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Abstract

Motivation: Bioinformatics tools that predict protein stability changes upon point mutations have

made a lot of progress in the last decades and have become accurate and fast enough to make com-

putational mutagenesis experiments feasible, even on a proteome scale. Despite these achievements,

they still suffer from important issues that must be solved to allow further improving their performan-

ces and utilizing them to deepen our insights into protein folding and stability mechanisms. One of

these problems is their bias toward the learning datasets which, being dominated by destabilizing

mutations, causes predictions to be better for destabilizing than for stabilizing mutations.

Results: We thoroughly analyzed the biases in the prediction of folding free energy changes upon

point mutations (DDG0) and proposed some unbiased solutions. We started by constructing a data-

set Ssym of experimentally measured DDG0s with an equal number of stabilizing and destabilizing

mutations, by collecting mutations for which the structure of both the wild-type and mutant protein

is available. On this balanced dataset, we assessed the performances of 15 widely used DDG0 pre-

dictors. After the astonishing observation that almost all these methods are strongly biased toward

destabilizing mutations, especially those that use black-box machine learning, we proposed an ele-

gant way to solve the bias issue by imposing physical symmetries under inverse mutations on the

model structure, which we implemented in PoPMuSiCsym. This new predictor constitutes an effi-

cient trade-off between accuracy and absence of biases. Some final considerations and sugges-

tions for further improvement of the predictors are discussed.

Contact: fapucci@ulb.ac.be

Supplementary information: Supplementary data are available at Bioinformatics online.

Note: The article 10.1093/bioinformatics/bty340/, published alongside this paper, also addresses

the problem of biases in protein stability change predictions.

1 Introduction

De novo protein design is well known to be an important challenge

in protein science. Its achievement would have a considerable im-

pact on a wide series of academic and industrial applications that

range from drug design in medicinal chemistry to the development

of multi-component protein nanomaterials (Coluzza, 2017; Huang

et al., 2016; Zanghellini, 2014). This goal is far from being reached,

even though valuable developments have recently been made.

Mutational studies with both experimental and computational

techniques have thoroughly deepened our understanding of the

mechanisms that drive the folding process. In particular, a lot of

computational methods have been developed in the last decades to

predict in an efficient way how an amino acid substitution impacts

protein stability (Alford et al., 2017; Capriotti et al., 2005;
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Chen et al., 2013; Cheng et al., 2006; Dehouck et al., 2009, 2011;

Giollo et al., 2014; Guerois et al., 2002; Kellogg et al., 2011; Laimer

et al., 2016; Masso and Vaisman, 2008, 2014; Pandurangan et al.,

2017; Parthiban et al., 2006; Pires et al., 2014a, b; Quan et al.,

2016). They allow limiting extensive mutagenesis experiments and

thus save time and money.

The most accurate methods among these are structure based.

They use the three-dimensional (3D) structure of the wild-type pro-

tein as input for predicting how the folding free energy DG0 gets

modified upon point mutations (DDG0). All these methods are based

on a large variety of models that range from pure machine learning

algorithms to more biophysics-oriented approaches where the ener-

getic contributions are appropriately combined. Their average per-

formances, measured by the root mean square deviation between

experimental and predicted DDG0 values for datasets that contain

on the order of two thousand entries, are reported to be between 1.0

and 1.5 kcal/mol [for previous comparisons of the methods’ per-

formances, see Potapov et al. (2009) and Khan and Vihinen (2010)].

These results are astonishing if one considers that, despite the com-

plexity of the problem, some of the above-mentioned tools predict

the DDG0 of one mutation in less than a minute. This opens the way

to perform computational mutagenesis experiments at the proteomic

scale with reasonable accuracy.

Unfortunately, these methods suffer from different drawbacks.

Like all machine learning approaches, they are prone to overfitting

problems (Cawley and Talbot, 2010; Hawkins, 2004), and their

results therefore tend to be biased toward the training datasets. The

analysis and the correction of biases are of primary importance to

get more accurate and reliable methods. However, it is a non-trivial

task since biases are usually hidden and require careful work on the

model structures and on the cleaning of the training datasets.

A known bias in protein stability prediction comes from the fact

that the ensemble of experimentally characterized mutations and as

a consequence, the training datasets, are dominated by destabilizing

mutations. This implies that the predictors tend to be more accurate

for destabilizing than for stabilizing mutations, which is a crucial

issue given that the latter are the focus of protein design applica-

tions. This issue has been reported in a few investigations (Fariselli

et al., 2015; Pucci et al., 2015; Thiltgen and Goldstein, 2012), but

there is not yet a common, generally accepted, way to overcome it.

Moreover, biases are not limited to this feature but can involve other

characteristics such as the kind of protein or the type of wild-type

and mutant amino acids, since not all substitutions are sufficiently

sampled in the training dataset.

In this paper, we go further into this investigation, and assess the

performances of different predictors on a new dataset of mutations

with experimentally characterized DDG0 values and with known 3D

structures of both the wild-type and mutant proteins. This dataset is

by construction balanced with respect to stabilizing and destabiliz-

ing mutations. We showed that imposing physical symmetries to the

model structures is an efficient and elegant way to solve the bias

problem, as already suggested in a preliminary study (Pucci et al.,

2015).

2 Materials and methods

2.1 Folding stability changes upon mutations
Under the assumption that the protein folding process is a reversible,

two-state transition—and thus that the protein does not precipitate

or aggregate—the thermodynamic stability of a protein can be

measured by its folding free energy DG0, i.e. the Gibbs free energy

difference between the unfolded and folded states:

DG0 ¼ G0 unfoldedð Þ �G0 foldedð Þ (1)

The impact of an amino acid substitution on the protein stability is

characterized by the change of DG0 upon mutation:

DDG0
dir ¼ DG0 mutantð Þ � DG0 wild� typeð Þ (2)

With these conventions, negative values of DDG0
dir indicate destabi-

lizing mutations while positive DDG0
dir values are associated with

stabilizing substitutions. These quantities depend on different

thermodynamic and environmental variables such as the tempera-

ture and the pH. They are often defined either at room temperature

Tr ¼ 25
�
C or at the melting temperature Tm of the wild-type pro-

tein. Sometimes, they are not directly measured but derived from

DTm measures in differential scanning calorimetry (DSC) experi-

ments, by utilizing the fact that these two quantities are correlated,

even though this is only true in a first approximation [see Pucci et al.

(2016) and Watson and Raleigh (2017) for further details]. All these

dependencies and approximations make the datasets of the experi-

mentally annotated mutations quite noisy, which in turn impacts the

accuracy of the predictors that are trained on them.

2.2 Assessing predictors through bias evaluation
The change in folding free energy upon mutations is by definition

antisymmetric with respect to the exchange between the mutant and

wild-type residues, assuming that the folding of both the wild-type

and mutant proteins is a reversible two-state process. This means

that the folding free energy DDG0
inv of an inverse mutation, from mu-

tant to wild-type, is equal to minus that of the direct substitution,

from wild-type to mutant:

DDG0
inv ¼ �DDG0

dir (3)

Predictions obtained by computational methods usually do not sat-

isfy this equality, since they are trained on experimental datasets

dominated by destabilizing mutations. For example, two of the

widely used mutation datasets for model training, S2648 (Dehouck

et al., 2009) and Q3421 (Quan et al., 2016), exhibit an average

DDG0 value of �1.01 and �1.13 kcal/mol, respectively. This distor-

tion is learnt by the model and then reproduced in the prediction

phase. Note that Equation (3) cannot be satisfied exactly by the pre-

dictors that only consider the wild-type and not the mutant structure,

but this approximation has usually a small impact when coarse-

grained structural representations are used, except in the rare cases

where single-site mutations cause large structural rearrangements.

In this paper we constructed a new mutation dataset Ssym which

is balanced with respect to stabilizing and destabilizing mutations

(see Section 2.3), and used it for assessing the performance of 15

prediction methods (Section 2.4) and for quantifying their bias that

tends to favor destabilizing mutations. We used the following meas-

ures, the former two to estimate the predictors’ accuracy and the lat-

ter two the bias:

• rdir and rdir are the root mean square deviation and the linear

correlation coefficient between the predicted and experimental

DDG0 values for the direct mutations in Ssym, from wild-type to

mutant. Note that these mutations belong to the training dataset

of the methods tested, so that the predictions are likely to be

overfitted and rdir and rdir to be underestimated and overesti-

mated, respectively.
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• rinv and rinv are the root mean square deviation and the linear

correlation coefficient between the predicted and experimental

DDG0 values for the inverse mutations in Ssym, from mutant to

wild-type. These mutations do not belong to the training datasets

and thus constitute an independent test set.
• rdir;inv is the linear correlation coefficient between the predicted

DDG0 values of the direct and the inverse mutations. A non-biased

prediction that satisfies Equation (3) has rdir;inv equal to �1.
• A previously used criterion to estimate the bias is the parameter d

defined as (Thiltgen and Goldstein, 2012):

d ¼ DDG0
inv þ DDG0

dir (4)

A perfectly non-biased tool should have d¼0 for every mutation.

We used here its average value hdi taken over all mutations that be-

long to Ssym.

2.3 Dataset construction
We created a manually curated dataset Ssym, by selecting mutations

from the Protherm database (Bava et al., 2004) and checking them

on the basis of the original literature. It contains mutations with ex-

perimental DDG0 values for which the 3D structures of both the

wild-type and mutant proteins are solved by X-ray crystallography

with a resolution of 2.5 Å at most.

Sometimes, different DDG0 values are available for the same mu-

tation. We selected the DDG0 measured under the environmental

conditions closest to the standard conditions (pH¼7, T ¼ 25�C).

Note that they are frequently measured at the melting temperature

of the wild-type protein.

We ended up with a dataset of 684 mutations, half of which are

direct mutations inserted in 15 wild-type proteins, while the remain-

ing half are inverse mutations inserted in 342 different mutant pro-

teins. These mutations are given in Supplementary Information.

2.4 Prediction methods analyzed
We selected the DDG0 predictors that are among the most renowned

in terms of speed and accuracy. We list them below and briefly ex-

plain their characteristics.

1. PoPMuSiC v2.1 (Dehouck et al., 2009): based on standard stat-

istical potentials, combined with sigmoidal weights that depend

on the solvent accessibility of the mutated residues.

2. SDM (Pandurangan et al., 2017): uses conformationally con-

strained environment-specific substitution tables to calculate

the change in thermodynamic stability between the wild-type

and the mutant proteins.

3. CUPSAT (Parthiban et al., 2006): uses torsion angle potentials

and structural environment-specific atom potentials.

4. Rosetta (Kellogg et al., 2011): generates a 3D structural model

of the mutated protein from the wild-type structure, and com-

putes the difference in energy between them, with as energy

function the sum of a large series of empirical physics-based en-

ergy contributions [Coulomb electrostatic, Lennard-Jones

atomic interactions, etc. (Alford et al., 2017)].

5. FoldX v3.0 (Guerois et al., 2002): uses a full atomistic descrip-

tion of the protein structure and is based on FOLDEF, an em-

pirical force field developed as a linear combination of different

empirical energy terms (van der Waals, solvation, electrostatic,

hydrogen bonds, etc.).

6. I-Mutant v3.0 (Capriotti et al., 2005): a tool based on a sup-

port vector machine (SVM) that combines protein sequence

and structure information.

7. iSTABLE (Chen et al., 2013): an integrated predictor, that

combines, using an SVM algorithm, sequence information with

predictions from different methods (I-Mutant, AUTOMUTE,

MUPRO, PoPMuSiC and CUPSAT).

8. NeEMO (Giollo et al., 2014): uses an effective representation

of proteins based on residue interaction networks (RINs) and

combines the extracted information through a neural network.

9. AUTO-MUTE (Masso and Vaisman, 2008): uses as main ingre-

dient four-body, knowledge-based, statistical contact potentials

that are combined with machine learning tools (random forest

and SVM).

10. STRUM (Quan et al., 2016): combines physics- and

knowledge-based energy functions derived from protein struc-

ture models obtained by I-TASSER (Roy et al., 2010), through

gradient boosting regression.

11. MAESTRO (Laimer et al., 2016): uses statistical energy func-

tions as main features, and combines them with a multi-agent

method that includes a linear regression, an artificial neural

network and an SVM.

12. mCSM (Pires et al., 2014b): a machine learning method that

utilizes graph-based distance patterns between atoms as well as

the residue type.

13. DUET (Pires et al., 2014a): a consensus prediction method

obtained by combining mCSM and SDM using an SVM

algorithm.

14. MUPRO (Cheng et al., 2006): uses an SVM approach that

takes into account sequence information only.

All the tools in this list utilize the 3D structure of the wild-type

protein as input, except the last one which is based on the protein se-

quence only. The first five predictors are based on combinations of

energy contributions and do not use machine learning, or use ma-

chine learning just to identify the parameters of a pre-established

model structure. The last nine predictors are true machine learning

methods.

Some predictors require as input the pH at which the change in

folding free energy is computed (method 11) or both the pH and

the temperature (methods 5–10), while the others do not ask for the

specification of the environmental conditions, assuming standard

conditions.

2.5 Designing unbiased prediction models
Two approaches can be devised to solve the bias problem and re-

cover predictions that satisfy Equation (3). One solution is to train

the model on a balanced dataset that contains, for each mutation,

both the direct and inverse versions, from wild-type to mutant and

from mutant to wild-type. However, this requires knowing the 3D

structure of the mutant proteins, which is only available for a subset

of mutations: our dataset Ssym contains 684 mutations, whereas the

training datasets for which only the wild-type structure is requested

contain about 3000 mutations. The datasets can be increased by

including mutant structures obtained through comparative model-

ing, but this introduces noise into the data. Note that this is the only

solution in the case of pure machine learning approaches where the

model structure is not established a priori.

When the prediction model is pre-established and not obtained

through a black-box machine learning technique, it is possible to

identify the terms in the model structure that are responsible for the

symmetry breaking and appropriately correct them. This is exactly

what we did in Pucci et al. (2015), where the PoPMuSiCsym model, a

symmetrized version of PoPMuSiC v2.1, was presented.
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The model structure of the original PoPMuSiC v2.1 is a combin-

ation of 16 contributions:

DDG ¼
X13

n¼1

an Að ÞDDWn þ a14 Að ÞDVþ þ a15 Að ÞDV� þ a16 Að Þ; (5)

The 13 terms in DDWi are changes in folding free energy upon muta-

tion computed using different knowledge-based statistical potentials

[see Dehouck et al. (2009) for details], ai (i¼1�16) are sigmoidal

coefficients that depend on the solvent accessibility A of the mutated

residues, and DV6 are volume terms defined as:

DV6 ¼ 6DV h Vð Þ: (6)

where h Vð Þ is the Heaviside function. These two terms represent, re-

spectively, the positive and negative difference in volume between

the mutant and wild-type amino acids. They provide a description

of the impact of the creation of a cavity or the accommodation of

stress inside the protein structure. The last term in Equation (5) is an

energy independent term.

Now, imposing that the model structure satisfies the symmetry

relation of Equation (3) yields the two constraints:

a14 Að Þ ¼ �a15 Að Þ; a16 Að Þ ¼ 0 (7)

These constraints were introduced into the model structure

[Equation (5)] and defined a new version of the PoPMuSiC predict-

or, in which the 14 remaining ai Að Þ parameters were optimized on

PoPMuSiC’s original S2648 training dataset. This new version is

called PoPMuSiCsym (Pucci et al., 2015).

3 Results

We tested 15 DDG0 predictors on a common, balanced, dataset

Ssym of 684 single-site mutations, in order to evaluate their perform-

ances and, more importantly, their degree of bias with respect

to the DDG0 symmetry between direct and inverse mutations

[Equation (3)]. Table 1 contains the values of the root mean square

deviations r and the linear correlation coefficients r, reported separ-

ately for the direct and inverse mutations. The importance of the

bias is evaluated by two parameters, the correlation coefficient

rdir�inv between the direct and inverse mutations and the d parameter

defined in Equation (4).

As clearly seen in Table 1 and Figure 1, all the tested methods

are biased toward the training dataset, except PoPMuSiCsym which

has been explicitly designed to avoid this bias. If we focus on direct

mutations, the best performing method is MUPRO, a sequence-

based machine learning method, with a rdir of 0.95 and a rdir of

about 0.8. Remember, however, that all the direct mutations are

part of the methods’ training datasets, and these results are thus like-

ly to be affected by overfitting problems. In contrast, the inverse

mutations do not belong to the methods’ training sets and can thus

be considered as constituting an independent test set. The best per-

forming predictors on the inverse mutations are PoPMuSiCsym,

MAESTRO, FoldX and PoPMuSiC v2.1.

It is important to note that the black-box machine learning

techniques suffer in general more from the bias issue than the other

methods that use a more physics-based approach. For example, if one

overlooks PoPMuSiCsym, the least biased predictor is SDM, which

belongs to the physics-based class of predictors, with a correlation co-

efficient rdir�inv of about �0.8 and a hdi value of about �0.3.

However, some physics-based methods are also strongly biased.

The point is that such methods can avoid biases only if their model

structure is adequately constrained to avoid them. More specifically,

the current PoPMuSiC v2.1 version already shows a good perform-

ance compared with other predictors, but the implementation of the

physical constraints of Equation (7) in PoPMuSiCsym spectacularly

improves rinv by more than 25% and yields a zero hdi value.

Note that despite the symmetry constraints, there are still some

outliers in PoPMuSiCsym with respect to the expected DDG0 sym-

metry between direct and inverse mutations, as shown in Figure 2.

These outliers actually correspond to mutations that cannot be pre-

dicted simply from the wild-type structure. Indeed, they provoke sig-

nificant structural rearrangements to avoid steric clashes, empty

cavities or other unfavorable conformations. In these cases, both the

wild-type and mutant structures should be considered in the DDG0

estimation. These issues explain why PoPMuSiCsym does not

perfectly satisfy the symmetry relation of Equation (3) despite its

symmetric model structure; the rdir�inv correlation is indeed equal to

–0.77 rather than –1.0.

We also analyzed the bias effect separately for core and surface

residues. Table 2 reports the results for the best performing meth-

ods. In general, the predictions are biased for both surface and core

mutations. To correctly interpret these results, we have to remember

that mutations in the core have on the average a larger effect on the

protein structure and stability. In the Ssym dataset for example, the

mean of the absolute values of the DDG0s is equal to 1.75 kcal/mol

for core mutations and approximatively half (0.96 kcal/mol) for sur-

face mutations. As a consequence, the hdi values of the different

methods tend to be worse in the core whereas the rdir�inv correlations

tend to be worse on the surface.

According to our results, the least biased predictors are

PoPMuSiCsym and SDM, for both core and surface mutations. But

the performance of PoPMuSiCsym is generally better than that of

SDM, especially when it is evaluated on the inverse mutation set

which does not overlap with the methods’ training sets. The second

best performing predictors on the set of inverse mutations is FoldX

on core mutations and PoPMuSiC v2.1 on surface mutations.

The bias was also compared between mutations in which

an amino acid is replaced by a much larger or a much smaller amino

acid, and mutations in which the wild-type and mutant amino acids

have roughly the same size (Table 3). The volume differences can

Table 1. Bias analysis of all the mutations belonging to the dataset

Ssym

Note: The standard deviations rdir and rinv and the values of hdi are in

kcal/mol. The methods are ranked according to their performance on the in-

dependent test set of inverse mutations, more specifically on the basis of rinv.

The best values in each column are underlined
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indeed be another source of bias for some of the prediction methods.

Here also, PoPMuSiCsym is the least biased predictor and the best

performing on the set of inverse mutations, both for mutations with

and without significant size difference. The next least biased

predictor is SDM, and the next best performing predictors are

MAESTRO and SDM for substitutions with large volume changes,

and MAESTRO and FoldX for small volume changes.

Fig. 1. DDG0 values (in kcal/mol) of all the mutations in Ssym predicted by the 15 tools analyzed. The DDG0
dir values of the direct mutations (wild-type ! mutant)

are given on the x-axis, and the DDG0
inv values of the associated inverse mutations (mutant! wild-type) are reported on the y-axis. The lines represent the bisec-

tors of the second and fourth quadrants; the perfectly symmetric predictions are on that line

Fig. 2. DDG0 values (in kcal/mol) of all the mutations in Ssym predicted by

PoPMuSiCsym. The outliers with respect to the symmetric prediction fall in the

(green) ellipsoid. They correspond to the four pairs of direct and inverse muta-

tions: (1EY0 K116G; 1KAB G116K), (1EY0 P117A; 1SYG A117P), (1EY0 P117G;

1SYC G117P) and (1EY0 P117G; 1SYC G117P), (1EY0 P117T; 1SYE T117P)

Table 2. Bias analysis for the five best predictors according to the

residue localization (core versus surface)

Method rdir rdir rinv rinv rdir�inv hdi

Core residues

PoPMuSiCsym 1.92 0.56 1.99 0.52 �0.89 0.03

FoldX 1.50 0.64 2.27 0.52 �0.37 �0.60

SDM 1.75 0.62 2.52 0.49 �0.90 �0.56

MAESTRO 1.55 0.49 2.57 0.47 �0.58 �0.82

PoPMuSiC v2.1 1.31 0.65 2.74 0.51 �0.79 �1.09

Surface residues

PoPMuSiCsym 1.16 0.42 1.15 0.48 �0.62 0.03

PoPMuSiC v2.1 1.09 0.45 1.42 0.29 �0.27 �0.35

MAESTRO 1.14 0.39 1.50 0.25 �0.14 �0.35

FoldX 1.61 0.60 2.00 0.18 �0.39 �0.35

SDM 1.72 0.18 2.02 0.16 �0.63 �0.08

Note: The standard deviations rdir and rinv and the values of hdi are in

kcal/mol. The predictors are ranked according to the smallest rinv scores,

computed on the set of inverse mutations which constitutes an independent

test set, with no overlap with the methods’ training datasets. The best values

in each column are underlined
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4 Discussion

In this paper, we thoroughly investigated the DDG0 symmetry

breaking issue and extensively discussed the fact that computational

methods tend to predict the mutations more often as destabilizing

than as stabilizing since the training datasets are dominated by

destabilizing residue substitutions. Even though this problem was al-

ready described in the literature (Thiltgen and Goldstein, 2012;

Fariselli et al., 2015; Pucci et al., 2015), a quantitative measure of

the violation of the symmetry between the direct and the inverse

substitutions by existing predictors was lacking. This gap has been

filled in this paper, in which we quantified and discussed the per-

formance and biases of 15 of the most efficient available tools. Our

results can be summarized as follows:

• All tested methods are biased toward destabilizing mutations. As

a proof of this statement, we observed a prediction error on the

set of direct mutations (dominated by destabilizing mutations,

representing 75% of the dataset entries) which is larger by a fac-

tor of about two than the prediction error on the set of inverse

mutations (dominated by 75% stabilizing mutations). Indeed,

rdir is equal to 0.94–1.75 kcal/mol, and rinv to 2.09–2.88 kcal/

mol. This effect is amplified for the substitutions in the core with

respect to surface mutations.
• Predictions that use black-box machine learning techniques

tend to be more biased than the others. Indeed, four of the top

five prediction tools, PoPMuSiCsym, PoPMuSiC v2.1, FoldX

and SDM, use biophysics-oriented models that combine energy

contributions in a coherent way. In contrast, the fifth tool,

MAESTRO, uses statistical potentials and other biophysical

features combined through several kinds of machine learning

methods.
• Imposing biophysical constraints on the model structure (when

accessible) is an elegant and simple way to solve completely the

bias problem. Indeed, from the analysis of the different folding

free energy contributions, it is quite simple to avoid all the terms

that violate the symmetry. Relying on symmetry principles in

the construction of a model is a common and well-known

strategy used in physics, which also pays off here, as shown

by the spectacular improvement of the d and rdir�inv values of

PoPMuSiCsym.

Besides the necessity of getting rid of the DDG0 symmetry biases,

other issues need to be tackled to improve the protein stability pre-

diction methods:

• We would like to draw the attention on the training datasets.

Most DDG0 predictors use S2648 (Dehouck et al., 2009) or

Q3421 (Quan et al., 2016) as training sets. These sets are manual-

ly curated and based on data coming from the ProTherm database

(Bava et al., 2004), which has not been updated since more than 5

years. As many experimental data have been published since then,

especially from deep mutagenesis scanning experiments (Fowler

and Fields, 2014), it would be extremely useful to collect them

into a new, extended and manually curated database.
• The bias toward destabilizing mutations in the usual learning sets

should be taken into account in the evaluation of the methods’ per-

formances. A possibility is to systematically test new methods on

Ssym, the dataset described in this paper that contains both the direct

and inverse versions of each mutation and is thus by construction

balanced with respect to stabilizing and destabilizing mutations.
• The predictors possibly also suffer from other hidden biases. For

example, some types of mutations could be insufficiently sampled

in the learning set, with the consequence that the predictor could

learn incorrect trends. We would like to stress once more that

testing predictors in cross validation is insufficient to correctly

evaluate them with respect to the learning dataset biases.
• We would also like to underline the issues related to the addition

of more and more features to the predictors. From one side, it

allows taking into account the huge complexity of the problem,

but from the other side it increases the risk of overfitting and

biasing. Moreover, when features are added on top of other fea-

tures, for example in the case of metapredictors, the performan-

ces are difficult to evaluate in genuine cross validation and

should be carefully analyzed.

The improvement that the above analyses are expected to bring

is crucial in view of addressing even more challenging issues such as

the prediction of the changes in folding free energy upon multiple

mutations. Indeed, even though it remains costly, the wide screening

of single-site mutations can be performed experimentally in a rea-

sonable time, via techniques such as deep mutational scanning

(Fowler and Fields, 2014). Computational methods capable of pre-

dicting only point mutations could thus become less impacting in

the protein design field in the near future and the attention should

be more focused on the development of predictors that are able to

predict the effect of multiple mutations. Such predictions would

moreover be more likely to fulfill the requirements of improving

protein stability in biotechnological applications, which are fre-

quently impossible to satisfy by single-point mutations only, but re-

quire combinations of mutations to achieve, for example, high

energetic stabilization while maintaining the solubility and activity

of the protein unaltered.
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Table 3. Bias analysis for the five best predictors according to the

difference in volume between wild-type and mutant residues

Method rdir rdir rinv rinv rdir�inv hdi

Large volume changes

PoPMuSiCsym 2.04 0.53 2.13 0.52 �0.73 0.07

SDM 1.78 0.59 2.77 0.36 �0.67 �0.60

MAESTRO 1.63 0.61 2.77 0.47 �0.54 �0.72

FoldX 1.89 0.60 2.90 0.41 �0.27 �0.84

PoPMuSiC v2.1 1.33 0.70 2.90 0.32 �0.51 �1.02

Small volume changes

PoPMuSiCsym 1.40 0.42 1.41 0.40 �0.78 0.02

MAESTRO 1.26 0.40 1.82 0.25 �0.22 �0.53

FoldX 1.44 0.60 1.83 0.36 �0.46 �0.35

PoPMuSiC v2.1 1.17 0.51 1.90 0.20 �0.08 �0.61

SDM 1.72 0.40 2.10 0.28 �0.80 �0.22

Note: The standard deviations rdir and rinv and the values of hdi are in

kcal/mol. The predictors are ranked according to the smallest rinv scores,

computed on the set of inverse mutations which constitutes an independent

test set, with no overlap with the methods’ training datasets. The best values

in each column are underlined
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