
K

PK
k¼1 AUCk.

iii. MSE (mean squared error). MSE is defined as MSE ¼
1
K

PK
k¼1½1n

Pn
i¼1ðyik � pikÞ2�.

iv. Mis-classification. The mis-classification is defined as: MIS ¼
1
K

PK
k¼1

1
n

Pn
i¼1 I jyik � pikj > 0:5ð Þ

�
�, where I jyik � pikj > 0:5ð Þ ¼

1 if jyik � pikj > 0:5, and I jyik � pikj > 0:5ð Þ ¼ 0 if

jyik � pikj � 0:5.

To evaluate the predictive performance of the model, we use a

cross-validation procedure to calculate the values of the above meas-

ures (called the cross-validated measures; Hastie et al., 2015;

Tibshirani and Efron, 2002). For an H-fold cross-validation, we

randomly split the data into H subsets of roughly the same

size. Using the (H – 1) subsets excluding the h-th subset, we

obtain the estimate ðbb �hð Þ
;bc �hð ÞÞ and then calculate the probabilities,

pik ¼ Prðyi ¼ kjXi
bb �hð Þ

;bc �hð ÞÞ; k ¼ 1; . . . ;K for all individuals of

the h-th subset. Cycling through H parts, we obtain the probabilities

pik for all individuals and then can calculate the measures defined

above. To get more stable results, we can run H-fold cross-validation

multiple times and use the average of the measure over the repeats to

assess the predictive performance. We also can use leave-one-out

cross-validation (LOOCV; i.e. H¼n) to obtain unique result.

2.1.4 Selecting an optimal scale value

The performance of the hierarchical ordinal model can depend on

the scale parameter in Cauchy prior. We fit a sequence of models

with different scales covering reasonable values, from which we can

choose an optimal one based on the cross-validated deviance (i.e.

the lowest deviance) as described above.

2.2 Two-stage approach for incorporating pathway

information
In principle, we can directly fit all available genes to build a predict-

ive model with the above hierarchical modeling approach.

However, it can be more efficient to use a two-stage approach that

incorporates pathway information (Zhang et al., 2017). We propose

the two-stage approach for predicting multi-level ordinal outcomes

based on the hierarchical ordinal logistic models. Suppose that genes

are assigned into G pathways, Gg : g ¼ 1; . . . ; G; with the g-th

pathway Gg containing Jg genes, and denote the vector of predictors

in the g-th pathway by Xg. Overlapping is common in pathways

analysis, that is, a gene could belong to multiple pathways. The two-

stage approach can easily deal with overlapping.

In the first stage, we separately analyze each pathway by fitting all

the predictors Xg within each pathway using the hierarchical ordinal lo-

gistic regression with an optimal scale. We can obtain the estimate of

the linear predictor (called the pathway score), gg
i ¼ Xg

i
bbg

, for each in-

dividual at each pathway. In the second stage, we can use the pathway

scores as predictors to build a predictive model with new independent

data. With a single dataset, however, directly using the pathway scores

to build a predictive model in the second stage can result in overfitting.

To prevent overfitting, we estimate the cross-validated pathway scores

using the LOOCV. To estimate the cross-validated pathway score of

the i-th individual at the g-th pathway, we first estimate the coefficients

in the g-th pathway using all the other (n – 1) individuals (i.e. excluding

the i-th individual). Denote the estimate of the coefficients by bbg �ið Þ
, the

cross-validated score is then expressed as:

gg
CV;ið Þ ¼ Xg

i
bbg �ið Þ

(4)

In the second stage, we fit a hierarchical ordinal regression with an

optimal scale using the cross-validated pathway scores as predictors:

Pr yi¼kð Þ¼

1�logit�1 g CV;ið Þa�c1

� �
if k ¼ 1

logit�1 g CV;ið Þa�ck�1

� �
�logit�1 g CV;ið Þa�ck

� �
if 1<k<K

logit�1 g CV;ið Þa�cK�1

� �
if k ¼ K

8>>>>><
>>>>>:

(5)

where g CV;ið Þ¼ g1
CV;ið Þ;���;gG

CV;ið Þ

� �
is the vector of the cross-validated

pathway scores, a¼ a1;...;aGð ÞT is the vector of the pathway effects,
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K is the number of categories and ck are the cut-points as defined in

Model (1). The pathways with the cross-validated AUC lower than

0.5 provide no predictive information. Thus, we can exclude these

pathways from the second-stage modeling.

We also use the quasi-Newton algorithm to fit the above second-

stage hierarchical ordinal regression. The quasi-Newton algorithm

can calculate the P-value for testing the hypothesis H0: ag¼0. Thus,

this hierarchical ordinal model can be used to not only predict the

multi-level response but also identify important pathways. The pre-

dictive performance of the second-stage hierarchical ordinal model

is evaluated using the cross-validation procedure as described

earlier.

3 Computer software

We have implemented the proposed approach in our R package

BhGLM, which is freely available from the public GitHub reposi-

tory https://github.com/abbyyan3/BhGLM. The function bpolr sets

up and fits the proposed hierarchical ordinal logistic models,

predict.bh calculates the measures for evaluating the fitted model

and cv.bh performs the cross-validation to assess the prediction ac-

curacy. BhGLM also includes functions to numerically and graphic-

ally summarize the fitted model. The function bpolr is an

alteration of polr in the R package MASS for fitting classical ordin-

al logistic regressions using the quasi-Newton algorithm.

4 Real data applications

4.1 Data summary and pathway analysis
We applied the two-stage approach to two publicly available data-

sets for predicting multi-level ordinal drug responses in MM. Both

datasets were acquired from GEO under accession number [GEO:

GSE9782] and [GEO: GSE68871]. These two datasets were gener-

ated from two independent clinical trials originally published in

Mulligan et al. (2007) and Terragna et al. (2016). Mulligan et al.

(2007) recruited patients with relapsed myeloma enrolled in phase 2

and phase 3 clinical trials of bortezomib. There were 169 samples

with a total of 22 283 gene expression probes. Terragna et al. (2016)

recruited 118 new MM patients with the induction therapy of VTD

and measured a total of 54 677 gene expression probes with the

Affymetrix Human Genome U133 Plus 2.0 Array. A gene represents

a covariate. In our analyses, we standardized each gene expression

covariate to have a mean of 0 and a SD of 1. It is important to stand-

ardize the predictors to a common and interpretable scale in hier-

archical modeling (Gelman and Hill, 2007; Gelman et al., 2008).

To construct the pathways, we used genome annotation tools,

KEGG (Kanehisa and Goto, 2000), to map genes to pathways. We

mapped all the probes to KEGG pathways using the Bioinformatics

tool DAVID (Huang et al., 2009; Huang da et al., 2009). For

Mulligan et al. (2007), 7692 genes were mapped to 170 pathways.

For Terragna et al. (2016), 12 036 genes were mapped to 146 path-

ways. The data summary and the pathways of the two studies are

presented in Table 1. We used the genes that were mapped into

pathways to build predictive models for multi-level ordinal

outcomes.

4.2 Definitions of multi-level ordinal drug responses
According to European Group for Bone Marrow Transplantation

criteria (Blade et al., 1998), patients were classified as achieving

CR, PR, MR, NC and PD in Mulligan et al. (2007).

In Terragna et al. (2016), patients’ drug responses were also

classified as five categories: CR, near complete response (nCR), very

good partial response (VGPR), PR and stable disease (SD). The five-

level ordinal drug responses and their proportions in these two stud-

ies are summarized in Table 2.

We mainly analyzed the original five-level ordinal drug

responses. However, it can be seen that some categories have low

frequencies, for example, PD and MR in in Mulligan et al. (2007),

SD, nCR and CR in Terragna et al. (2016). To avoid low frequencies

in some levels and to compare with the analysis of five-level

responses, we combined the five-level drug response to construct a

new three-level drug response and analyzed the new three-level drug

response. We kept CR as one level, the worst two response groups

as one level and the middle two levels as the third level. In Mulligan

et al. (2007), we combined PD and NC as a new level, and PR and

MR as another new level. Thus, the new three-level ordinal outcome

consisted of 73 patients having a response as PD or NC, 55 patients

having a response as MR or PR and 41 patients having CR. In

Terragna et al. (2016), we combined SD and PR as a new level, and

VGPR and nCR as another new level. Thus, the new three-level or-

dinal outcome consisted of 49 patients having a response as SD or

PR, 54 patients having a response as VGPR or nCR and 15 patients

having CR.

4.3 Building pathway-structured predictive model with

two-stage approach
We used the proposed two-stage approach to build pathway-

structured predictive models using gene expression covariates for

the five- and three-level ordinal drug outcomes. For our real data

analysis, it took an average of 1–1.5 min to generate LOOCV path-

way score for each pathway. In total, it took 2.99 and 3.59 h in a

desktop for the two datasets, respectively.

Table 1. Data summary and pathways of the two studies used in

the analyses

Study Mulligan et al.

(2007)

Terragna et al.

(2016)

Treatment Bortezomib VTD

Patients population Relapsed MM New-diagnosis

Number of samples 169 118

Number of genes 22 283 54 677

Number of genes in pathways 7692 12 036

Number of pathways 170 146

Table 2. The five-level drug ordinal outcomes, their numbers and

proportions in the two datasets used in the analyses

Response level Number of patients (Proportion)

Mulligan et al. (2007)

Five-level outcome PD 13 (7.70%)

NC 60 (35.50%)

MR 12 (7.10%)

PR 43 (25.44%)

CR 41 (24.26%)

Terragna et al. (2016)

Five-level outcome SD 7 (5.93%)

PR 42 (35.59%)

VGPR 40 (33.90%)

nCR 14 (11.87%)

CR 15 (12.71%)
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In the first stage, we calculated the LOOCV pathway score for

each pathway and each patient by fitting all the genes in that path-

way using a hierarchical ordinal logistic model. The procedure was

then repeated for all the pathways. In the second stage, we used

pathways with cross-validated AUC greater than 0.5 obtained in the

first stage to build a predictive model. We found that nearly 65% of

the pathways had the cross-validated AUC lower than (or very close

to) 0.5. The second-stage predictive model was built with the

LOOCV pathway scores as new predictors with the hierarchical or-

dinal model approach. A 10-fold cross-validation with 10 replicates

was carried out to validate the predictive performance of the final

predictive model.

The cross-validated deviance, AUC, MSE and mis-classification

for the two-stage approach are presented in Table 3. For the original

five-level ordinal drug response outcome in Mulligan et al. (2007),

the cross-validated deviance of the final predictive model was

472.600 (6 4.483), AUC was 0.585 (6 0.013), MSE was 0.142

(6 0.001) and mis-classification was 0.193 (6 0.004). For the com-

bined three-level ordinal drug response outcome in Mulligan et al.

(2007), the cross-validated deviance of the final predictive model

was 335.801 (6 3.879), AUC was 0.652 (6 0.009), MSE was 0.199

(6 0.002) and mis-classification was 0.287 (6 0.006).

For the original five-level ordinal drug response outcome in

Terragna et al. (2016), the cross-validated deviance of the final pre-

dictive model was 264.827 (6 6.176), AUC was 0.799 (6 0.012),

MSE was 0.117 (6 0.003) and mis-classification was 0.166

(6 0.011). For the combined three-level ordinal drug response out-

come in Terragna et al. (2016), the cross-validated deviance was

163.405 (6 7.289), AUC was 0.834 (6 0.011), MSE was 0.134

(6 0.006) and mis-classification was 0.186 (6 0.012).

4.4 Pathway-structured predictive model superior to

gene-based model in prediction performance
We compared the two-stage approach with the gene-based model

analysis that ignores the pathways information. For the gene-based

model analysis, we simultaneously fit all the genes that were used in

the two-stage approach using the hierarchical ordinal logistic model.

We also used 10-fold cross-validation with 10 repeats to validate the

predictive performance of the gene-based model. The cross-

validated deviance, AUC, MSE and mis-classification for the gene-

based model approach are presented in Table 3. We can see that the

two-stage approach provided much lower deviance, MSE and mis-

classification rate, and higher AUC than the gene-based models and

thus significantly outperformed the gene-based models for both

datasets.

4.5 Identified significant pathways and their biological

relevance
Our two-stage approach is capable of identifying associated relevant

pathways. Figure 1 shows the estimated effects and P-values of the

identified significant pathways with the two-stage approach for the

five-level ordinal outcome and gene expression data from Terragna

et al. (2016). Four associated pathways have been identified with

the significance level of 0.05. Among them, ErbB signaling pathway

has been found to be frequently overexpressed by carcinoma cells

(Lu and Kang, 2010; Normanno et al., 2006). Resistance to EGFR

inhibitors (ErbB family of receptors) could be induced by frequent

mutations within the EGFR pathway in MM (Chen et al., 2015).

Aggarwal et al. (Aggarwal et al., 2006) discussed the role that che-

mokines and chemokine receptors play in the pathogenesis of MM

and concluded that addition of chemokine antagonists to current

treatment regimens for myeloma could result in better therapeutic

responses. Podar et al. (Podar and Anderson, 2007) found that

VEGF inhibitors could improve patient outcome in MM. On the

other hand, five associated pathways have been identified with the

significance level of 0.05 with the two-stage approach for the three-

level ordinal outcome in Terragna et al. (Terragna et al., 2016).

They are MAPK signaling pathway, Chemokine signaling pathway,

Epithelial cell signaling pathway in Helicobacter pylori infection, in-

fluenza A pathway and Herpes simplex infection pathway, among

which only one pathway is overlapped with the results from the

five-level ordinal outcome.

5 Discussion

We present a two-stage approach to incorporate the functional

structure of pathways to predict response to drugs in cancer treat-

ment. It is considered highly important to predict drug response for

cancer patients, since the response to treatments, such as chemother-

apeutic agents, are variable with potentially lethal side effects

(Geeleher et al., 2014; Jiang and Wang, 2010). Our proposed

method builds a predictive model based on an informative pathway-

based data matrix, which is reduced from a high-dimensional large-

scale gene matrix. There are two remarkable features in reducing the

large-scale molecular matrix to a predictable pathway-based matrix:

(i) it incorporates the correlation with drug response in calculating

risk scores for each pathway; (ii) LOOCV was used to calculate the

risk score, which not only prevents overfitting but also gives an un-

biased summary of the contribution from different pathways to

build the final pathway-structured prediction model.

Table 3. Measures of predictive performance for the two-stage and gene-based model approaches from 10-fold cross-validation with 10

replicates

Deviance AUC MSE Mis-classification

Mulligan et al. (2007)

Five-level ordinal outcome Two-stage approach 472.600 (4.483) 0.585 (0.013) 0.142 (0.001) 0.193 (0.004)

Gene-based model 540.712 (8.214) 0.584 (0.014) 0.153 (0.002) 0.216 (0.006)

Three-level ordinal outcome Two-stage approach 335.801 (3.879) 0.652 (0.009) 0.199 (0.002) 0.287 (0.006)

Gene-based model 433.340 (8.695) 0.593 (0.011) 0.244 (0.004) 0.391 (0.007)

Terragna et al. (2016)

Five-level ordinal outcome Two-stage approach 264.827 (6.176) 0.799 (0.012) 0.117 (0.003) 0.166 (0.011)

Gene-based model 402.730 (8.526) 0.670 (0.012) 0.153 (0.002) 0.225 (0.008)

Three-level ordinal outcome Two-stage approach 163.405 (7.289) 0.834 (0.011) 0.134 (0.006) 0.186 (0.012)

Gene-based model 262.964 (6.490) 0.631 (0.016) 0.211 (0.005) 0.314 (0.010)

Note: The values in parentheses are the standard errors over the replicates.
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An issue that rises in predicting cancer drug response is that the

multi-level ordinal drug response will commonly be combined into a

simplified binary variable. As we know, one major goal in drug re-

sponse prediction is to determine the probability that a patient

belongs to a certain response category based on their clinical and

molecular features. Thus, the strategy to reduce the number of cate-

gories is considered to not only risk the loss of information in the

data but also cannot provide informative accurate prediction

(Warner, 2008). To address this issue, we employed a hierarchical

ordinal regression model in our two-stage approach. It allows the

direct modeling of the original multi-level ordinal drug response.

We propose to use Cauchy priors on coefficients in the hierarch-

ical ordinal logistic models. Cauchy distributions have a peak at

zero and long tails, thus performing weak shrinkage for large coeffi-

cients and strong shrinkage for irrelevant coefficients (Gelman et al.

2008, 2014), and also allow for easy and stable computation with

the quasi-Newton algorithm. Some other priors can be used in the

hierarchical ordinal logistic models. Possible choices may be the nor-

mal and double-exponential priors, which lead to the popular penal-

ization approaches, ridge and lasso regressions, respectively (Hastie

et al., 2015). The normal prior equally shrinks large and small coef-

ficients and thus is not appropriate for identifying important predic-

tors in high-dimensional settings. A remarkable feature of the

double-exponential prior is that coefficients can be estimated exactly

to zero if the model is fitted by the coordinate decent algorithm

(Friedman et al., 2010; Simon et al., 2011). However, the coordinate

decent algorithm has not been developed for ordinal logistic models.

With the quasi-Newton algorithm, the double-exponential prior has

no particular advantage.

We applied our two-stage approach in two publicly available

datasets, which assessed responses to bortezomib in relapsed MM

patients (Mulligan et al., 2007) and VTD in newly diagnosed MM

patients (Terragna et al., 2016). Unlike the original papers which

combined the five-level ordinal outcome as a binary outcome, we

analyzed the datasets by using the original ordinal drug responses

without reducing the number of categories for prediction. Our ana-

lysis results show that the predictive performance from VTD in new

MM patients (Terragna et al., 2016) can be much improved than

treating relapsed MM patients with bortezomib alone (Mulligan

et al., 2007). To avoid low frequencies in several levels of ordinal

five-level outcomes, we re-defined the five-level drug response as a

three-level ordinal drug response in both datasets. For either original

or re-defined outcome, the pathway-structured predictive models

perform consistently better than the gene-based models using the

hierarchical ordinal logistic regression model, in terms of much

lower deviance, MSE, mis-classification rate and higher AUC, in

both datasets. It is also noteworthy that AUC increased and devi-

ance decreased with a trade-off in increased MSE and mis-classifica-

tion rate in the analysis results using reduced three-level ordinal

drug response, when compared with the results from the original

outcome. It implies that combining ordinal outcome could result in

higher MSE and mis-classification rate. Thus, it infers that combin-

ing ordinal outcome could lead to inaccurate informative prediction

and mis-leading interpretation with possible arbitrary choices of

recoding. These findings could also be supported by our identified

associated pathways in VTD treated new MM patients (Terragna

et al., 2016). Four associated pathways have been identified with the

significance level of 0.05 using the five-level drug response in our

two-stage approach, including ErbB signaling pathway, chemokines

signaling pathway, VEGF signaling pathway and long-term potenti-

ation pathway. Among them, the first three pathways have been

widely investigated for their significant roles played in the pathogen-

esis of MM. On the other hand, there are five associated pathways

identified with the significance level of 0.05 using the two-stage ap-

proach for the re-defined three-level ordinal outcome in VTD

treated new MM patients (Terragna et al., 2016). They are MAPK

signaling pathway, Chemokine signaling pathway, Epithelial cell

signaling pathway in Helicobacter pylori infection, influenza A

pathway and Herpes simplex infection pathway. There is only one

pathway overlapped with the results from the five-level ordinal out-

come. The differences between two outcomes also show that arbi-

trary recoding of ordinal response could be mis-leading in biological

interpretation, thus severe incorrect information in the clinical

application.

We note that only gene expression data have been used to build

the pathway-structured model in this study. Our two-stage approach

is directly applicable to include other clinical and molecular factors

which may contribute to the predictive classifier of drug response in

MM. Due to the limitations of the public datasets available, we did

not incorporate those in real data analysis. We consider this matter

as a subject for further work. It is also necessary to perform further

research to assess the relevance of certain biomarkers in those

Fig. 1. The second-stage predictive model for the five-level ordinal outcome and gene expression data from Terragna et al. (Terragna et al., 2016): estimated values of

pathway effects (points), 95% confidence intervals (short lines) and P-values (right side). Only significant pathways with P-value lower than 0.05 are labeled
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associated pathways. Relevant biomarkers may provide extraordin-

ary opportunities to elucidate the mechanisms of therapies in MM

and to develop new diagnostics and therapeutic targets.

Funding

This work was supported in part by research grants from USA

National Institutes of Health (R03-DE025646), National Natural

Science Foundation of China (81673448, 81670191), Natural

Science Foundation of Jiangsu Province China (BK20161218,

BK20161223) and The Applied Basic Research Programs of Suzhou

City (SYS201546). A Project Funded by the Priority Academic

Program Development of Jiangsu Higher Education Institutions.

Conflict of Interest: none declared.

References

Abraham,G. et al. (2010) Prediction of breast cancer prognosis using gene

set statistics provides signature stability and biological context. BMC

Bioinformatics, 11, 277.

Aggarwal,R. et al. (2006) Chemokines in multiple myeloma. Exper. Hematol.,

34, 1289–1295.

American Cancer Society (2018) Cancer Facts and Figures 2018. American

Cancer Society, Atlanta.

Barillot,E. (2012) Computational Systems Biology of Cancer. Chapman &

Hall/CRC mathematical and computational biology series, CRC Press, Boca

Raton, FL.

Blade,J. et al. (1998) Criteria for evaluating disease response and progression

in patients with multiple myeloma treated by high-dose therapy and haemo-

poietic stem cell transplantation. Myeloma Subcommittee of the EBMT.

European Group for Blood and Marrow Transplant. Br. J. Haematol., 102,

1115–1123.

Chen,Y. et al. (2015) Multiple myeloma acquires resistance to EGFR inhibitor

via induction of pentose phosphate pathway. Sci. Rep., 5, 9925.

Eng,K.H. et al. (2013) Pathway index models for construction of

patient-specific risk profiles. Stat. Med., 32, 1524–1535.

Fonseca,R. et al. (2017) Trends in overall survival and costs of multiple mye-

loma, 2000-2014. Leukemia, 31, 1915–1921.

Friedman,J. et al. (2010) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Softw., 33, 1–22.

Geeleher,P. et al. (2014) Clinical drug response can be predicted using baseline

gene expression levels and in vitro drug sensitivity in cell lines. Genome

Biol., 15, R47.

Gelman,A. and Hill,J. (2007) Data Analysis Using Regression and

Multilevel/Hierarchical Models. Cambridge University Press, New York.

Gelman,A. et al. (2008) A weakly informative default prior distribution for lo-

gistic and other regression models. Ann. Appl. Stat., 2, 1360–1383.

Gelman,A. et al. (2014) Bayesian Data Analysis. Chapman and Hall/CRC

Press, New York.

Hastie,T. et al. (2015) Statistical Learning with Sparsity–The Lasso and

Generalization. CRC Press, New York.

Hofman,I.J.F. et al. (2017) RPL5 on 1p22.1 is recurrently deleted in multiple

myeloma and its expression is linked to bortezomib response. Leukemia,

31, 1706–1714.

Huang,D.W. et al. (2009) Bioinformatics enrichment tools: paths toward the

comprehensive functional analysis of large gene lists. Nucleic Acids Res.,

37, 1–13.

Huang da,W. et al. (2009) Systematic and integrative analysis of large gene

lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57.

Huang,S. et al. (2014) A novel model to combine clinical and pathway-based

transcriptomic information for the prognosis prediction of breast cancer.

PLoS Comput. Biol., 10, e1003851.

Jiang,Y. and Wang,M. (2010) Personalized medicine in oncology: tailoring the

right drug to the right patient. Biomarkers Med., 4, 523–533.

Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res., 28, 27–30.

Kumar,S.K. et al. (2008) Improved survival in multiple myeloma and the im-

pact of novel therapies. Blood, 111, 2516–2520.

Kyle,R.A. and Rajkumar,S.V. (2008) Multiple myeloma. Blood, 111,

2962–2972.

Lee,E. et al. (2008) Inferring pathway activity toward precise disease classifica-

tion. PLoS Comput. Biol., 4, e1000217.

Lu,X. and Kang,Y. (2010) Epidermal growth factor signalling and bone me-

tastasis. Br. J. Cancer, 102, 457–461.

Malek,E. et al. (2017) Pharmacogenomics and chemical library screens reveal

a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in mul-

tiple myeloma. Leukemia, 31, 645–653.

Mulligan,G. et al. (2007) Gene expression profiling and correlation with out-

come in clinical trials of the proteasome inhibitor bortezomib. Blood, 109,

3177–3188.

Normanno,N. et al. (2006) Epidermal growth factor receptor (EGFR) signal-

ing in cancer. Gene, 366, 2–16.

Podar,K. and Anderson,K.C. (2007) Inhibition of VEGF signaling pathways in

multiple myeloma and other malignancies. Cell Cycle, 6, 538–542.

Rajkumar,S.V. (2011) Treatment of multiple myeloma. Nat. Rev. Clin.

Oncol., 8, 479–491.

Reyal,F. et al. (2008) A comprehensive analysis of prognostic signatures

reveals the high predictive capacity of the proliferation, immune response

and RNA splicing modules in breast cancer. Breast Cancer Res, 10, R93.

Simon,N. et al. (2011) Regularization paths for Cox’s proportional hazards

model via coordinate descent. J. Stat. Softw., 39, 1–13.

Terragna,C. et al. (2016) The genetic and genomic background of multiple

myeloma patients achieving complete response after induction therapy with

bortezomib, thalidomide and dexamethasone (VTD). Oncotarget, 7,

9666–9679.

Teschendorff,A.E. et al. (2010) Improved prognostic classification of breast

cancer defined by antagonistic activation patterns of immune response path-

way modules. BMC Cancer, 10, 604.

Tibshirani,R.J. and Efron,B. (2002) Pre-validation and inference in microar-

rays. Stat. Appl. Genet. Mol. Biol., 1, Article1.

Venables,W.N. and Ripley,B.D. (2002) Modern Applied Statistics with S.

Springer-Verlag, New York.

Warner,P. (2008) Ordinal logistic regression. J. Fam. Plann. Reprod. Health

Care, 34, 169–170.

Zhang,X. et al. (2017) Pathway-structured predictive model for cancer sur-

vival prediction: a two-stage approach. Genetics, 205, 89–100.

Pathway-structured prediction of drug response 3615

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/21/3609/5021691 by guest on 19 April 2024

Deleted Text: Acknowledgments
Deleted Text: ,

	bty436-TF1

