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Abstract

Motivation: Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells

is informative for both cancer research and the development of targeted drugs. The established experi-

mental and computational methods are labor-intensive. To make algorithms feasible in real clinical set-

tings, methods that can predict driver genes using less experimental data are urgently needed.

Results: We designed an effective feature selection method and used Support Vector Machines

(SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes

as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality

Prediction Challenge. We also found a set of genes whose essentiality could be predicted much

more accurately than others, which we called Accurately Predicted (AP) genes. Our method can

serve as a new way of assessing the essentiality of genes in cancer cells.

Availability and implementation: The raw data that support the findings of this study are available

at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available

at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge.

Contact: gyuanfan@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancers result from the mutations accumulated during the lifetime

of the patients and are characterized by fast and uncontrollable cell

proliferation. These mutations can be sub-classified as either driver

mutations or passenger mutations (Stratton et al., 2009; Vogelstein

et al., 2013). Finding cancer driver mutations that are responsible

for the aberrant proliferation rate of cancer cells is informative for

both cancer research and the development of targeted drugs. One of

the frequently used approaches is loss-of-function screening (Cowley

et al., 2014) where the cancer cells are infected with a large pool of

shRNAs. Driver genes can thus be identified according to the

changes in the proliferation rate of cancer cells. However, due to the

limitation in time and resources, it is impractical to use whole-

genome RNAi screening as a routine diagnostic test for patients.

More practical ways of finding sample-specific driver genes are

needed. So far, various in silico driver gene discovery methods have

been published, such as Helios (Sanchez-Garcia et al., 2014),

CHASM (Carter et al., 2009) and OncoIMPACT (Bertrand et al.,

2015). These powerful algorithms share a common overlooked limi-

tation, which is the overwhelming model complexity. Most methods
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are using a staggering number of experimental observations as fea-

tures to make predictions, which hinders their application in real

clinical settings. An algorithm that is able to use a small set of fea-

tures to make sample-specific cancer driver gene prediction is ur-

gently needed.

The Broad-DREAM Gene Essentiality Prediction Challenge

(https://www.synapse.org/#! Synapse: syn2384331/wiki/) was co-

organized by the Broad institute, the DREAM Initiative and SAGE

Bio-networks. It aimed to gather researchers in bioinformatics and

biomedical informatics to advance the methods of discovering driver

genes for cancer cells and provide insights for the development of tar-

geted cancer therapies. This challenge provided a large-scale genome-

wide RNAi-mediated cancer cell line screen dataset (Cowley et al.,

2014) and asked the participants to design novel algorithms to predict

the essentiality of genes in cancer cell lines. Here, gene essentiality (or

dependency) refers to the importance of a given gene for the prolifer-

ation of a given cancer cell line. The gene expression and copy number

profiles of the cell lines were provided by Broad-Novartis Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012) for feature con-

struction. The sub-challenge 2 (SC2) of the DREAM competition

asked the participants to use no >10 features for essentiality predic-

tion. We developed an effective machine learning algorithm that

makes cell line-level gene essentiality prediction with only 10 features,

and won the first place in SC2 of the DREAM competition. We

designed an innovative feature selection method and employed sup-

port vector machine (SVM) as the base learner. The feature selection

procedure leveraged the correlation between the predictors and the

gene essentiality on two complementary scales (global and local

scale). Eventually, nine most predictive gene expression features and

one copy number feature were selected specifically for each potential

cancer driver gene. We found that many previously confirmed bio-

markers were re-identified by our method, which supports the bio-

logical significance of our feature selection method. The algorithm

presented in this manuscript has the potential to serve as a new way

of assessing the essentiality of genes in cancers.

2 Materials and methods

2.1 Data acquisition
Gene essentiality scores of 14 738 genes in 105 human cancer cell

lines were provided by Project Achilles, and were downloaded from

the DREAM challenge website. The essentiality scores were

obtained with a genome-wide loss-of-function shRNA screening

assay (Cowley et al., 2014). First, �98 000 shRNAs targeting

�17 000 genes were lentivirally delivered to cancer cells at an MOI

(Multiplicity of Infection) of 0.3. Each cell would receive either zero

or one shRNA. Cells were harvested after 16 population doublings

or 40 days in culture, whichever came first. The essentiality of genes

was measured by the relative abundance of shRNA in these cells

with regard to the initial shRNA pool using next generation

sequencing (NGS) technology. The raw read counts obtained by

NGS were first normalized with the following function:

N ¼ R

T� 106
(1)

where R is the raw read count for each shRNA and T is the total

raw read counts.

Then, the normalized read counts were log2 transformed:

Nt ¼ log ½N þ 1� (2)

Quality control was performed on the normalized and trans-

formed read counts using GenePattern module (Reich et al., 2006),

which enabled the removal of overlapped shRNAs and shRNAs that

had low abundance in DNA reference. GenePattern module was

then used to calculate an shRNA-level score for each cell line, and

map shRNAs to genes. DEMETER (Tsherniak et al., 2017) was

used to calculate a gene-level essentiality score (ES) for each cell

line. DEMETER decomposes the effect of an shRNA into a linear

combination of the gene effect (on-target effect) and seed effect (off-

target effect). The essentiality score, which is a unit-free coefficient

in the model, represents the relative strength of the on-target effect.

For a given gene, ES¼ �k(negative) means the essentiality is k stand-

ard deviations more dependent than the average essentiality in all

cell lines, while positive ES scores indicate lower-than-average essen-

tiality. In sum, lower ES indicate higher essentiality (Supplementary

Fig. S1A).

Gene expression levels of 18 960 genes (CCLE-EXP genes) and

copy number profiles of 23 288 genes (CCLE-CN genes) in 149 cell

lines (105 training, 44 testing) were provided by CCLE and down-

loaded from the DREAM challenge website. The DNA copy num-

bers were measured by a genome-wide human Affymetrix SNP array

6.0. The mRNA expression levels were measured using Affymetrix

Human Genome U133 Plus 2.0 arrays. The raw data were processed

as described in a previously published paper (Barretina et al., 2012).

A gene list containing 2647 prioritized genes (PR genes) was down-

loaded from the DREAM challenge website. The prioritized gene list

overlapped with CCLE-EXP genes and CCLE-CN genes but was not

a subset of them. In other words, not all PR genes had available ex-

pression data or copy number data. The PR gene list was a subset of

Achilles genes, which in other words means every PR gene had avail-

able Achilles gene essentiality scores in the 105 training cell lines.

The essentiality scores of PR genes in the 44 testing cell lines are hid-

den at the model development stage. A detailed description of the

DREAM challenge and the generation of the aforementioned data-

sets is available online at https://www.synapse.org/#! Synapse:

syn2384331/wiki/62826. The community-authored summary has

been published (Cell Systems, Nov 2017).

2.2 Selection of ten predictors
The expression features were selected as shown in Figure 1. First,

the Pearson correlation coefficients between the Achilles essentiality

scores of every PR gene and expression levels of every CCLE-EXP

gene were calculated using the canonical function:

Pearson correlation score ¼ covarianceðx; yÞ
deviationðxÞ � deviationðyÞ (3)

where vector x is the expression levels of a CCLE-EXP gene in all

training cell lines, and vector y is the essentiality scores of a certain

PR gene in all training cell lines. Thus, the total number of Pearson

correlation scores is:

18 960 CCLE EXP genesð Þ � 2647 PR genesð Þ
¼ 50 187 120 Pearson correlation scoresð Þ (4)

These scores measured the significance of the correlation be-

tween the expression levels of CCLE-EXP genes and the essentiality

scores of PR genes. We named them local scores as they represented

1 versus 1 association between each feature and target pair. Then

we calculated global scores as a complement to the local scores to

represent the correlation between a certain CCLE-EXP gene and all

PR genes (1 versus all association). To obtain the global scores, first
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we ranked CCLE-EXP genes according to their local scores for each

PR gene. Then we counted how many times a CCLE-EXP gene

appears in top 10 of the ranked local scores. The cutoff ‘10’ was

decided empirically. This yielded 18 960 non-negative integers

which were �2647. These numbers were used to calculate the global

scores using the following formula.

Global scores ¼ count of occurrence in top 10

maxfcount of occurrence in top 10g (5)

Here the denominator is a constant and can be viewed as a scaling

factor (Supplementary Fig. S1B). The global scores are thus all on

the scale of 0 to 1. The local scores range from �1 to 1. Local scores

are different for each CCLE-EXP & PR gene pair. Global score is a

length of 18 960 vector corresponding to the CCLE-EXP genes, or,

in other words, a rank-one matrix corresponding to the CCLE-EXP

& PR gene pairs.

To combine the global and local correlation information, we cal-

culated the weighted average of the global and local scores using the

following formula, and optimized the weight (a) via cross-validation.

This naive formula is chosen to avoid heavy calculation process. It is

also a common practice in machine learning to use weighted averages

to mix information coming from different resources.

Combined correlation score ¼ 1� að Þ � local scoreðx; yÞ þ a
� global scoreðxÞ (6)

i.e. for each PR gene y, we give a local score of local (x, y) for the

correlation with the PR gene and a global score for x, for the global

frequency of this feature over all PR genes. The alpha score is deter-

mined through a grid search (Supplementary Fig. S3) in cross-

validation, and reflects the relative importance of the local model

and the global model. The CCLE-EXP genes that have the nine larg-

est combined correlation scores were then included as predictive fea-

tures. If the copy number of the PR gene itself is available, it will be

selected as the 10th feature; if the copy number was not available,

we use expression data of the top 10 CCLE-EXP genes as 10 predict-

ive features.

2.3 Build the gene-specific prediction model
We built gene-specific models so that each model predicts essential-

ity scores for one specific PR gene in all testing cell lines

(Supplementary Fig. S2). The target values are Achilles gene essenti-

ality scores of all PR genes in the training cell lines. The essentiality

scores were first normalized for each PR gene using the following

formula:

Scaled Score ¼ Original Score�min

max�min
(7)

where min is the minimum Achilles score for a PR gene, and max is

the maximum Achilles score for a PR gene. After scaling, all essenti-

ality scores fall in the range 0–1, and the maximum essentiality

scores for all PR genes are shifted to 1.

The features in the input data were expression levels of nine

CCLE-EXP genes, plus the copy number of the interested PR gene in

each of 105 cell lines. The input file for each PR gene was a 105 ðtra
ining cell linesÞ � ð10 featuresÞ matrix targeting to predict the gene

essentiality score. Similarly, the testing data for each PR gene was a

44 ðtesting cell linesÞ � ð10 featuresÞ matrix. The models were

then used to make predictions for the essentiality scores of PR genes

in the testing cell lines.

To avoid overfitting, we used repeated 5-fold cross-validation

(CV) to optimize our model. In each round of CV, the whole dataset

was evenly divided into five parts (i.e. 21 cell lines each). We itera-

tively withheld one part of the dataset, used the remaining four parts

to train our regression model and made predictions on the withheld

data. The test was repeated five times to reduce the variance of our

performance estimation. After we obtained the predicted gene essen-

tiality scores, Spearman coefficients between the predicted scores

and the Achilles essentiality scores of the 2647 PR genes in 21 cell

lines were calculated. The mean of 2647 Spearman scores was calcu-

lated, which would be the performance of a single round of cross-

validation. As described before, we performed five rounds of 5-fold

validation; thus, in total we got 5� 5 ¼ 25 scores. The performance

of the current model was represented by the mean of these 25

scores.

3 Results

3.1 Searching predictive features by leveraging the

global and local prediction power
In the gene essentiality DREAM challenge, we developed a model to

predict the essentiality scores of 2647 prioritized genes (PR genes) in

44 testing cell lines. The training data comprise the Achilles gene es-

sentiality scores of the 2647 PR genes in 105 cell lines (Fig. 1). The

predictors in the model were constructed from the gene expression

profiles and copy number profiles of the 105 cell lines.

To simplify feature space while maintaining the prediction

power, we selected 10 most predictive features for each PR gene.

The top nine CCLE-EXP genes whose expression levels were in

strong correlation with the Achilles essentiality scores of PR genes

were selected as predictive features. The strength of the correlations

was measured by the combined correlation scores which were the

weighted summation of global scores and local scores. The weights

assigned to global and local scores were controlled by the parameter

a. After cross validation, 0.7 is selected as the optimal value for a
(CV results shown in Supplementary Fig. S3A). The CV results con-

firmed that a combination of the information from two scales (glo-

bal/local) has more predictive power than any individual scale. The

global scores represent the relative frequency of having a high local

Fig. 1. Method pipeline. In training datasets, the known information included

gene expression levels, copy number profile and Achilles essentiality scores

of the prioritized genes in the training cell lines. After feature selection, 10 fea-

tures, including nine expression features and one copy number feature, were

selected for each prioritized gene. Then SVM was performed to build gene-

specific models using only 10 features. These gene-specific models were

then used to predict the essentiality of genes in the training cancer cell lines

Feature selection for gene essentiality 3977
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score and can be viewed as a correction parameter for local scores

that introduces generalizability. On the other hand, local scores add

specificity to global scores.

Apart from expression features, we used the copy number of the

PR gene itself as the 10th feature. However, not all PR genes had

available copy number profile. In these cases, we used top 10 instead

of top nine CCLE-EXP genes as predictive features. These 10

features were then used to build models for each PR gene. We

compared the performance of five alternative machine learning

algorithms using 5-fold cross-validation (CV results shown in

Supplementary Fig. S3B), and chose support vector machine (SVM),

which performed best as the base learner.

3.2 Accurately predicted (AP) genes are top 50 most

accurately predicted PR genes
Figure 2A shows the distribution of the Spearman correlation coeffi-

cients between the predicted and the observed Achilles essentiality

scores of 2647 PR genes in 44 testing cell lines. The mean Spearman

correlation was �0.201 (see Supplementary Table S1 for all scores).

Figure 2B shows the performance of our methods in individual can-

cer cell lines (see Supplementary Table S2 for all scores). The cell

lines that had the best prediction performance were SUDHL4 (dif-

fuse B-cell lymphoma cell line) and MELHO (melanoma cell lines).

On the other hand, some cell lines were predicted with suboptimal

accuracy, which indicates that these cell lines might need further

exploration.

In view of the complexity of biological processes and the di-

verse characters and functions of genes, we are not expecting to

obtain equal prediction accuracy for all potential driver genes.

Indeed, some PR genes were predicted with extraordinary accur-

acy. The top three most accurately predicted genes are PSMD2

(mean correlations ¼ 0.771), SF3B3 (mean correlations ¼ 0.756)

and SF3A1 (mean correlations ¼ 0.771) (see Fig. 2C and

Supplementary Fig. S4). We define genes with top 50 Spearman

correlations as Accurately Predicted (AP) genes. We investigated

the cause of the varied prediction performance of AP genes

compared with non-AP genes (genes not among the top 50) from

several aspects.

3.3 AP genes were connected with more genes in the

functional network, and were associated with protein

and RNA processing GO terms
We used the human genome-scale gene functional network pub-

lished by Li et al. to investigate the functional connection between

AP genes and their related genes (H.-D. Li et al., 2015). This is an

isoform-level network built using multiple instance learning (MIL).

This gene network integrated isoform-level features and gene-level

annotations and is able to show functional associations between

pairs of genes. Specifically, this network captures the information of

how likely two genes function in the same biological pathway, by

integrating large-scale co-expression datasets, protein-protein phys-

ical interactions, shared motifs and domains through a Bayesian in-

tegration framework, and trained on shared pathways or GO terms.

The end result of this network is a connected graph between two

genes in the system, where a connection indicates that two genes co-

function. As shown in Figure 3A, genes with higher Spearman cor-

relation coefficients tended to have more neighbors in the network.

On average, each AP gene had 402.96 neighbors in the network,

while the average number of neighbors for all PR genes was 186.19.

The reason accounting for the difficulty in predicting genes with

fewer neighbors might be that the functions of these genes could not

be revealed by the expression level of other genes. Figure 3B is the

functional network of the top five PR genes. This network showed

that more accurately predicted genes had more neighbors and the

top genes had many neighbors in common. These genes could be

functionally related to each other. Figure 4A shows the Pearson cor-

relation scores between AP genes and a union of their features. Some

genes share similar patterns, i.e. they were highly correlated with the

same group of features. This means those genes could share certain

pathways.

After performing GO enrichment on AP genes using DAVID

(Huang et al., 2009a, b), we found these genes were associated

with RNA processing and protein processing GO terms (Fig. 4B).

Examples for RNA processing were ‘mRNA processing’,

‘mRNA splicing’, ‘Spliceosome’. Examples for protein processing were

‘proteasome’, ‘proteasome accessory complex’. We then compared the

AP genes and a list of human housekeeping genes (Supplementary

Table S1). These housekeeping genes are inferred by a Bayesian classi-

fier based on 68 microarray screens in human cell lines (Hart et al.,

2014). We found that 37/50 (74%) AP genes are housekeeping genes;

Fig. 2. Overview of prediction results. (A) The distribution of the evaluation

metrics (i.e. the Spearman coefficients between the Achilles gene essentiality

scores and the predicted scores) (B) The distribution of the performance of

our method in different cells. The Spearman correlations were calculated be-

tween the predicted scores and the Achilles essentiality scores of 2647 PR

genes in each of the 44 testing cell lines. (C) The prediction results of the top

nine most accurately predicted PR genes. The predicted scores in this figure

were not the original scores we submitted to the DREAM challenge, but were

scaled so that they had the same mean and standard deviation as the Achilles

essentiality scores. Scaling was performed for visualization and did not

change the Spearman coefficients. See also Supplementary Figure S4

Fig. 3. Networks of top genes. (A) The boxplot of the number of neighbors of

PR genes in the network. The x-axis is the corresponding range of Spearman

correlation coefficients of the PR genes. (B) The network of top five PR genes.

Only the nearest neighbors in the functional network are shown

3978 Y.Guan et al.
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meanwhile, 361/2647 (14%) of all PR genes are housekeeping genes.

There exists a significant difference in the Spearman correlations be-

tween housekeeping PR genes and non-housekeeping PR genes (t-test

P-value<2.2e-16) (Supplementary Fig. S5). The housekeeping genes

are significantly more accurately predicted.

These results partially explained the high performance of the AP

genes. Top genes are associated protein processing and RNA proc-

essing related GO terms, and many of them appeared to be essential

(housekeeping) across cell lines. Therefore, their function affects a

numerous number of genes and proteins, and the activity of these

genes could be uncovered by the expression levels of other genes,

which made them more accurately predicted.

We also performed GO enrichment using DAVID on top 50

most frequent features (Supplementary Fig. S6A). Many of the

enriched GO terms were related to cell adhesion and transmembrane

signal transduction.

3.4 Copy number data complements the prediction

power of gene expression data in predicting

gene essentiality
As shown in Figure 5A, we tested four different combinations of ex-

pression features and copy number features:

1. The first method ranked all expression features by the combined

correlation scores, then picked up top 10 as the predictive features.

2. The second method ranked all expression features by the com-

bined correlation scores, then used top nine expression features

plus the copy number feature of the PR gene itself (if available)

as 10 predictive features.

3. The third method pooled the expression data and copy number

data together, resulting in a list of mixed features. Then the local

scores, global scores and combined correlation scores were cal-

culated in the same way as mentioned above. After ranking the

mixed features by combined correlation scores, we chose the top

10 features in this ranked list as predictive features.

18 960 expression featuresð Þ þ 23 288 copy number featuresð Þ
¼ 42 248 ðmixed featuresÞ

(8)

4. The fourth method ranked all copy number features by the combined

correlation scores then picked up top 10 as the predictive features.

The second method outperformed the others, which proved that

adding copy number information of the PR gene itself could improve

the prediction performance, but adding copy number of other genes

would have the opposite effect. In our experiment, the number of

features is overwhelmingly large compared to the number of

Fig. 4. Go enrichment of AP genes and heatmap of Pearson correlation coeffi-

cients between AP genes and their features. (A) A heatmap showing the

Pearson correlation coefficients between top 50 PR genes (the rows) and a

union of their features (the columns). Clustering was performed on both col-

umns and rows. Different clusters are marked by sidebars with different col-

ors. (B) The GO enrichment results of AP genes. The x-axis is the percentage

of genes involved in this annotation category

Fig. 5. Cross-validation results and rankings of features. The final method is

highlighted in red, while alternative methods are in green. The dashed hori-

zontal line in B marks the mean of Spearman coefficients of the final method.

(A) The performance of different combinations of features. ‘Top 10 EXP’

means that the 10 predictive features were top 10 expression features ranked

by the combined correlation scores. ‘Top 9 EXP þ1 CN’ means that the 10 pre-

dictive features were composed of top nine expression features plus the copy

number profile of the PR gene itself (if available). ‘Top 10 EXP&CN’ means

that we mixed expression features and copy number features together, then

ranked them by their combined correlation scores, then picked up top 10 fea-

tures in this mixed list. ’Top 10 CN’ means that the 10 predictive features are

top 10 copy number features ranked by the combined correlation scores. (B)

The performance of different numbers of features. A model with k features

includes (k–1) expression features and one copy number feature (if available).

18 960 is the maximum number of features we could use. (C) A summary of

the rankings of features. The features are ordered by the ratio of how many

times it has top two combined correlation scores over how many times it was

selected as a predictive feature. The label ‘100996516_at’ is the name of the

probe, which does not map to a gene. See also Supplementary Figures S1

and S3
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examples. A traditional feature selection scheme will inevitably lead

to selection of noisy features that happen to/coincidentally correlate

with the outcome. The selection of self-CNV is, instead, guided

more by biological insight than a purely data-driven approach.

This insight is that the copy number of a gene itself will greatly af-

fect the result when the gene is targeted or is to be suppressed.

The known relationship between cancers and copy number alter-

ation (CNA) can explain the prediction power of the copy number

of the PR gene itself. CNAs frequently appear in cancer cells and

are believed to contribute to the progression of cancers (Bowcock,

2014), because regions subjected to copy number change could

harbor key genes that have the potential to trigger the develop-

ment or change the characteristics of cancers. HER2-positive

breast cancer is breast cancer with overexpressed HER2 protein

or amplified HER2 gene (Ng et al., 2015; Lee et al., 2014; Slamon

et al., 1987). For HER2-positive breast cancers, targeting HER2

will make a significant change to the proliferation of cancer cells,

which implies that the essentiality of HER2 is high. Meanwhile,

the essentiality of HER2 is lower for HER2-negative individuals.

Therefore, it is reasonable to assume the non-random co-occur-

rence of high/low gene essentiality and different patterns of copy

numbers. This non-random co-occurrence between the feature

and the gold standard is a potential reason that explains the pre-

dictive power of copy number features. Using copy number data

of other genes did not result in better performance. This is prob-

ably because the copy number change of a certain gene is often

accompanied by the copy number change of other genes especially

its flanking genes because the genome of the cancer cells is fragile

and unstable (Nijhawan et al., 2012). The copy number features

are therefore prone to false positive choices.

3.5 Previously confirmed cancers biomarkers were

picked out by the feature selection method
After feature selection, each PR gene was assigned 10 predictive fea-

tures (see Supplementary Table S3 for the predictive features of all

PR genes). We ranked the expression features with respect to how

many times each was among 10 predictive features (Supplementary

Table S4). We found most of the top features were genes previously

identified as cancer biomarkers (Table 1). BCL9L (B-cell CLL/

lymphoma 9-like, BCL9-2) was predictive for 650/2647 genes

(24.6%) and has been associated with a variety of human cancers,

such as colon, pancreatic (Sannino et al., 2016a), leukemia (Sannino

et al., 2016b), intestinal (Zatula et al., 2014) and breast (Zatula

et al., 2014). PTPRF was predictive for 628/2647 genes (23.7%).

PTPN12 ranked right after PTPRF for being predictive for 503/

2647 gene (�19%). PTPN12 and PTPRF are both members of the

protein tyrosine phosphatases (PTPs) family. Proteins of this family

have key roles in many biological processes including cell prolifer-

ation, migration and differentiation (Li et al., 2015). Various studies

proved that the aberration of PTPRF is associated with tumorigen-

esis and malignancy (Soulières et al., 2015). PTPN12 is known for

playing vital roles in cell migration and adhesion (Luo et al., 2014)

and has important roles in ovarian (Villa-Moruzzi, 2011, 2013),

hepatocellular (Luo et al., 2014) and breast cancers and is a poten-

tial therapeutic biomarker (Harris et al., 2014; Tonks, 2006). In

addition to the above-mentioned genes, other top features are poten-

tial biomarkers or tumor suppressors (Table 1). This result showed

that our feature selection process was efficient in detecting predict-

ive biomarkers.

The first column is the gene symbol of the CCLE-EXP gene.

The second column is the number of PR genes that those features

were predictive for. The percentage is second column/total*100%.

The third column listed a few cancers that were shown in published

studies to be closely related to the CCLE-EXP genes.

3.6 Prediction accuracy of ten features resembled that

of the whole feature set
We tested the prediction performance of different numbers of fea-

tures using 5-fold cross-validation (Fig. 5B). The alternative num-

bers we tested ranged from 3 to 18 960, which is the total number of

expression features. The performance kept increasing at the begin-

ning, but the increasing rate of performance became much slower as

more features were added. Three features and 10 features performed

significantly different (t-test P-value ¼ 0.0001689), but the differ-

ence between using 10 features and 18 960 features was not statistic-

ally significant (t-test P-value ¼ 0.08603). It is also worth noting

that the difference between 5 and 10 features was not statistically

significant (t-test P-value ¼ 0.09318). This showed the possibility

that fewer features can be used while still capable of capturing most

of the information and getting reasonable prediction accuracy. Most

importantly, the computational time, in terms of linear SVM, grows

linearly with the number of examples and a subset of 10 genes has

great advantage over the whole �20 000 gene features from a model

construction perspective.

3.7 Most expression features are only predictive for a

small set of PR genes
We counted the occurrence of each expression feature in 10 predict-

ive features and found that some expression features appear to be

predictive for as many as �25% of PR genes (Table 1), such as

ASAP2 (�26.3%), BCL9L (�24.6%) and PTPRF (�23.7%).

Table 1. Top 10 features and their related cancers

Feature # of PR genes (%) Known related cancers

ASAP2 697 (26.3%) —

BCL9L 650 (24.6%) Colon cancer, pancreatic cancer

(Sannino et al., 2016a), leukemia

(Sannino et al., 2016b)

PTPRF 628 (23.7%) Breast cancer, lung cancer (Bera et al.,

2014; Liu et al., 2015; Soulières et al.,

2015), prostate cancer (Trojan et al.,

2005), colorectal cancer (Bera et al.,

2014; Bujko et al., 2015), gastric

cancer, hepatocellular carcinoma

(Soulières et al., 2015)

PTPN12 503 (19.0%) Breast cancer (Harris et al., 2014; Luo

et al., 2014; Tonks, 2006), hepatocel-

lular carcinoma (Luo et al., 2014),

ovarian cancer (Villa-Moruzzi, 2013,

2011)

ANXA1 480 (18.1%) Bladder cancer (Yu et al., 2014), lung

cancer, pancreatic cancer, colorectal

cancer, liver cancer (Guo et al., 2013)

AJUBA 479 (18.1%) Malignant mesothelioma (Tanaka et al.,

2015)

CYTIP 471 (17.8%) —

SH3D19 457 (17.3%) —

CMTM4 418 (15.8%) Clear cell renal cell carcinoma (Li et al.,

2015)

EIF2C2 395 (14.9%) Bladder carcinoma (Zhang et al., 2015),

colon cancer (Li et al., 2010),

myeloma (Zhou et al., 2010)
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Most expression features which appeared at least once in 10 predict-

ive features were only predictive for a very small set of genes; 49.4%

of all predictive expression features only appeared once. �90% of

all predictive features were predictive for no >�1.5% of all PR

genes. Therefore, features were usually not globally predictive. The

vast majority of features were specifically associated with a very

small set of PR genes.

Some features had very special patterns of ranking (Fig. 5C and

Supplementary Fig. S6B). For example, PTPRF was selected as pre-

dictive features for 628 genes and its combined correlation scores all

ranked top two in those 628 genes. EIF2C2 appeared 395 times in

10 predictive features, and 91.65% of the time it ranked #1. In con-

trast, for PTPN12 the rankings were more evenly distributed (#1:

6.36%, #2: 8.55%, #3: 13.72%, #4: 10.93% and so on). We

noticed that those features such as PTPRF and EIF2C2 had very few

neighbors in the functional network. PTPRF had only 30 nearest

neighbors. EIF2C2 and BCL9L had no neighbors under our criteria

(though EIF2C2 and BCL9L do interact with numerous genes). In

contrast, FH had 839 neighbors and CPOX had 215 neighbors.

This raises the possibility that features with fewer neighbors had

higher rankings due to the reason that the network it is involved in

is small and all the genes in this network are strongly associated

with each other, so the feature is highly predictive for those genes

involved in that network. Another reason could be that they were

associated with RNA and protein processing functions. For ex-

ample, EIF2C2 encodes AGO2 (Argonaute-2) which is expressed

ubiquitously in most parts of the body and plays a key role in RNA

interference (Meister, 2013) and DNA repair (Ye et al., 2015).

Thus, the expression levels of such genes could affect or be affected

by a large set of genes. This could result in a relatively high global

score. As our model puts more weight to global scores than local

scores (7:3), those genes were more likely to have higher rankings.

4 Discussion

We developed a model that used the gene expression and copy num-

ber profiles of cancer cells to predict the essentiality of a list of

genes. The accuracy of our prediction was measured by the

Spearman correlations between the predicted scores and the Achilles

gene essentiality scores. The Achilles essentiality scores of genes in

cancer cells were measured by the influence of genes on the prolifer-

ation rate of the cancer cells. The essentiality scores were provided

by Project Achilles. The expression and copy number profiles were

provided by CCLE. We selected 10 features from over 40 000 ex-

pression/copy number features to predict the essentiality of a set of

prioritized genes in cancer cells. The 10 predictive features were

composed of nine expression features and one copy number feature.

We defined top 50 most accurately predicted PR genes as

Accurately Predicted (AP) genes. These genes’ essentiality could be

accurately predicted from expression and copy number features that

we selected. The evaluation of our method was done in 44 testing

cancer cell lines, and as shown in Figure 2C there were no extreme

values or outliers. These facts indicated that the prediction accuracy

of AP genes was genuinely stable in different cancer cell lines. Some

of the AP genes and other accurately predicted genes are identified

as housekeeping genes. We further investigated the genes which are

non-housekeeping but still accurately predicted, and found that

those genes are likely to be cancer-specific essential genes. POLD1, a

non-housekeeping gene, has a Spearman score of 0.66. It was associ-

ated with colorectal cancers (Palles et al., 2013). TP53 is a well-

known non-housekeeping oncogene that is accurately predicted with

a score of 0.62. This shows the exciting prospect that the top pre-

dicted genes (including AP genes) can be future research subjects, as

they are potential cancer specific essential/housekeeping genes.

In this study, the features we selected were solely used as bio-

markers for gene essentiality, but, as shown above, many previously

discovered cancer biomarkers appeared in our top feature list. There

were still some top features for which we could not confirm their re-

lationship with cancers. Those genes might have vital roles in cancer

cells that worth further exploration. In the feature selection proced-

ure, we gave a higher weight to global scores (0.7) than local scores

(0.3). However, as these two scores are on different scales (global

scores 2 ½0; 1�, local scores 2 ½�1; 1�), and the identity in distribu-

tion cannot be proved either, a higher weight score does not

imply higher importance. Nevertheless, when used alone, the global

scores have better prediction performance than local scores

(Supplementary Fig. S3A). This result indicates that global score is

marginally more important than local scores in the feature selection

process.

The support from CCLE and Project Achilles made the DREAM

challenge and this study possible. However, the Achilles gene essen-

tiality scores obtained by the loss-of-function screen were noisy in

nature, as shRNA experiments could involve incomplete knock-

down and nonspecific or off-target knockdowns (Svoboda, 2007).

Our algorithm has the potential to improve its performance by inte-

grating data from separate resources, such as data generated by

CRISPR-Cas9 technology, to compensate for the noise (Smith et al.,

2017). In particular, the study of the driver genes (epi-drivers) that

are not mutated in their DNA sequence, but their epigenetic changes

control the metastatic status of cells (Chatterjee et al., 2017), will re-

quire additional datasets and algorithms to predict, which is a prom-

ising future research direction.
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