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Abstract

Motivation: As we move toward an era of precision medicine, the ability to predict patient-specific

drug responses in cancer based on molecular information such as gene expression data represents

both an opportunity and a challenge. In particular, methods are needed that can accommodate the

high-dimensionality of data to learn interpretable models capturing drug response mechanisms, as

well as providing robust predictions across datasets.

Results: We propose a method based on ideas from ‘recommender systems’ (CaDRReS) that pre-

dicts cancer drug responses for unseen cell-lines/patients based on learning projections for drugs

and cell-lines into a latent ‘pharmacogenomic’ space. Comparisons with other proposed

approaches for this problem based on large public datasets (CCLE and GDSC) show that CaDRReS

provides consistently good models and robust predictions even across unseen patient-derived cell-

line datasets. Analysis of the pharmacogenomic spaces inferred by CaDRReS also suggests that

they can be used to understand drug mechanisms, identify cellular subtypes and further character-

ize drug-pathway associations.

Availability and implementation: Source code and datasets are available at https://github.com/

CSB5/CaDRReS.

Contact: nagarajann@gis.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a genetic disease caused by the accumulation of mutations,

ranging from point mutations to copy number variations and struc-

tural alterations. These, in turn, impact gene expression and ultim-

ately contribute to the hallmarks of cancer, including uncontrolled

cell proliferation and metastasis. Compared to commonly used can-

cer treatments such as chemotherapy or radiotherapy, targeted drugs

can be better at killing tumor cells and/or have lesser toxicity to nor-

mal tissues (Begg et al., 2011). However, not every patient responds

to drug therapy in the same way, and molecular information such as

mutation or gene expression data can inform us on which patients

will respond to a drug. For example, KRAS mutations can be used

as predictors of resistance to therapy with epidermal growth factor

receptor (EGFR) inhibitors (Massarelli et al., 2007), and targeting

overexpressed Bcl-2, as observed in small-cell lung cancer, has been

shown to provide therapeutic benefits (Gandhi et al., 2011). These

findings emphasize the need for using molecular information to pre-

dict drug response and thus personalize cancer therapy (Thangue

and Kerr, 2011; Veer and Bernards, 2008).

As the number of patients/tumors with molecular data increases

across cancer types, enabled particularly by large-scale studies such

as The Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) (Weinstein et al., 2013; Zhang et al.,

2011), the identification of cancer driver genes has benefited greatly

(Bertrand et al., 2018; Cerami et al., 2012; Weinstein et al., 2013;

Zhang et al., 2011). However, these data sources typically lack drug

response information and are therefore not suitable for identifying

drug response biomarkers. On the other hand, drug screening on
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several panels of cancer cell-lines has been conducted, for example,

in the Cancer Cell-Line Encyclopedia (CCLE) and the collaborative

Genomics of Drug Sensitivity in Cancer (GDSC) projects (Barretina

et al., 2012; Iorio et al., 2016). These cell-line datasets allow us to

utilize genomic features and apply mathematical and statistical

approaches to decipher functional relationships and construct mod-

els that can predict patient-specific drug responses.

Several types of models have been proposed for predicting drug

responses using genomic features (Azuaje, 2016; Costello et al.,

2014; McLeod, 2013; Wheeler et al., 2013). The most widely used

type is a drug-specific model, which is independently trained for

each drug based on genetic and drug response information from

cell-lines tested with each drug individually. Some of the methods

that fall in this category include, a linear regression model using

baseline gene expression (Barretina et al., 2012; Geeleher et al.,

2014; Iorio et al., 2016) or based on a combination of gene expres-

sion and other genomic information such as copy number alterations

and DNA methylation (Chen and Sun, 2017; Ding et al., 2016),

non-linear models such as neural networks, random forests, support

vector machines and kernel regression based on multiple types of

genomic information (Cortés-Ciriano et al., 2016; Dong et al.,

2015; Gupta et al., 2016), and a neural network model that also

incorporates drug property information (Menden et al., 2013).

Drug-specific models are typically limited by the number of cell-

lines that have been tested with a given drug. To increase the num-

ber of data points and obtaining more robust and general models for

drug response, a Bayesian multitask multiple kernel learning

(BMTMKL) approach was proposed and exhibited the best per-

formance in the DREAM challenge for drug response prediction

(Costello et al., 2014). This work highlighted the importance of

sharing information across drugs in improving the accuracy of drug

response prediction.

Multitask learning assigns all drugs equal importance in response

prediction for a given drug, but it is likely more meaningful to con-

struct a model that prioritizes information from similar drugs, as is

possible using collaborative filtering techniques. In the area of rec-

ommender systems, collaborative filtering is a framework to analyze

relationships between users (cell-lines/patients) and dependencies

among items (drugs) to identify new user-item associations (patient-

specific drug response) (Koren et al., 2009). The two major classes

of collaborative filtering techniques are (i) neighborhood methods,

which predict the user-item association based on pre-defined user-

user and item-item similarities, and (ii) latent factor models, which

use matrix factorization to identify a latent space that captures user-

item associations. Matrix factorization techniques, in particular,

have shown promising results in the Netflix Prize, a competition for

collaborative filtering methods to predict user ratings for movies

based on a rating history (Bennett and Lanning, 2007).

Collaborative filtering techniques have also been used for pre-

dicting patient-specific drug responses in a few studies. Based on a

neighborhood approach, Sheng et al. (Sheng et al., 2015) defined

drug-specific cell-line similarity and drug structural similarity, and

then predicted unobserved drug responses by calculating a weighted

average of observed drug responses according to both drug and cell-

line similarity. This model is purely based on the assumption that

the pre-defined similarities can explain drug responses, but it did not

take into account observed drug response information to define

drug similarity. In contrast, using the latent factor approach,

Ammad-ud-din et al. (Ammad-ud-din et al., 2016) constructed

component-wise kernelized Bayesian matrix factorization

(cwKBMF) models to predict unobserved drug responses based on

multiple cell-line kernels and observed drug response data. Ammad-

ud-din et al. showed that cwKBMF could identify drug-pathway

associations and outperformed BMTMKL (Costello et al., 2014) in

drug response prediction. However, a common limitation of both

models is a need for normalization of drug response data, with this

pre-processing step leading to a loss of information on relative rank-

ing of drugs within each cell-line. Recently, Wang et al. proposed a

matrix factorization model based on cell-line and drug similarities

(SRMF), which could outperform cwKBMF. However, the model

does not provide a projection matrix, and so it is not tailored for

predicting drug response of unseen samples. Overall, the availability

of limited training data, with a small number of cell-lines tested with

each drug, represents a major challenge for learning robust models

that provide meaningful predictions in new datasets. Additionally,

the interpretability of models and their use to obtain biological

insights has not been extensively explored in the field.

To address these limitations and to develop more robust models

based on information sharing across multiple drugs, we developed

the CaDRReS (for Cancer Drug Response prediction using a

Recommender System) framework. CaDRReS maps drugs and cell-

lines into a latent ‘pharmacogenomic’ space to predict drug

responses for specific unseen cell-lines and patients. Our bench-

marking analysis using publicly available datasets (CCLE and

GDSC) suggests that this allows CaDRReS to have notably better

predictive performance and robustness than other existing methods.

Comparisons on unseen patient-derived cell-line datasets also high-

light CaDRReS’s robustness and ability to generalize across data-

sets, an important requirement for precision oncology applications.

Additionally, we show that the unique pharmacogenomic space

model inferred by CaDRReS lends itself well to biological interpret-

ation, allowing us to (i) understand drug response mechanisms, (ii)

identify cellular subtypes from drug response profiles and (iii) char-

acterize drug-pathway associations.

2 Materials and methods

2.1 Datasets and data pre-processing
Drug-screening data for cancer cell-lines were obtained from two

large-scale studies, CCLE and GDSC, and all cell-lines with baseline

gene expression data were retained. A Bayesian sigmoid curve fitting

approach was applied to raw intensity data at different drug dosages

to re-compute IC50 (minimal concentration that induces 50% cell

death) values that were more comparable across datasets (see

Supplementary Method 1, Supplementary Fig. S1 and Supplementary

Tables S1 and S2 for details). The re-estimated IC50 values were used

for all methods and analyses in this manuscript. Drugs with

median IC50 <1 lM tend to be cytotoxic drugs with consistently

high toxicity across cell-lines (Supplementary Fig. S2).

Correspondingly, they make the drug response prediction problem

easier, and so we excluded them to focus our efforts on predicting re-

sponse for targeted cancer drugs. Our final dataset contained 491 cell-

lines, 19 drugs and 9096 experiments from CCLE, and 983 cell-lines,

223 drugs and 179 633 experiments from GDSC, providing a large

dataset for training and validation of our models. Additionally, an in-

house dataset based on screening of 276 drugs (65 of which overlap

with GDSC) on 8 head and neck cancer (HNC) patient-derived cell-

lines from 5 subjects was used (Chia et al., 2017). Two of the cell-lines

were found to be not sensitive to any of the overlapping drugs (inhib-

ition score <50 at 1 lM), while one was found to be sensitive to more

than 25% of the overlapping drugs. These three cell-lines were

excluded as the single dosage they were tested on does not seem to

allow discrimination across drugs and thus appropriate evaluation of
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drug response models, leaving us with 325 data points from 5 cell-

lines to be used as an independent dataset to evaluate predictions

from different models.

2.2 Cancer Drug Response Prediction using a

Recommender System
The first step in CaDRReS is to calculate cell-line features based on

gene expression information. To do this, we normalized baseline

gene expression values for each gene by computing fold-changes

compared to the median value across cell-lines. For the next step,

since the drug response experiments in GDSC and CCLE aim to

measure cell death, 1856 essential genes identified based on large-

scale CRISPR experiments (Wang et al., 2015) were selected to con-

dense the expression information for each cell-line. Pearson’s correl-

ation for every pair of cell-lines was calculated using the expression

fold-changes of these essential genes. Thus, in total, we had 491 and

983 cell-line features for CCLE and GDSC, respectively.

For training the model, a drug sensitivity score s ¼ �logðIC50Þ was

defined where the higher the score the more sensitive the cell-line is to

the drug. Models were trained and tested independently for CCLE and

GDSC to avoid biases toward either of the datasets (Haibe-Kains et al.,

2013; Haverty et al., 2016).

To train CaDRReS, we used matrix factorization to learn a

‘pharmacogenomic space’ i.e. a latent space to project drug and cell-

line data such that the dot product between a cell-line vector and a

drug vector provides the cell-line specific drug response (Fig. 1A).

Drug sensitivity models were then computed based on Equation (1):

bsui ¼ lþ bQ
i þ bP

u þ qi � pu ¼ lþ bQ
i þ bP

u þ qi xuWPð ÞT (1)

where bsui is the predicted sensitivity score of cell-line u to

drug i, l is the overall mean drug response, bQ
i and bP

u are bias

terms for drug i and cell-line u, respectively, qi; pu 2 R
f are vectors

for drug i and cell-line u in the f -dimensional latent space

and WP 2 R
d �f is a transformation matrix that projects cell-line fea-

tures xu 2 R
d onto the latent space. The value of f was set at 10 for

both CCLE and GDSC datasets based on cross-validation perform-

ance. As shown in Figure 1A, this can be depicted as drug response

matrix (S) being factorized into biases (B) and matrices of cell-lines (P)

and drugs (Q). Rows of the cell-line matrix (P) and the drug matrix

(Q) are vectors of cell-lines and drugs in a latent space, respectively.

The latent pharmacogenomic space captures interactions between

drugs and the genomic background of cell-lines such that the dot

product between a cell-line vector and a drug vector (p � q) represents

the interaction between the drug and the cell-line. As shown in

Figure 1B (center), cell-line u is sensitive to drug i and drug j while

not being sensitive to drug k. Similarly, cell-line v is unlike cell-line-

and does not respond to drugs i and j. This representation thus has

many applications including (i) predicting drug responses of unseen

samples (cell-lines or patients), (ii) revealing drug mechanisms and

(iii) subtypes of cell-lines, and (iv) identifying drug-pathway associa-

tions (Fig. 1B) as will be discussed in later sections.

In order to train the model the following ‘sum of squared error’

loss function was optimized:

L hð Þ ¼ 1

2jjj
X

u

X
i
e2

ui

eui ¼ sui � bsui

where sui and bsui are observed and predicted sensitivity scores for

cell-line u using drug i, respectively, h ¼ fbi; bu; WP; qig,

and jjj is the number of drug response experiments in the training

dataset. Finally, we applied gradient descent to optimize this loss

function and obtain all parameters in h based solely on the assayed

drug-response values (see Supplementary Method 2). We tested

CaDRReS’ robustness by constructing 10 different models from dif-

ferent random starting points for the gradient descent optimization

and observed that the models show similar performance

(Supplementary Fig. S3).

2.3 Comparisons with related methods
We compared the predictive performance and robustness of

CaDRReS against other existing methods including a method based

on the elastic net regression model (ElasticNet; Barretina et al.,

2012; Iorio et al., 2016), cwKBMF (Ammad-ud-din et al., 2016),

the method from Sheng et al. (Sheng et al., 2015), SRMF (Wang

et al., 2017) as well as a control method based on random permuta-

tions of the drug sensitivity scores for each cell-line (Control). For

ElasticNet, the model was trained for each drug as described previ-

ously (Barretina et al., 2012; Iorio et al., 2016) using the Elastic Net

library from Scikit-learn (l1-ratio ¼0.5; Pedregosa et al., 2011),

where the model automatically selects the genes. For the method

proposed by Sheng et al. (Sheng et al., 2015), we re-implemented it

as described in the paper, normalized drug response data, calculated

drug similarity and drug-specific cell-line similarity scores and set

the parameters rd (number of similar drugs) ¼3 and rc (number of

similar cell-lines) ¼9 as used in the paper. For cwKBMF, drug re-

sponse data were normalized for each drug as described in the paper

and the provided MATLAB source code was used to train a model.

For SRMF, cell-line similarities were calculated as described in the

paper and we set kd to zero because it has been show that SRMF per-

formed the best when drug similarity is ignored. We also set the num-

ber of dimensions to 10 as used in both cwKBMF and CaDRReS.

Fig. 1. Overview of the CaDRReS framework. (A) Schematic depicting the re-

lationship between the drug response matrix S, the bias terms and factorized

matrices for cell-lines and drugs. A transformation matrix (WP) is used for

projecting cell-lines onto the latent space. (B) The pharmacogenomic latent

space captures interactions between drugs and cell-lines and thus enables

the study of drug-pathway associations, drug mechanism similarity and cell-

line sub-types as discussed in later sections
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2.4 Evaluation metrics
We performed 5-fold cross-validation to evaluate the predictive per-

formance of the models. For evaluating cell-line ranking for each

drug, we calculated Spearman correlation (rs) and reported the aver-

age correlation across drugs. To evaluate models for each cell-line,

the normalized discounted cumulative gain (NDCG), a widely used

score for evaluating ranking recommendations, was calculated as

follows:

NDCG br; sð Þ ¼ DCGðbr; sÞ
DCG r; sð Þ

DCG br; sð Þ ¼
X

i

2si � 1

log2br i þ 1

where br is the predicted rank of drugs tested on a cell-line, s is a

list of observed drug sensitivity scores and r is the known ranking

of drugs calculated based on the measured drug response values.

NDCG ranges from 0 to 1, where 1 indicates that the model correct-

ly predicts the ranking of drugs. The numerator in DCG is designed

to give greater weight to a drug with higher sensitivity score, while

the denominator gives preference to drugs predicted to have higher

ranks.

2.5 Identifying drug-pathway associations
Using 217 Biocarta pathway gene sets from MSigDB (Liberzon

et al., 2011), pathway activity scores were calculated for each cell-

line by summing up gene expression fold-changes of genes in each

pathway. To identify drug-pathway associations, we then calculated

the Pearson correlation between pathway activity scores and pre-

dicted drug responses [logðIC50Þ; lower values indicate greater re-

sponse], where a negative correlation suggests that a pathway is

essential for drug effectiveness, while a positive correlation suggests

that it plays a role in drug resistance.

3 Results

3.1 Performance and robustness of CaDRReS
A common way to evaluate drug response prediction methods is to

assess their correlation (or squared error) compared to known

responses for each drug (across cell-lines) in a cross-validation

framework (Barretina et al., 2012; Iorio et al., 2016). Using the

matrix-factorization based approaches, SRMF, CaDRReS and

cwKBMF showed significantly better performance than ElasticNet,

Sheng et al., as well as the Control method (P-values <10�30) in

both the CCLE and GDSC datasets (Fig. 2A, Supplementary Fig.

S4A). While the ability to predict cell-line responses for a given drug

is useful to understand drug efficacy and to characterize drug mech-

anisms, ranking drugs for a given unseen cell-line/patient may be

more relevant for precision oncology applications. Based on a

weighted scoring of rankings (NDCG), we noted that CaDRReS and

ElasticNet exhibited similar performance and improved notably

over cwKBMF, SRMF, Sheng et al., and the Control method (P-val-

ues <10�20; Fig. 2B, Supplementary Fig. S4B). Taken together, these

results suggest that CaDRReS improves over existing approaches in

providing models that are useful for both drug response prediction

across cell-lines and within a cell-line.

For drug response prediction within a cell-line, although

ElasticNet models were trained independently for each drug, their

NDCG scores were surprisingly high. We suspected that this

might be due to overfitting while training using a limited number

of cell-lines for each drug. To assess this, we evaluated the robust-

ness of ElasticNet models learned across cross-validation runs

and found that <10% of the selected genes were shared across

folds and half of the genes were selected in only one fold

(Fig. 2C). In contrast, CaDRReS showed consistently high correl-

ation for drug biases (0.99; Fig. 2D) and cosine similarity of

inferred drug vectors (0.96) across cross-validation runs, as well

as high correlation for cell-line biases (0.96; Fig. 2E) and cosine

similarity of the inferred cell-line vectors (0.88), highlighting the

robustness of its models.

To further evaluate their performance, CaDRReS and ElasticNet

models were trained on the GDSC dataset and tested on an inde-

pendent dataset from patient-derived HNC cell-lines. Sheng et al.

and cwKBMF were not included here because they require per-drug

normalization of drug response values, which leads to a loss of drug

ranking information within a cell-line (Supplementary Fig. S5),

while SRMF was excluded because it is not tailored for predicting

drug response for unseen samples. Despite having similar perform-

ance on the GDSC dataset, CaDRReS outperformed ElasticNet on

this independent dataset (Fig. 2F), emphasizing its ability to provide

more robust and generalizable models. In particular, CaDRReS was

able to identify on average at least one drug that elicited a strong re-

sponse for each cell-line among its top 3 predictions, while a base-

line method based on average response across cell-lines identified

none.

Fig. 2. Performance and robustness of the CaDRReS model. (A) Average

Spearman correlation across 10 runs of 5-fold cross-validation (error bars

represent 1 SD). (B) Average NDCG scores across 10 runs of 5-fold cross-val-

idation. (C) Average percentage of overlapping genes in ElasticNet across dif-

ferent CCLE cross-validation datasets. (D) Concordance between drug-

specific bias terms as inferred by CaDRReS for every pair of models from the

5-fold cross-validation analysis. Each color represents a drug in the CCLE

dataset. (E) Concordance between cell-line bias terms as inferred by

CaDRReS for every pair of models from the 5-fold cross-validation analysis.

Each color represents a cell-line in the CCLE dataset (first 50 cell-lines).

(F) Average hit rate (number of sensitive drugs identified) in the top five pre-

dictions of each method. Baseline refers to an approach that sorts drugs by

their average sensitivity across cell-lines
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3.2 Investigating drug mechanisms via the

pharmacogenomic space
We trained CaDRReS models on the full datasets to obtain drug and

cell-line biases, as well as the pharmacogenomic spaces capturing

drug–drug, cell-line–cell-line and drug–cell-line associations for both

CCLE and GDSC (Supplementary Fig. S6). Then to study drug

mechanisms, we took vectors defined for each drug in the pharma-

cogenomic space, computed cosine similarities between every pair,

and compared these to a commonly used drug structural similarity

score (Tanimoto coefficient of SMILES calculated using the SMSD

toolkit; Rahman et al., 2009). Drug cosine similarities were signifi-

cantly higher for drug pairs having high structural similarities

(Tanimoto coefficient > 0:3; Wilcoxon test P-value <0.04 for

CCLE and <0.001 for GDSC), suggesting that in general, similarly

structured drug pairs tend to have higher cosine similarity on the

pharmacogenomic space and thus elicit similar responses

(Supplementary Fig. S7). However, there are indeed exceptions to

this rule where drugs that elicit similar response profile have signifi-

cantly different chemical structures. For instance, PD-0332991 and

PHA-665752 have relatively low structural similarity (Tanimoto co-

efficient ¼0.07), but high correlation for the observed drug

responses (0.51 with P-value <10�29). This is likely due to the fact

that PD-0332991 is a CDK4/6 inhibitor that can reduce RB phos-

phorylation (Fry et al., 2004), while PHA-665752 can inhibit c-

MET and thus result in reduced phosphorylation of RB downstream

(Ma et al., 2007). Thus drug similarity in the pharmacogenomic

space has the potential to capture deeper similarities in drug re-

sponse mechanisms beyond those observed purely based on drug

structural similarity.

In the pharmacogenomic space, we observed that clusters of

drugs frequently represent groups that target the same gene or path-

way (Fig. 3A, Supplementary Fig. S8). For example, EGFR inhibi-

tors (Lapatinib, ZD-6474, AZD0530, Erlotinib), RAF inhibitors

(RAF265, PLX4720) and MEK inhibitors (PD-0325901, AZD6244)

in CCLE formed separate clusters based on cosine similarity. In add-

ition, cosine similarities among the five MEK1 inhibitors in GDSC

(CI-1040, PD-0325901, RDEA119, Trametinib and selumetinib)

were significantly higher than between MEK1 inhibitors and other

drugs (P-value <10�15). A similar trend was also observed for the

four BRAF inhibitors, AZ628, Dabrafenib, PLX4720 and

SB590885 (P-value <10�7; Fig. 3B). These observations are interest-

ing given that CaDRReS was trained based solely on drug response

data, without any other information on drug properties.

By examining dimensions of the pharmacogenomic space, we

observed that each dimension captured different aspects of sensitiv-

ity to various drug classes (Fig. 3C). For example, EGFR inhibitors

dominated in the fifth and ninth dimensions and thus cell-lines that

were projected close to the positive sides of these dimensions have

higher EGFR inhibitor sensitivity. Additionally, we observed that

MEK inhibitors lie on the negative side of the eighth dimension and

the values of cell-line vectors in this dimension were most positively

correlated with activity scores for the EIF2 pathway (0.217), indicat-

ing that cell-lines with inactivated EIF2 pathway may be more sensi-

tive to MEK inhibitors. This observation is in agreement with prior

work showing that MEK inhibitors work by inducing activation of

eIF-2B, which results in a shutdown of cellular protein synthesis and

leads to apoptosis (Liberzon et al., 2011; Quevedo et al., 2000).

These results highlight the utility of the pharmacogenomic space

learned by CaDRReS for capturing interpretable information related

to drug mechanisms and pathways.

3.3 Cell-line subtypes in the pharmacogenomic space
Clusters of cell-lines in the pharmacogenomic space should in-

principle be tuned to capture drug response similarities. However,

not surprisingly we found that they also capture tissue type signa-

tures, with cell-lines from the same tissue type showing significantly

higher cosine similarity than cell-lines from different tissue types

(Fig. 4A, Supplementary Fig. S9A), and also being visually distinct

in t-SNE (Maaten and Hinton, 2008) 2D space (Fig. 4B,

Supplementary Fig. S9B). Further segregation into histological sub-

types was not always as clear (Supplementary Fig. S9C), though

most small-cell lung carcinoma (SCLC) cell-lines were distinct from

non-small-cell lung carcinoma (NSCLC) cell-lines (except for

NSCLC carcinoid cell-lines; Fig. 4C). The placement of NSCLC car-

cinoid cell-lines with SCLC cell-lines is clearly reflected in their

drug-response profiles: e.g. while NSCLC cell-lines were typically

sensitive to PD-0325901 (MEK inhibitor), carcinoid cell-lines were

not (Supplementary Fig. S10). In addition, we found that cell-lines

with KRAS mutations had significantly higher predicted PD-

0325901 sensitivity (adjusted P-value <1:4� 10�8), and that KRAS

mutations were common in NSCLC cell-lines (�30%) but not seen

often in SCLC or carcinoid cell-lines (�3%), in agreement with

prior work on KRAS mutations being activation biomarkers for

MEK inhibitors (Stinchcombe and Johnson, 2014).

By leveraging pathway information, we observed that activity

scores for the extracellular signal-regulated kinase (ERK) pathway

in NSCLC cell-lines (mean¼1.52) were significantly higher than for

SCLC cell-lines (mean¼�3.24; P-value <1:3� 10�9), and the acti-

vation of ERK pathway due to KRAS mutation could play a role in

the increased sensitivity to MEK inhibitors (RAF-MEK-ERK path-

way; Stinchcombe and Johnson, 2014). In contrast, cell-lines with

RB1 mutations had a significantly lower PD-0325901 sensitivity

(adjusted P-value <7� 10�8), and correspondingly RB1 mutations

were more common in SCLC cell-lines (67%) than in NSCLC cell-

lines (10%). These observations corroborate earlier work suggesting

that mutations in the RB1 pathway can inhibit the RAF-MEK-ERK

pathway and thus induce resistance to MEK inhibitors (El-Naggar

et al., 2009). Cell-line clusters determined by CaDRReS thus corre-

lated well with mutation and pathway activation in explaining drug

responses, and could serve to construct new testable hypotheses

when such information is not known.

3.4 Associations between drugs and pathways
Associations between cancer drugs and key pathways can be identified

in the pharmacogenomic space based on pathway activity scores, cell-

line vectors and drug vectors (see Materials and methods and

Supplementary Tables S3 and S4). As expected, we observed that

drugs targeting the same gene were frequently associated with the

same set of pathways (Fig. 5A, Supplementary Fig. S11). For instance,

four EGFR inhibitors had IC50 values that were negatively correlated

with activation scores for the EGFR SMRTE pathway (assistant asso-

ciation), consistent with a study showing that amplification of the

EGFR gene is correlated with high response to anti-EGFR agents.

(Normanno et al., 2006). Similarly, two RAF inhibitors showed assist-

ant associations with the VEGF-Hypoxia-Angiogenesis pathway

(VEGF), in agreement with previous studies showing that VEGF ex-

pression induced by Raf promotes angiogenesis, while RAF inhibitors

can block the RAF/MEK/ERK pathway and inhibit tumor angiogen-

esis (Liu et al., 2006; McCubrey et al., 2007).

We also observed resistant associations between the MTA3 path-

way (MTA3) and multiple drugs such as L-685458 (gamma-secre-

tase inhibitor) and PD-0332991 (CDK4/6 inhibitor), suggesting that
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the cell-lines with inactivated MTA3 pathway tend to be sensitive to

these drugs. In addition, the study of Fujita et al. showed that the ab-

sence of MTA3 leads to invasive growth in breast cancer (Fujita

et al., 2003). Taken together, these observations suggest that drugs

having resistant association with MTA3 pathway might be effective

when tumor growth is caused by the downregulation of the MTA3

pathway, although further work is needed to confirm this

hypothesis.

In terms of drug-pathway associations, we noted that the stron-

gest assistant association was observed between the drug L-685458

(gamma-secretase inhibitor) and the IGF-1 mammalian target of

rapamycin (MTOR) pathway (Fig. 5B). This observation is also

borne out in studies reporting that gamma-secretase inhibitors can

inactivate MTOR signaling pathway and consequently induce apop-

tosis (Shih and Wang, 2007). Interestingly, we observed a stronger

association signal for predicted drug responses than observed drug

responses, suggesting that CaDRReS may have the ability to reduce

the noise observed in experimental drug response data. Stronger sig-

nals based on predicted drug responses were also observed for other

known assistant associations, such as the one between Lapatinib (an

EGFR inhibitor) and the EGFR SMRTE pathway (R ¼ �0.440 ver-

sus �0.329; Fig. 5C) as well as the HER2 pathway (R ¼ �0.288 ver-

sus �0.242) (Harari, 2004; Medina and Goodin, 2008). These

results highlight the utility of predictions from CaDDReS for discov-

ering pathway biomarkers for drug sensitivity.

4 Discussion

Several drug response prediction models have been proposed in the

literature, with a primary focus on predicting the response of

Fig. 3. Clustering of drugs in the pharmacogenomic space and its relation to mechanism-of-action. (A) Heatmap presenting clusters of drugs in the pharmacoge-

nomic space (CCLE). A hierarchical clustering was calculated as originally explained in Müllner’s paper (Müllner, 2011) and the distance between clusters is based

on average cosine similarities of all pairs of drugs from the two clusters. (B) Distribution of within- and between-group cosine similarities of drugs targeting

MEK1 (GDSC) and BRAF (GDSC). (C) Representation of dimensions of the pharmacogenomic space capturing different drug mechanisms. For each target, the

average vector of the corresponding drugs was calculated for EGFR, RAF and MEK inhibitors (CCLE)

Fig. 4. Subtypes of cell-lines on the pharmacogenomic space. (A) Kernel density plot showing distributions of cosine similarities between cell-lines of the same

tissue type and of different tissue types (GDSC). (B) Visualization of GDSC cell-lines from top 5 most frequent tissue types using a t-SNE plot. (C) Visualization of

different subtypes of GDSC lung cancer cell-lines using a t-SNE plot
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different cell-lines to a given drug. Correspondingly, the perform-

ance of these models was evaluated for each drug individually based

on the correlation between the predicted and observed drug

responses. However, while predicting cell-line response to each drug

may provide insights into differential drug response mechanisms,

the ability to rank drugs for unseen cell-lines/patients is likely to be

more useful from a clinical perspective. Therefore in this work, be-

sides evaluating response correlations for each drug, we evaluated

the ability to correctly order drugs for a given cell-line using a popu-

lar weighted metric for rankings (NDCG). Under both these metrics

of evaluation, CaDRReS consistently provided good models and

was also able to perform well on unseen datasets.

In addition to its robust models, a useful feature of CaDRReS is

the ease with which its models can be interpreted, an aspect that has

not been given the attention it deserves in earlier studies. Models

trained by CaDRReS provide a projection of cell-lines and drugs

into a pharmacogenomic space which can be used to explore drug–

drug, cell-line–cell-line and drug–cell-line relationships as shown in

Sections 3.2–3.4. This is in addition to the easy visualization and

clustering analysis that this representation permits (e.g. Fig. 3 or 4).

In contrast, while the ElasticNet model provides high concordance

between observed and predicted cell-line rankings, non-robustness

in gene selection means that it may not be meaningful to biologically

interpret the selected set of genes for a given drug. Similarly, while

the cwKBMF model incorporates pathway information and can be

used to infer the strength of drug-pathway associations, it does not

provide directionality for these associations. CaDRReS models start

off by being agnostic of pathways but by incorporating this informa-

tion later, allow us to identify both strength and directionality of

drug-pathway associations as highlighted in the results in Figure 5.

Currently, drug response prediction models are trained on drug

response data for cancer cell-lines, but ignore the toxicity of drugs

due to the unavailability of corresponding information using normal

cells. This likely limits the practical utility of such models as drugs

that elicit a strong response across cell-lines may also have higher

in vivo toxicity. Refined models that take into account drug toxicity

could also find application in studying drug synergies (Chen et al.,

2016b) using the pharmacogenomic space: the sum of drug vectors

could be used to predict synergistic response, and thus enable the

goal of reducing drug dosage to limit side-effects. Another important

source of information that could help drug response prediction is

knowing the genes targeted by a drug, aided by the increasing avail-

ability of computational methods to predict this (Wang et al., 2017;

Ammad-ud-din et al., 2016; Chen et al., 2016a).

An important limitation for the field of drug sensitivity predic-

tion is that despite the presence of several publicly available cancer

drug-screening datasets, the number of cell types and drugs in each

dataset is still limited compared to the complexity of the models.

Being able to merge information across multiple datasets could thus

help construct more robust and general models. Experimental incon-

sistencies and noise across datasets have so far, however, stymied

efforts to work toward this goal (Haibe-Kains et al., 2013; Haverty

et al., 2016).

Although CaDRReS was among the top performing models for

both cell-line and drug ordering in Figure 2, it still considered only

gene expression of essential genes in its models. We suspect that

integrating other types of omics data, such as mutations, in a mean-

ingful manner can enrich information in the dataset and thus im-

prove the predictive performance of corresponding models.

Additionally, using information from gene interaction networks to

Fig. 5. Drug-pathway associations identified on the pharmacogenomic space. (A) Drug-pathway associations based on CCLE data. For visualization, the top 40

pathways having highest associations across drugs (average absolute correlation) were selected. Negative and positive correlations between pathway activity

and drug sensitivity scores are denoted as being ‘assistant’ and ‘resistant’ associations, respectively. (B) Assistant associations between L-685458 (gamma-secre-

tase inhibitor) and IGF-1 MTOR pathway. (C) Assistant associations between Lapatinib (EGFR inhibitor) and EGFR SMRTE and HER2 pathways
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capture relationships between genes could be another way to improve

the performance and interpretability of this model in the future.
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