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Abstract

Motivation: Open source software for computational cytometry has gained in popularity over the

past few years. Efforts such as FlowCAP, the Lyoplate and Euroflow projects have highlighted the im-

portance of efforts to standardize both experimental and computational aspects of cytometry data

analysis. The R/BioConductor platform hosts the largest collection of open source cytometry software

covering all aspects of data analysis and providing infrastructure to represent and analyze cytometry

data with all relevant experimental, gating and cell population annotations enabling fully reproducible

data analysis. Data visualization frameworks to support this infrastructure have lagged behind.

Results: ggCyto is a new open-source BioConductor software package for cytometry data visualiza-

tion built on ggplot2 that enables ggplot-like functionality with the core BioConductor flow cytome-

try data structures. Amongst its features are the ability to transform data and axes on-the-fly using

cytometry-specific transformations, plot faceting by experimental meta-data variables and partial

matching of channel, marker and cell populations names to the contents of the BioConductor

cytometry data structures. We demonstrate the salient features of the package using publicly avail-

able cytometry data with complete reproducible examples in a Supplementary Material.

Availability and implementation: https://bioconductor.org/packages/devel/bioc/html/ggcyto.html

Contact: gfinak@fredhutch.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cytometry (FCM) is the primary assay for immune monitoring in

clinical and research applications (Maecker et al., 2012). Pipelines

must handle preprocessing, quality control, analysis (i.e. cell cluster-

ing or manual partitioning into homogeneous groups) (O(oups)eet

al., 2013; Saeys et al., 2016) and visualization. Proprietary plat-

forms, including FlowJo (Ashland, OR), WinList, FCSExpress

and DIVA are the de-facto standards for end-to-end FCM data ana-

lysis. Other programming frameworks like Matlab (Matlab 7.0.4,

Natick, MA: MathWorks) and Mathematica (Mathematica 9.0,

Champaign, IL: Wolfram Research) provide functionality for data

import and exploration [indeed, SPADE (Qiu et al., 2011) was

initially developed for MATLAB], but lack the general abstraction

of cytometry-specific data structures helpful for data analysis.

Open-source projects like R/BioConductor (R/BioC) (Gentleman

et al., 2004; Ihaka and Gentleman, 1996) and Python

provide FCM functionality through user-contributed packages

(Frelinger et al., 2012). Currently 47 open source software packages

in BioConductor are tagged for ‘FlowCytometry’ (http://bioconduc

tor.org/packages/release/BiocViews.html) but only flowViz (Sarkar

et al., 2008) is visualization-centric and doesnli support the core

BioConductor data structures used to store analyzed, gated and

annotated, single-cell FCM data (see Supplementary Material).

Other packages focus on different aspects of automated analysis.
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We introduce ggcyto, a BioConductor package for building re-

producible FCM visualizations programmatically. It is built on

ggplot2 (Wickham, 2009) and supports the core BioConductor

cytometry data structures making it compatible with any package

using those structures (see Supplementary Material).

2 ggCyto

2.1 Basic principles
To construct a plot with ggcyto users specify a data source (Fig. 1),

and, analogous to ggplot2, they map plot elements to variables in

the data source. With ggcyto however, users map plot axes to flow

parameters (e.g. channels or markers), specify the cell population to

plot, specify cytometry-specific axis transformations and potentially

specify gates (e.g. elements defining cell populations) to add to the

plot. These elements are built up via layers and are referred by

name, mapping directly to quantities (i.e. data) in the data source.

For ease of use, ggcyto supports partial string matches (Fig. 1 and

Supplementary Material), particularly useful for identifying complex

channel names or cell populations.

2.2 Availability
ggcyto is open-source and available on GitHub and BioConductor

(https://github.com/RGLab/ggcyto/releases/tag/v1.9.5 and https://

bioconductor.org/packages/devel/bioc/html/ggcyto.html).

2.3 Quick plotting with the autoplot API
The autoplot API is a quick way to build plots. It makes most of the

plot decisions for the user based on domain knowledge and informa-

tion encoded in the data source (Fig. 1 and Supplementary

Material). For example, passing a GatingHierarchy and a vector of

cell population names (defined by gated cell populations in the

GatingHierarchy) creates a faceted array (one panel for each sam-

ple) of two-dimensional density plots (using hexagonal binning) of

the parent cell population projected onto the dimensions of any

gates defining those cell subsets (Fig. 1, Supplementary Material).

The ‘CD3’ and ‘CD19’ populations shown in Figure 1 are named

cell populations defined by gates in the GatingHierarchy. They

should not to be confused with markers of the same name. Two-

dimensional densities are chosen by autoplot because the gates

defining the CD3 and CD19 cell populations are two dimensional.

In cases where gates defining a cell population are one dimensional,

a one-dimensional density would be plotted. In this sense, autoplot

is context aware, selecting geoms appropriate for visualizing the

desired cell population.

Analogously, autoplot can be used to create plots from flowSet

and flowFrame objects (for ungated data) or GatingHierarchy and

GatingSet objects (for gated data, Fig. 1 and Supplementary

Material). In the case of ungated data, the user specifies the chan-

nels/markers to visualize, rather than the cell population (since the

latter is not defined).

2.4 Customizing plots with cytometry-specific layers
The ggcyto() API provides greater flexibility and customization than

autoplot (Fig. 1). When using ggcyto, the layers and defaults selected

by autoplot are decisions left to the user. Leveraging ggcytogs

cytometry-specific layers and geoms, the user builds the plot (Fig. 1

and Supplementary Material) to include the gates, overlays (e.g. back-

gating), data or axis transformations, cell subpopulations and cell

subpopulation statistics of interest, and specifies the faceting of plots

by metadata annotations (see Supplementary Material). The ggcyto

API can be particularly useful to project cell populations onto other

markers (i.e. not necessarily those on which the populations are

defined). The support for data transformations in ggcyto is 2-fold:

ggcyto can transform the underlying data (Fig. 1), or it can transform

the axes using the transformation stored in the data source (Fig. 1).

These approaches are demonstrated in the Supplementary Material.

3 Examples

The functionality of ggcyto is demonstrated using the

Lyoplate dataset from FlowCAP 4 (Finak et al., 2016) available in

the flowWorkspaceData R/BioConductor package and on the

ImmuneSpace portal (Brusic et al., 2014) (see the Supplementary

Material for link to this data on ImmuneSpace), as well as the graft

versus host disease (GvHD) data available in the flowCore R/

BioConductor package. Reproducible examples with R code are in

the Supplementary Material and available at http://rglab.org/ggcyto/.

In future, additional cytometry data may be available via the more

modern AnnotationHub or ExperimentHub resources (Morgan

et al., 2016; Pasolli et al., 2017).

4 Conclusion

The ggcyto package provides a powerful and unified visualization

interface to complex, ungated or gated, annotated cytometry data

structures and provides a key component of a reproducible research

workflow. Specifically, the package allows for easy visualization of

specific cytometry cell populations and gates, on the fly data and

axis transformation, back-gating visualization and easy faceting by

study metadata in order to explore variability in an experiment.

User-friendliness is made possible through fuzzy name matching,

lazy data loading and context-sensitive behavior that aims to cap-

ture ‘what the user means to do’ most frequently. Areas for future

developments are highlighted in the Supplementary Material.
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Fig. 1. ggcyto is compatible with ungated and gated data sources represented

by the core BioConductor FCM data structures (flowSet/flowFrame and

GatingSet/GatingHierarchy). Plots can be constructed using the (1) autoplot

or (2) ggcyto APIs, giving users more control. Custom layers control cytome-

try-specific plot elements including 3) data transformation
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