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Abstract

Motivation: Identification of enhancers and their strength is important because they play a critical

role in controlling gene expression. Although some bioinformatics tools were developed, they are

limited in discriminating enhancers from non-enhancers only. Recently, a two-layer predictor

called ‘iEnhancer-2L’ was developed that can be used to predict the enhancer’s strength as well.

However, its prediction quality needs further improvement to enhance the practical application

value.

Results: A new predictor called ‘iEnhancer-EL’ was proposed that contains two layer predictors:

the first one (for identifying enhancers) is formed by fusing an array of six key individual classifiers,

and the second one (for their strength) formed by fusing an array of ten key individual classifiers.

All these key classifiers were selected from 171 elementary classifiers formed by SVM (Support

Vector Machine) based on kmer, subsequence profile and PseKNC (Pseudo K-tuple Nucleotide

Composition), respectively. Rigorous cross-validations have indicated that the proposed predictor

is remarkably superior to the existing state-of-the-art one in this area.

Availability and implementation: A web server for the iEnhancer-EL has been established at http://

bioinformatics.hitsz.edu.cn/iEnhancer-EL/, by which users can easily get their desired results with-

out the need to go through the mathematical details.

Contact: bliu@hit.edu.cn or dshuang@tongji.edu.cn or kcchou@gordonlifescience.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Enhancers are noncoding DNA fragments but they play a key role in

controlling gene expression for the production of RNA and proteins

(Omar et al., 2017). Enhancers can be located up to 20 kb away

from a gene, or even in a different chromosome (Liu et al., 2016a);

while promoters (a kind of gene proximal elements) are located near

the transcription start sites of genes. Such locational difference

makes the identification of enhancers much more challenging than

that of promoters.

In the earlier days, identification of enhancers was carried out

purely by the experimental techniques, such as the pioneering works

reported in Heintzman and Ren, (2009) and (Boyle et al. (2011).

The former was to detect enhancers via their combination with TF

(transcription factor) such as P300 (Heintzman et al., 2007; Visel

et al., 2009), and hence it would miss or under-detect the targets

concerned because not all enhancers are occupied by TFs, resulting

in high false negative rate (Chen et al., 2007). The latter was to iden-

tify enhancers via the DNase I hypersensitivity, and hence some
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other DNA segments or non-enhancers might be incorrectly or over

detected as enhancers (Liu et al., 2016aLiu et al., 2018b), leading to

high false positive rate (Chen et al., 2007). Although the follow-up

techniques of genome-wide mapping of histone modifications (Ernst

et al., 2011; Erwin et al., 2014; Fernández and Miranda-Saavedra,

2012; Firpi et al., 2010; Kleftogiannis et al., 2015; Rajagopal et al.,

2013) can alleviate the aforementioned shortcomings in detecting

the enhancers and promoters and improve the detection rate, they

are expensive and time-consuming.

In order to fast identify enhancers in genomes, several computa-

tional prediction methods have been developed, including CSI-ANN

(Firpi et al., 2010), EnhancerFinder (Erwin et al., 2014), RFECS

(Rajagopal et al., 2013), EnhancerDBN (Bu et al., 2017) and BiRen

(Yang et al., 2017). These bioinformatics tools differ with each other

in using different sample formulation and/or operational algorithm

during the 2nd and/or 3rd steps of the 5-step rule (Chou, 2011). For

instance: CSI-ANN (Firpi et al., 2010) is featured by using ‘efficient

data transformation’ to formulate the samples, and the algorithm of

Artificial Neural Network (ANN); EnhancerFinder (Erwin et al.,

2014) is featured by incorporating the evolutionary conservation in-

formation into the sample formulation, and the combined multiple

kernel learning algorithm; RFECS (Rajagopal et al., 2013), featured

by the random forest algorithm (Rajagopal et al., 2013);

EnhancerDBN (Bu et al., 2017) is based on the deep belief network;

BiRen (Yang et al., 2017) improved the predictive performance by

using deep learning techniques. Using these bioinformatics tools,

users can easily obtain their desired data. However, enhancers are a

large group of functional elements formed by many different sub-

groups (Shlyueva et al., 2014), such as strong enhancers, weak

enhancers, poised enhancers, inactive enhancers, etc. The

iEnhancer-2L (Liu et al., 2016a) is the first predictor ever developed

that is able to identify both the enhancers and their strength based

only on the sequence information alone, and hence has been increas-

ingly used in the genomics analysis. The iEnhancer-2L (Liu et al.,

2016a) is featured by the Pseudo K-tuple nucleotide composition

(PseKNC) (Chen et al., 2014, 2015a). Later, this method was further

improved by incorporating other sequence-based features, for exam-

ples, the EnhancerPred (Jia, 2016 #45), bi-profile Bayes (Shao et al.,

2009), pseudo-nucleotide composition (Chen et al., 2014),

EnhancerPred2.0 (He and Jia, 2017) and electron–ion interaction

pseudopotentials of nucleotides (Nair and Sreenadhan, 2006).

However, the success rates of these predictors need to be further

improved, particularly in discriminating the strong enhancers from

the weak ones. This study was initiated in an attempt to deal with

this problem.

According to the Chou’s 5-step rules (Chou, 2011) that have

been followed by a series of recent studies (see e.g. Cheng et al.,

2018a; Feng et al., 2017; Liu et al., 2017a,b,c, 2018b; Song et al.,

2018b; Xiao et al., 2017; Xu et al., 2017), to develop a really useful

predictor for a biological system, one should make the following

five steps logically very clear: (i) benchmark dataset construction or

selection, (ii) sample formulation, (iii) operation engine or algo-

rithm, (iv) cross-validation and (v) web-server.

Below, let us elaborate the five steps one by one.

2 Materials and methods

2.1 Benchmark dataset
For facilitating comparison, the benchmark dataset S used in this

study was taken from (Liu et al., 2016a) that can be formulated as

�
S ¼ S

þ [ S
�

S
þ ¼ S

þ
strong [ S

þ
weak

(1)

where the subset S
þ contains 1484 enhancer samples, S� contains

1484 non-enhancer samples, S
þ
strong contains 742 strong enhancer

samples, S�weak contains 742 weak enhancer samples, and [ is the

symbol for union in the set theory. For readers’ convenience, the

detailed sequences for the aforementioned samples are given in

Supplementary Information S1.

2.2 Sample formulation
One of the prerequisites in developing an effective bioinformatics

predictor is how to formulate a biological sequence with a discrete

model or a vector, yet still considerably keep its sequence-order in-

formation or key pattern characteristic. This is because all the exist-

ing machine-learning algorithms can only handle vectors but not

sequences, as elucidated in a comprehensive review (Chou, 2015).

However, a vector defined in a discrete model may completely lose

all the sequence-pattern information (Chou, 2001a). To avoid this,

here the DNA sequence samples were converted into vectors via the

BioSeq-Analysis tool (Liu, 2018) to incorporate the information of

kmer (Liu et al., 2016b), subsequence profile (Lodhi et al., 2002;

Luo et al., 2016; Yasser et al., 2008) and pseudo k-tuple nucleotide

composition (PseKNC) (Chen et al., 2014, 2015b), as detailed

below.

2.2.1 Kmer

Kmer (Liu et al., 2016b) is the simplest approach to represent the

DNA sequences, in which the DNA sequences are represented as the

occurrence frequencies of k neighbouring nucleic acids. According

to the sequential model, a DNA sample with L nucleotides is gener-

ally expressed by

D ¼ N1N2 � � �Ni � � �NL (2)

where N1 denotes the 1st nucleotide at the sequence position 1, N2

the 2nd nucleotide at the position 2 and so forth. They can be any of

the four nucleotides; i.e.

Ni 2 A ðadenineÞ C ðcytosineÞ G ðguanineÞ T ðthymineÞf (3)

where 2 is a symbol in the set theory meaning ‘member of’. If using

kmer to represent the DNA sequence of Eq. 2, we have (Chen et al.,

2014; Liu et al., 2015)

D ¼ f kmer
1 f kmer

2 � � � f kmer
i � � � f kmer

4k

h iT

(4)

where f kmer
i i ¼ 1; 2; � � � ; 4k

� �
is the occurrence frequencies of k

neighbouring nucleotides in the DNA sequence D and T is the trans-

pose operator. For example, when i ¼ 3, Eq. 4 will become a 3mer

vector

D ¼ f AAAð Þ f AACð Þ f AATð Þ � � � f TTTð Þ½ �T

¼ f 3mer
1 f 3mer

2 f 3mer
3 � � � f 3mer

64

� �T (5)

There is one parameter (k) in the kmer approach.

2.2.2 Subsequence profile

The subsequence profile (Lodhi et al., 2002; Luo et al., 2016; Yasser

et al., 2008) allows non-continuous mismatching, which may im-

prove the Kmer approach in dealing with the cases of residue muta-

tion, deletion and replacement during the biological sequence

3836 B.Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/22/3835/5034432 by guest on 09 April 2024

Deleted Text: ; 
Deleted Text: 4
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ; Chen et<?A3B2 show $146#?>al.
Deleted Text: ,
Deleted Text: -
Deleted Text: e present
Deleted Text: ,
Deleted Text: ,
Deleted Text: (
Deleted Text: ; Liu <italic>et<?A3B2 show $146#?>al.</italic>, 2017c
Deleted Text: )
Deleted Text: ,
Deleted Text: 2 MATERIALS AND METHODS
Deleted Text: &hx2003;
Deleted Text: , 
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty458#supplementary-data
Deleted Text: &hx2003;
Deleted Text: ,
Deleted Text: ; Chen et<?A3B2 show $146#?>al.
Deleted Text: &hx2003;
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: &hx2003;
Deleted Text: ,


evolutionary process. Its detailed formulation has been clearly elabo-

rated in Luo et al. (2016), and hence there in no need to repeat here.

The subsequence profile contains two parameters k and d; the

latter is used to reflect the mismatch’s extent (Luo et al., 2016).

2.2.3 Pseudo k-tuple nucleotide composition

According to the pseudo k-tuple nucleotide composition or PseKNC

(Chen et al., 2014), the DNA sequence of Eq. 2 can be formulated as

D ¼ f PseKNC
1 f PseKNC

2 � � � f PseKNC
4k

f PseKNC
4kþ1

� � � f PseKNC
4kþk

h iT

(6)

where each of the components as well as the parameters k and k

have been very clearly defined in an original paper (Chen et al.,

2014) and a comprehensive review (Chen et al., 2015a) via a series

of sophisticated equations, and there is no need to repeat here. The

essence is: it is through PseKNC that we are able to incorporate into

Eq. 6 both the short-range or local sequence order information (via

kmer) and the long-range or global sequence pattern information

[via the concept of pseudo components (Chou, 2001a) and the six

physicochemical properties of the dinucleotide in DNA (Chen et al.,

2014) as given in Supplementary Information S2]. In this study,

these properties were normalized following the method reported in

Chen et al. (2014).

There are three parameters in PseKNC (Chen et al., 2014): k, w

(the weight factor) and k [the number of sequence correlations con-

sidered (Chou, 2005)].

2.3 Operation engine
In this study we chose to use SVM (Support Vector Machine) to op-

erate the prediction. SVM is a machine-learning algorithm that has

been widely used in the realm of bioinformatics (see e.g. Chen et al.,

2013, 2016; Ehsan et al., 2018; Khan et al., 2017; Liu et al., 2014;

Meher et al., 2017; Rahimi et al., 2017; Tahir et al., 2017). For a

brief formulation of SVM and how it works, see the papers (Cai

et al., 2003; Chou and Cai, 2002) without the need to repeat here.

For more details about SVM, see a monograph (Cristianini and

Shawe-Taylor, 2000).

The LIBSVM package (Chang and Lin, 2011) with the radial

basis function (RBF) kernel was used to implement the learning ma-

chine, in which there are two parameters C (for the regularization)

and c (for the kernel width), which will be given later via an opti-

mization approach.

Accordingly, when using SVM on kmer, subsequence profile, or

PseKNC, we have a total of (2þ1)¼3, (2þ2)¼4 or (2þ3)¼5 un-

certain parameters, respectively. The values for the two SVM-

related parameters C and c are determined by the final optimization

as will be given later.

For the kmer approach with

k ¼ 1; 2; 3; 4; 5; 6 (7)

we can form six elementary classifiers as denoted by

C
0 ið Þ; ði ¼ 1; 2; � � � ; 6Þ (8)

For the subsequence profile approach with

1 � k � 3 with step gap � ¼ 1

0:1 � d � 1 with step gap � ¼ 0:2

(
(9)

we can form 15 elementary classifiers denoted by

C
0 ið Þ; ði ¼ 7; 8; � � � ; 21Þ (10)

For the PseKNC approach with

1 � k � 6 with step gap � ¼ 1

0:1 � w � 1 with step gap � ¼ 0:2

1 � k � 17 with step gap � ¼ 4

8>><
>>: (11)

we can form 150 elementary classifiers denoted by

C
0 ið Þ; ði ¼ 22; 23; � � � ; 171Þ (12)

Therefore, we have a total of (6þ15þ150)¼171 different

elementary classifiers.

2.4 Ensemble learning
As demonstrated by a series of previous studies (Chou and Shen,

2006a; Jia et al., 2015, 2016a; Liu et al., 2016b, 2017a; Qiu et al.,

2017), the ensemble predictor formed by fusing an array of individ-

ual predictors via a voting system can yield much better prediction

quality.

There are two fundamental issues for developing an ensemble-

learning predictor: one is how to select the key individual classifiers

from the elementary ones to reduce the noise, and the other is how

to fuse the selected key classifiers into one final classifier. Inspired

by the works (Lin et al., 2014a; Liu et al., 2016b, 2017a), the treat-

ment for the issue has been elaborated in Lin et al. (2014a) and Liu

et al. (2016b, 2017a). The essence is that using the ‘affinity propaga-

tion clustering algorithm’ (Frey and Dueck, 2007) to cluster the

elementary classifiers into a set of groups (Fig. 1a) and how the

key classifiers were selected from these groups (Fig. 1b). For those

who are interested in the detailed process, see Supplementary

Information S3.

By doing so, six key individual classifiers were obtained

(Table 1) for the 1st-layer prediction to identify enhancers from

non-enhancers, as formulated by

C
1 ið Þ; ði ¼ 1; 2; � � � ; 6Þ (13)

For the 2nd-layer prediction, ten key individual classifiers

(Table 2) were obtained, as formulated by

C
2 ið Þ; ði ¼ 1; 2; � � � ; 10Þ (14)

By fusing the six key individual classifiers in Eq. 13 as done in

(Chou and Shen, 2006b; Shen and Chou, 2009), we obtained the

1st-layer ensemble classifier as given by

C
E1 ¼ C

1 1ð Þ8C1 2ð Þ8 � � � 8C1 6ð Þ ¼ 86
i¼1C

1 ið Þ (15)

Likewise, by fusing the ten key individual classifiers in Eq. 14,

we obtained the 2nd-layer ensemble classifier given by

C
E2 ¼ C

2 1ð Þ8C2 2ð Þ8 � � � 8C2 10ð Þ ¼ 810
i¼1C

2 ið Þ (16)

where the symbol 8 in Eqs. 15 and 16 denotes the fusing operator.

For more details about the process of fusing individual classifiers

into an ensemble classifier, see a comprehensive review (Chou and

Shen, 2007) where a clear description with a set of elegant equations

are given and hence there is no need to repeat here. Meanwhile, the

genetic algorithm (Mitchell, 1998) was used to optimize the weight

factors on the benchmark datasets by setting the number of

Identifying enhancers and their strength 3837

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/22/3835/5034432 by guest on 09 April 2024

Deleted Text: (
Deleted Text: &hx2003;
Deleted Text: (
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty458#supplementary-data
Deleted Text: ). 
Deleted Text: (
Deleted Text: ,
Deleted Text: (
Deleted Text: )).
Deleted Text: &hx2003;
Deleted Text: ,
Deleted Text: ,
Deleted Text: (
Deleted Text: Chen et<?A3B2 show $146#?>al.
Deleted Text: Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: )
Deleted Text: &hx2003;
Deleted Text: ; Jia et<?A3B2 show $146#?>al.
Deleted Text: ; Liu et<?A3B2 show $146#?>al.
Deleted Text: ; Liu et<?A3B2 show $146#?>al.
Deleted Text: (
Deleted Text: ;
Deleted Text: ; Liu et<?A3B2 show $146#?>al.
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty458#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty458#supplementary-data


population size and evolutional generations as 200 and 2000 re-

spectively for both the 1st and 2nd layers.

The proposed predictor for identifying enhancers and their

strength is called iEnhancer-EL, where ‘i’ stands for ‘identify’ and

‘EL’ for ‘ensemble learning’. In Figure 2 is a flowchart to illustrate

how the predictor is working.

Fig. 1. An illustration to show (a) how the elementary classifiers were clus-

tered into a set of groups, and (b) how to select the key classifiers from these

groups

Table 1. List of the six key individual classifiers selected from the

171 elementary classifiers in Eqs. 8, 10 and 12 by using the affinity

propagation clustering algorithm (Frey and Dueck, 2007) as done

in (Liu et al., 2016a) for the 1st-layer prediction

Key individual classifier Feature vector Dimension

C
1 1ð Þ PseKNCa 77

C
1 2ð Þ PseKNCb 81

C
1 3ð Þ PseKNCc 4113

C
1 4ð Þ Subsequence profiled 64

C
1 5ð Þ Kmere 64

C
1 6ð Þ Kmerf 4096

aThe parameters used: k¼ 3, k¼ 13, w¼ 0.1, C ¼ 26; c ¼ 24.
bThe parameters used: k¼ 3, k¼ 17, w¼ 0.1, C ¼ 210; c ¼ 24.
cThe parameters used: k¼ 6, k¼ 17, w¼ 0.1, C ¼ 24; c ¼ 25.
dThe parameters used: k¼ 3, d¼ 0.5, C ¼ 2�4; c ¼ 2�9.
eThe parameters used: k¼ 3, C ¼ 24; c ¼ 23.
fThe parameters used: k¼ 6, C ¼ 21, c ¼ 25.

Table 2. List of the ten key individual classifiers selected from the

171 elementary classifiers in Eqs. 8, 10 and 12 by using the affinity

propagation clustering algorithm (Frey and Dueck, 2007) as done

in (Liu et al., 2016a) for the 2nd-layer prediction

Key individual classifier Feature vector Dimension

C
2 1ð Þ PseKNCa 9

C
2 2ð Þ PseKNCb 9

C
2 3ð Þ PseKNCc 9

C
2 4ð Þ PseKNCd 13

C
2 5ð Þ PseKNCe 29

C
2 6ð Þ PseKNCf 77

C
2 7ð Þ PseKNCg 81

C
2 8ð Þ PseKNCh 265

C
2 9ð Þ Kmeri 64

C
2 10ð Þ Kmerj 4096

aThe parameters used: k¼ 1, k¼ 5, w¼ 0.1, C ¼ 25; c ¼ 22.
bThe parameters used: k¼ 1, k¼ 5, w¼0.7; C ¼ 23; c ¼ 25.
cThe parameters used: k¼ 1, k¼ 5, w¼ 0.9, C ¼ 24; c ¼ 25.
dThe parameters used: k¼ 1, k¼ 9, w¼0.9, C ¼ 23; c ¼ 24:
eThe parameters used: k¼ 2, k¼ 13, w¼ 0.1, C ¼ 25; c ¼ 25.
fThe parameters used: k¼ 3, k¼ 13, w¼ 0.3, C ¼ 24; c ¼ 25.
gThe parameters used: k¼ 3, k¼ 17, w¼ 0.7, C ¼ 25; c ¼ 25.
hThe parameters used: k¼ 5, k¼ 9, w¼0.7, C ¼ 24; c ¼ 25.
iThe parameters used: k¼ 3, C ¼ 23; c ¼ 22.
jThe parameters used: k¼ 6, C ¼ 21, c ¼ 23.

Fig. 2. A flowchart to illustrate how iEnhancer-EL is working
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2.5 Cross-validation
To objectively evaluate the performance of a new predictor, we need

to consider the following two issues: (i) what metrics should be used

to reflect its performance in a quantitative way? (ii) what method

should be adopted to derive the metrics?

In literature, the following four metrics are usually adopted to

evaluate a predictor’s quality (Chen et al., 2007): (i) overall accuracy

(Acc); (ii) stability (MCC); (iii) sensitivity (Sn); and (iv) specificity (Sp).

But their formulations directly taken from math books are not intuitive

and hence difficult to be understood by most biological scientists.

However, by means of the symbols introduced by Chou in studying sig-

nal peptides (Chou, 2001b), the four metrics can be converted to a set

of intuitive ones (Chen et al., 2013; Xu et al., 2013a) as given below:

Sn¼ 1�Nþ�
Nþ

0 � Sn � 1

Sp¼ 1�N�þ
N�

0 � Sp � 1

Acc¼ 1�
Nþ� þN�þ
Nþ þN�

0 � Acc � 1

MCC¼
1� Nþ�

Nþ
þ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ �Nþ�

Nþ

� �
1þ

Nþ� �N�þ
N�

� �s �1 � MCC � 1

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(17)

where Nþ represents the total number of positive samples investi-

gated, while Nþ� is the number of positive samples incorrectly pre-

dicted to be of negative one; N� the total number of negative

samples investigated, while N�þ the number of the negative samples

incorrectly predicted to be of positive one.

Based on the definition of Eq. 17, the meanings of Sn, Sp, Acc

and MCC have become much more intuitive and easier to under-

stand, as discussed and used in a series of recent studies in various

biological areas (see e.g. Chen et al., 2018a; Ehsan et al., 2018; Feng

et al., 2017, 2018; Khan et al., 2018; Liu et al., 2017a,b,c, 2018a,b;

Song et al., 2018c; Xu et al., 2014, 2017; Yang et al., 2018). In add-

ition, the Area Under ROC Curve (AUC) (Fawcett, 2006) was also

used to measure quality of the predictor.

With a set of quantitative metrics clearly defined, the next is how to

test their values. As is well known, the independent dataset test, subsam-

pling (or K-fold cross-validation) test and jackknife test are the three

cross-validation methods widely used for testing a prediction method

(Chou and Zhang, 1995). To reduce the computational cost, in this

study we adopted the 5-fold cross-validation (namely K ¼ 5) to opti-

mize the parameters in our method as done by many investigators with

SVM as the prediction engine (see e.g. Khan et al., 2017; Meher et al.,

2017; Rahimi et al., 2017; Tahir et al., 2017). The concrete process is

as follows. The benchmark dataset was randomly divided into five sub-

sets with an approximately equal number of samples. Each predictor

runs five times with five different training and test sets. For each run,

three sets were used to train the predictor, one set was used as the valid-

ation set to optimize the parameters, and the remaining one was used as

the test set to give the predictive results. In this study, the jackknife test

was also used to evaluate the performance of different methods.

3 Results and discussion

3.1 Comparison with the existing methods
Listed in Table 3 are the metrics rates (Eq. 17) achieved

by iEnhancer-EL via the jackknife test on the benchmark dataset

(cf. Supplementary Information S1). For facilitating comparison,

listed there are also the corresponding rates obtained by iEnhancer-

2L using exactly the same cross-validation method and same bench-

mark dataset.

From Table 3 we can see the following. (i) For the 1st-layer pre-

diction, namely in discriminating enhancers from non-enhancers, ex-

cept for Sn, the success rates achieved by the proposed predictor for

the other metrics are all higher than those by the existing state-of-

the-art predictors. (ii) For the 2nd-layer prediction, namely in identi-

fying the strength of enhancers, except for Sp, all the other three

metrics rates as well as the AUC value obtained by the proposed pre-

dictor are higher than those by the existing state-of-the art predic-

tors. It is instructive to point out that, of the four metrics in Eq. 17,

the most important are the Acc and MCC. The former is used to

measure a predictor’s overall accuracy, and the latter for its stability.

Under such a circumstance, the iEnhancer-EL outperformed both

iEnhancer-2L and EnhancerPred according to the Acc and MCC

metrics.

3.2 Independent dataset test
An independent dataset was used to further evaluate the perform-

ance of various methods, which was constructed based on the same

protocol as the one used in constructing the benchmark dataset. The

independent dataset contains 100 strong enhancers, 100 weak

enhancers and 200 non-enhancers (Supplementary Information S4).

None of the samples in the independent dataset occurs in the train-

ing dataset. The CD-HIT software (Li and Godzik, 2006) was used

to remove those samples in the independent dataset that have more

than 80% sequence identity to any other in a same subset. The

results obtained by the proposed predictor by the independent data-

set test are given in Table 4, where for facilitating comparison, the

corresponding results by other two methods were also listed. It can

be clearly seen from the table that the iEnhancer-EL predictor is su-

perior to its counterparts in nearly all the four metrics. Although the

new predictor is slightly lower than iEnhancer-2L in Sp by 2.5%, its

Sn rate is 4.5% higher than that of the iEnhancer-2L.

Note that, of the four metrics in Eq. 17, the most important are

the Acc and MCC: the former reflects the overall accuracy of a pre-

dictor; while the latte, its stability in practical applications. The met-

rics Sn and Sp are used to measure a predictor from two different

angles. When, and only when, both Sn and Sp of the predictor A are

higher than those of the predictor B, can we say A is better than B.

In other words, Sn and Sp are actually constrained with each other

(Chou, 1993). Therefore, it is meaningless to use only one of the

two for comparing the quality of two predictors. A meaningful

Table 3. A comparison of the proposed predictor with the state-of-

the-art predictor in identifying enhancers (the 1st-layer) and their

strength (the 2nd-layer) via the jackknife test on the same bench-

mark dataset (Supplementary Information S1)

Method Acc(%) MCC Sn(%) Sp(%) AUC(%)

First layer iEnhancer-ELa 78.03 0.5613 75.67 80.39 85.47

iEnhancer-2Lb 76.89 0.5400 78.09 75.88 85.00

EnhancerPredc 73.18 0.4636 72.57 73.79 80.82

Second layer iEnhancer-ELa 65.03 0.3149 69.00 61.05 69.57

iEnhancer-2Lb 61.93 0.2400 62.21 61.82 66.00

EnhancerPredc 62.06 0.2413 62.67 61.46 66.01

aThe predictor proposed in this paper.
bThe predictor reported in Liu et al. (2016a).
cThe predictor reported in Jia and He (2016).
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comparison in this regard should count the rates of both Sn and Sp,

or even better the rate of their combination that is none but MCC,

for which the proposed predictor achieved the highest rate as shown

in Table 4.

3.3 Web-server and its user guide
As pointed out in (Chou and Shen, 2009) and supported by a series

of follow-up publications (see e.g. Chen et al., 2018b; Cheng et al.,

2017, 2018a,b; Jia et al., 2015, 2016b; Lin et al., 2014b; Liu et al.,

2018b; Song et al., 2018a,b,c; Wang et al., 2017, 2018; Xiao et al.,

2013; Xu et al., 2013b), user-friendly and publicly accessible web-

servers represent the future direction for developing practically more

useful predictors. Actually, a new prediction method with the avail-

ability of a user-friendly web-server would significantly enhance its

impacts (Chou, 2015), driving medicinal chemistry into an unprece-

dented revolution (Chou, 2017). In view of this, the web-server for

iEnhancer-EL has been established. Furthermore, to maximize the

convenience of most experimental scientists, the step-by-step

instructions are given below.

Step 1. Open the web-server at http://bioinformatics.hitsz.edu.

cn/iEnhancer-EL/ and you will see its top page as shown in Figure 3.

Click on the Read Me button to see a brief introduction about the

server.

Step 2. You can either type or copy/paste the query DNA se-

quence into the input box at the center of Figure 3, or directly up-

load your input data by the Browse button. The input sequence

should be in the FASTA format. Not familiar with it? Click the

Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result.

For example, if using the example sequence to run the web server,

you will see the following outcome: (i) the first query sequence con-

tains nine strong enhancers: sub-sequences 1-200, 2-201, 3-202,

4-203, 5-204, 6-205, 7-206, 8-207 and 9-208; (ii) the second query

sequence contains one strong enhancer at sub-sequence 1-200; (iii)

both the third and fourth query sequences contain one weak enhan-

cer at sub-sequence 1-200; (iv) the fifth and sixth query sequences

contain no enhancer. All these predicted results are fully consistent

with experimental observations.

Step 4.You can download the predicted results into a file by

clicking the Download button on the results page.
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