
Structural bioinformatics

gmxapi: a high-level interface for advanced

control and extension of molecular

dynamics simulations

M. Eric Irrgang1,2, Jennifer M. Hays1,2 and Peter M. Kasson1,2,*

1Department of Biomedical Engineering and 2Department of Molecular Physiology and Biological Physics,

University of Virginia, Charlottesville, VA 22908, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 15, 2018; revised on May 23, 2018; editorial decision on June 8, 2018; accepted on June 12, 2018

Abstract

Summary: Molecular dynamics simulations have found use in a wide variety of biomolecular appli-

cations, from protein folding kinetics to computational drug design to refinement of molecular struc-

tures. Two areas where users and developers frequently need to extend the built-in capabilities of

most software packages are implementing custom interactions, for instance biases derived from ex-

perimental data, and running ensembles of simulations. We present a Python high-level interface for

the popular simulation package GROMACS that i) allows custom potential functions without modify-

ing the simulation package code, ii) maintains the optimized performance of GROMACS and iii)

presents an abstract interface to building and executing computational graphs that allows transpar-

ent low-level optimization of data flow and task placement. Minimal dependencies make this inte-

grated API for the GROMACS simulation engine simple, portable and maintainable. We demonstrate

this API for experimentally-driven refinement of protein conformational ensembles.

Availability and implementation: LGPLv2.1 source and instructions are available at https://github.

com/kassonlab/gmxapi.

Contact: kasson@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As biomolecular simulations have advanced in complexity and scale,

programmatic control of simulations has become a common mode

of use. This has been accomplished both through middleware layers

(Balasubramanian et al., 2016; Pronk et al., 2011) and native pro-

gramming interfaces (Eastman et al., 2013; Phillips et al., 2005),

with Python interfaces becoming increasingly common due to

Python’s popularity in the scientific computing community, its ro-

bust scripting interface, and the rich ecosystem of data analysis and

visualization tools available. Among major molecular dynamics

(MD) software packages, the few that offer native Python interfaces

tend to do so via procedural calls so that the resulting code is exe-

cuted in a linear, stepwise fashion. This is a natural programming

paradigm for users accustomed to writing shell scripts, but it pre-

vents more advanced task placement and parallelization strategies.

Packages such as TensorFlow (Abadi et al., 2016) or the MD overlay

software Copernicus (Pronk et al., 2011) demonstrate an alternative

paradigm where the API provides an interface for constructing a

computational task graph that can then be executed in an optimized

manner by the underlying software.

Our design approach is to provide a native interface to the

GROMACS MD engine (Pronk et al., 2013) that supports two com-

mon use patterns that require either middleware packages or custom

modification of the GROMACS source. This interface also allows

simple, intuitive construction of computational task graphs in a

manner that permits abstraction of parallel optimizations and

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3945

Bioinformatics, 34(22), 2018, 3945–3947

doi: 10.1093/bioinformatics/bty484

Advance Access Publication Date: 15 June 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/22/3945/5038467 by guest on 19 April 2024

https://github.com/kassonlab/gmxapi
https://github.com/kassonlab/gmxapi
http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty484#supplementary-data
https://academic.oup.com/


ultimately is compatible with advanced machine-learning packages

such as TensorFlow to permit mixing of molecular simulation and

machine-learning operations.

We therefore present a native Python API to the GROMACS

simulation engine that implements these features. Users may drive

simulations from Python via simple high-level procedural com-

mands, a more granular object-oriented interface, or through their

own extension code. We include a framework for extending

GROMACS with MD plugin modules for which Python interfaces

are automatically generated, permitting developers to customize

GROMACS without modifying the source. The current interface

focuses on the MD engine itself; future versions will encompass ana-

lysis tools and facilitate integration with third-party analysis soft-

ware. Here, we outline key features of gmxapi and demonstrate its

utility by implementing restrained-ensemble MD simulations for hy-

brid refinement of protein structures based on experimental data.

2 Materials and methods

The gmxapi package consists of a high-level interface in pure Python

with a lower-level API implemented as a Cþþ extension. The

Python component provides the gmx module as a stable external

interface. Bindings to the libgmxapi Cþþ API are provided in the

submodule gmx.core. Cþþ implementations for different compute

platforms (cloud platforms, GPUs, parallel architectures) may be

coded differently but are presented through a consistent interface

that abstracts these details away.

The high-level Python interface provides essential abstractions for

workflow construction and execution. Procedural commands initialize

and construct a workflow, which may be serial or parallel at both the

individual-simulation and simulation-ensemble levels. Once the work-

flow is fully described, a single Python function discovers and allo-

cates computing resources and hands off the work specification to an

execution manager that translates it into a task graph and executes it.

A plugin API is included to allow custom extensions of

GROMACS MD potentials without recompiling the MD engine

code itself. Plugins are constructed via Cþþ templating and Python

bindings via pybind11 (sample code is provided). Users can thus

build a custom plugin and add it to the work specification, and the

gmxapi execution manager will bind the custom code into the MD

loop at runtime. The result is a Python interface for custom exten-

sions that maintains native GROMACS performance. gmxapi is

compatible with GROMACS 2016.3 and will support all future ver-

sions of GROMACS. Details on work specification grammar and

the plugin interface are given in the Supplementary Data.

3 Results

To demonstrate the power of the gmxapi package, we have tested it on

restrained-ensemble refinement of protein conformational ensembles

using experimental DEER spectroscopy data. This approach, originally

published and implemented using CHARMM (Roux and Islam, 2013),

is a common workflow in our group using GROMACS that requires

custom code in three places: user-specified biasing forces in the core

MD engine, analysis code to process predicted ensemble data and up-

date the biasing forces, and parallelization scripts to manage execution,

analysis and data exchange between many ensemble members simultan-

eously. We have replaced all three of these using the gmxapi plugin

interface and simple high-level calls to the gmxapi Python API.

At a high level, restrained-ensemble simulations compute popu-

lation properties from a set of molecular dynamics simulations,

compare those to an experimental measurement, and compute

biases to bring the simulated ensemble in better agreement with the

experimental one. The experimental data we use are residue-residue

distance distributions measured via double electron-electron reson-

ance (DEER) spectroscopy. The simulation algorithm is thus to com-

pute a distance histogram from the estimated ensemble, compare to

the measured ensemble, and calculate a distance-dependent biasing

force for the simulations, which are run for an interval Dt before

the process is repeated (see Supplementary Data). Multiple DEER

restraints can be applied in a single simulated ensemble.

The gmxapi calls required to set up a restrained-ensemble workflow

are schematized in Figure 1, and the full source is given in the

Supplementary Data. Prior to gmxapi, our group wrote a custom imple-

mentation of restrained-ensemble simulations for GROMACS that

required 6984 lines of code. With gmxapi our Cþþ plugin and python

source are 127 lines once include and comment statements are excluded.

Performance using gmxapi is within 5% of the custom implementation

where restraint forces are deeply embedded in the GROMACS code

(data in Supplement). Our design overhead by constructing and execut-

ing a computational graph rather than individual Python calls.

The gmxapi package thus provides a high-level interface for the

GROMACS MD engine and enables custom plugins for user-specified

forces, abstraction of computational context in a task-graph architecture,

and first-class management of simulation ensembles. Further improve-

ments will expand this API to cover parallel analysis tasks as well.

Acknowledgements

We thank Mark Abraham, Michael Shirts, Shantenu Jha and members of the

GROMACS core developer and MolSSI communities for helpful discussions.

Funding

This work was supported by the National Institutes of Health [R01GM115790

to P.M.K], a MolSSI fellowship to M.E.I [subaward to National Science

Foundation ACI1547580] and a Blue Waters fellowship to J.M.H.

Conflict of Interest: none declared.

References

Abadi,M. et al. (2016) TensorFlow: A system for large-scale machine learning.

In: Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation, pp. 265–283.

Fig. 1. Restrained-ensemble simulations using gmxapi. Schematized are the

Python commands to declare an array of MD simulations, bind a custom po-

tential and run, and the corresponding computational graph

3946 M.E.Irrgang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/22/3945/5038467 by guest on 19 April 2024

http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty484#supplementary-data
http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty484#supplementary-data


Balasubramanian,V. et al. (2016) Extasy: scalable and flexible coupling of md

simulations and advanced sampling techniques. In: e-Science (e-Science).

2016 IEEE 12th International Conference on IEEE, pp. 361–370.

Eastman,P. et al. (2013) OpenMM 4: a reusable, extensible, hardware inde-

pendent library for high performance molecular simulation. J. Chem.

Theory Comput., 9, 461–469.

Phillips,J.C. et al. (2005) Scalable molecular dynamics with NAMD.

J. Comput. Chem., 26, 1781–1802.

Pronk,S. et al. (2011) Copernicus: a new paradigm for parallel adaptive mo-

lecular dynamics. In: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 60.

Pronk,S. et al. (2013) GROMACS 4.5: a high-throughput and highly parallel

open source molecular simulation toolkit. Bioinformatics, 29, 845–854.

Roux,B. and Islam,S.M. (2013) Restrained-ensemble molecular dynamics sim-

ulations based on distance histograms from double electron-electron reson-

ance spectroscopy. J. Phys. Chem. B, 117, 4733–4739.

gmxapi 3947

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/22/3945/5038467 by guest on 19 April 2024


