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Abstract

Motivation: One of the most important research areas in personalized medicine is the discovery of

disease sub-types with relevance in clinical applications. This is usually accomplished by exploring

gene expression data with unsupervised clustering methodologies. Then, with the advent of mul-

tiple omics technologies, data integration methodologies have been further developed to obtain

better performances in patient separability. However, these methods do not guarantee the survival

separability of the patients in different clusters.

Results: We propose a new methodology that first computes a robust and sparse correlation ma-

trix of the genes, then decomposes it and projects the patient data onto the first m spectral compo-

nents of the correlation matrix. After that, a robust and adaptive to noise clustering algorithm is

applied. The clustering is set up to optimize the separation between survival curves estimated

cluster-wise. The method is able to identify clusters that have different omics signatures and also

statistically significant differences in survival time. The proposed methodology is tested on five

cancer datasets downloaded from The Cancer Genome Atlas repository. The proposed method is

compared with the Similarity Network Fusion (SNF) approach, and model based clustering based

on Student’s t-distribution (TMIX). Our method obtains a better performance in terms of survival

separability, even if it uses a single gene expression view compared to the multi-view approach of

the SNF method. Finally, a pathway based analysis is accomplished to highlight the biological

processes that differentiate the obtained patient groups.

Availability and implementation: Our R source code is available online at https://github.com/

angy89/RobustClusteringPatientSubtyping

Contact: angela.serra89@gmail.com or aserra@unisa.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many diseases—for example, cancer, neuro-psychiatric and

autoimmune disorders—are difficult to treat because of the remark-

able degree of variation among affected individuals (Saria and

Goldenberg, 2015). Precision medicine (Hood and Friend, 2011)

tries to solve this problem by individualizing the practice of

medicine. It considers individual variability in genes, lifestyle and

environment with the goal of predicting disease progression and

transitions between disease stages, and targeting the most appropri-

ate medical treatments (Mirnezami et al., 2012).

A central role in precision medicine is played by patient sub-

typing, that is the task of identifying sub-populations of similar

patients that can lead to more accurate diagnostic and treatment

strategies. Identifying disease sub-types can help not only the scien-

tific areas of medicine, but also the practice. In fact, from a clinical

point of view, refining the prognosis for similar individuals can
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reduce the uncertainty in the expected outcome of a treatment on

each individual.

Being able to accurately estimate the outcome (survival) of the

disease is the key in the successful treatment of cancer patients. This

estimation depends on clinical or laboratory factors that are linked

to patient outcomes.

The most common approach used in the outcome estimation of

cancer patients is based on composite index categorization, that as-

sign patients to different stage levels based on clinical variables that

depend on the type of disease. One example is the TNM index

(Tumor, Lymph Nodes and Metastasis) that was defined to classify

the progression of cancer that originates from solid tumour. Thus,

the outcome estimation is based on the survival estimation of the

patients in each stage (Green et al., 2006).

Then, with the advent of high-throughput omics-technologies,

using statistical and machine learning approaches such as non-

negative matrix factorization, hierarchical clustering and probabilis-

tic latent factor analysis (Brunet et al., 2004; Perou et al., 2000),

researchers have identified subgroups of individuals based on

similar gene expression levels. Moreover, several data integration

approaches for patient subgroup discovery were recently proposed,

based on supervised classification, unsupervised clustering or bi-

clustering (Planey and Gevaert, 2016; Higdon et al., 2015; Liu et al.,

2016; Taskesen et al., 2016) To improve the model accuracy for pa-

tient stratification, other omics data types can be used, such as

miRNA (microRNA) expression, methylation or copy number

alterations, in addition to gene expression. For example, somatic

copy number alterations provide good biomarkers for cancer sub-

type classification (Vang Nielsen et al., 2008). Data integration

approaches to efficiently identify sub-types among existing samples

have recently gained attention. The main idea is to identify groups

of samples that share relevant molecular characteristics.

All these methods strongly depend on the similarity measure

used in the analysis and are sensible to the noise in the experimental

data. Moreover, these methodologies, do not guarantee a good sep-

arability of the patients in terms of survival.

Recently, a fully Bayesian approach (called SBC), able to cope

with the last problem, was proposed (Ahmad and Fröhlich, 2017).

The SBC method performs the clustering analysis by jointly analy-

sing omics and survival data. It is a semi supervised method, since it

uses a lasso based Accelerated Failure Time (AFT) model to identify

the feature that better correlate with patient survival times. Then a

Hierarchical Bayesian Graphical Model is applied to combine a

Dirichlet Process Gaussian Mixture Model with the AFT model to

identify the clusters that have a good separability in terms of omics

signatures and survival time, and being able to predict the survival

time for new patients.

In this study, we propose a new computational framework that,

unlike SBC, is able to solve the two aforementioned problems in an

unsupervised manner. Indeed, it aims to combine robust and sparse

gene correlation estimation, an unsupervised clustering algorithm

robust to noise and survival analysis, in order to find patient sub-

types that have also a good survival separability. The methodology

is described in Figure 1.

The proposed methodology, described in the beginning of

Section 2, is a combination of robust dimensional reduction techni-

ques and clustering. In a nutshell: a cluster solution on a data sub-

space is searched that has good properties in terms of survival

curves separation. The method looks for many candidate clustering

solutions, and chooses one that is optimal according the survival

empirical evidence. The proposed method handles noise and out-

liers, very common in this kind of data, in a fully adaptive and

unsupervised way. It is cheaper, in terms of data acquisition, than

modern multi-view methods and performs remarkably competitive

on five datasets. In fact, we tested our methods on five real cancer

datasets downloaded from the TCGA website, and we compared

our survival curve separation with that obtained by using the simi-

larity network fusion (SNF) algorithm, and model based clustering

based on Student’s t-distribution (TMIX) of Peel and McLachlan

(2000) on the same data. Our experiments suggest that our method

outperforms the SNF and TMIX methods in terms of survival

curves separability. On the other side, since OTRIMLE is a com-

bination of robust methodologies, it is computational more expen-

sive than SNF and TMIX.

The rest of the article is organized as follows: first we explain

our methodology, discussing about the needing of a robust correl-

ation estimator and of a clustering method robust to noise. Then we

present a new measure to compute the distances between survival

curves. Finally, experimental results are presented.

2 Materials and methods

Suppose we have a set of p genes measured on n samples, data are

stored in the n� p data matrix X ¼ xl;m

� �m¼1;2;...;p

l¼1;2;...;n
. Measurements

on the ith unit (patient) are given by xi ¼ xi;1; xi;2; . . . ; xi;p

� �0
,

while the lth column (that is the lth gene) is denoted by

Xl ¼ x1;l; x2;l; . . . ; xn;l

� �
. We want to discover k clusters within the

patients (rows of XÞ. The proposed methodology for the analysis of

gene expression data for patient subtyping consists of the following

steps:

1. build the gene co-expression matrix by using the Robust and

Sparse Correlation matrix estimator (RSC) of Serra et al. (2017).

Fig. 1. The proposed approach for clustering patients is composed of several

steps. First of all, starting from the gene expression data matrix, the robust and

sparse gene co-expression matrix is computed with the RSC method. RSC also

identifies the optimal threshold to cut spurious correlations. Then, the correl-

ation matrix is decomposed into its spectral components (eigenvalues and

eigenvectors). Only the first m components of the decomposition are used to

project the patients onto a rotated subspace. In this subspace, the OTRIMLE al-

gorithm is applied. Survival curves were computed for the obtained clustering.

Separation of survival curves is evaluated for each clustering solution. The (op-

timal) clustering that maximizes survival curves separation is chosen. Based on

the optimal clustering, the differentially expressed genes are computed (start-

ing from the original matrix) for each cluster versus the others. Finally, to give

more insights into the biological process underlying the patients cluster, a path-

way over-representation analysis is performed
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Perform the spectral decomposition of the RSC matrix so that

the eigenvalues are in non-increasing order.

2. Fix an integer m > 1, and a real number c � 1, and do the

following:

a. project the rows of the original gene expression matrix X

onto the space spanned by the first m eigenvectors of the

RSC matrix obtaining a Z mð Þ matrix of dimension

n�mð Þ;
b. perform the OTRIMLE clustering method of Coretto and

Hennig (2016) and Coretto and Hennig (2017) on the

rows of Z mð Þ. This requires the regularization parameter

c called the ‘eigenratio constraint’ (explained in details in

Section 2.2);

c. estimate the survival curves cluster-wise based on non-

parametric methods, and evaluate the separation be-

tween the k clusters in terms of survival curve separation.

Steps 2(a)2(c) are performed for several combinations of values

for m and c obtaining a number of cluster solutions.

3. The final clustering is chosen so to maximize the separation in

terms of survival curves given that the associated P-value is

satisfactory.

4. For each cluster, a list of over-represented pathways are identi-

fied that distinguish that cluster from the others.

In the following sections each step of the analysis is disentangled.

2.1 Data projection based on the RSC estimator
One of the major issues in clustering analysis is the high-

dimensionality of the feature space, that is the number p of genes. In

high dimension, the feature space becomes geometrically sparse and

most of the clustering methods are prone to degrade their perform-

ance. The ideal would be to reduce the data dimension by filtering

out those genes that do not contribute to the clustering, but this is

not generally known. A traditional approach is to project the origin-

al data matrix onto a space of lower dimension m<p. The most

popular of such methods is the Principal Component Analysis

(PCA), that is the data matrix is projected onto a lower-dimensional

space spanned by a subset of m<p eigenvectors of the sample co-

variance or correlation matrix to which are associated the corre-

sponding m largest eigenvalues. Unfortunately, the typically small

concentration ratio p/n drives the bias of the estimated spectral com-

ponents to huge levels affecting the final analysis. Moreover, it is

well-known that gene arrays are rich of outlying measurements (see

Marshall, 2004), and only a few of them can completely breakdown

the sample covariance/correlation matrix. In Serra et al. (2017) these

issues are treated in detail. The Robust and Sparse Correlation ma-

trix estimator (RSC) proposed in Serra et al. (2017) was shown to

successfully jointly tame both the effects of a small concentration

ratio, and the influence of outlying measurements. Robustness is

achieved by replacing the sample correlation matrix with an ensem-

ble of robust pairwise correlation coefficients due to Pasman and

Shevlyakov (1987). Sparsity of the resulting correlation matrix is

obtained based on an adaptive thresholding method. The RSC

estimator is simple to compute, and it is completely unsupervised

because it does not require data dependent tunings. Let R be

the RSC estimate. R is a ‘cleaned’ estimate of the joint correlation

structure acting on the measured data. In analogy with PCA, we

consider its spectral components. Let k1 � k2; . . . ;� kp be eigenval-

ues of RSC rearranged in non-increasing order, and let

K ¼ diag k1; k2; . . . ; kp

� �
the diagonal matrix containing them. Let C

be the matrix whose columns are normalized eigenvectors associated

to k1; k2; . . . ; kp

� �
. Therefore, R ¼ CKC0. Column vectors of C point

toward directions of increasing variability as one moves the column

index from 1 to p. Let _X be the centered-scaled data matrix, where

each column of the original data is centered onto its median, and

scaled according to its median absolute deviation (these are robust

alternatives to the sample mean and standard deviation). Let C mð Þ
be the p�mð Þ matrix made up of the first m columns of C, we pro-

ject the original gene expression data matrix X onto the lower di-

mensional space spanned by the first m eigenvectors of RSC

obtaining Z mð Þ ¼ _XC mð Þ. The n�mð Þ matrix Z mð Þ is the equiva-

lent of the score matrix in the PCA language. The rows of Z mð Þ rep-

resent patients in this reduced and rotated new data space, and these

rows are the units to cluster in the following step. In the matrix

Z mð Þ a gene is replaced by a linear combination of the expression

levels of all genes according to the weight given in the corresponding

column of C mð Þ. Therefore, the implicit assumption underlying our

analysis is the following: linear combinations of gene expression lev-

els characterize the clustering structure of interest. The eigenvectors

of RSC give us a set of candidate interesting directions where to

look for such relevant combinations of gene expression levels.

One problem in PCA is the choice of how many orthogonal com-

ponents to retain in order to preserve most of the observed variance.

This corresponds to choose m here. There are good methods for

this, however most of these methods are supervised. Moreover, here

the main goal of the analysis is different from PCA and similar meth-

ods. The problem here is not to explain the total variability con-

tained in X based on a reduced sampling representation Z mð Þ.
Instead, the aim here is to find a reduced representation of the ori-

ginal data that is able to show valuable clustering information. To

this end, m is not chosen based on cumulated variance arguments as

in the PCA, but rather we choose an m that is consistent with the

cluster separation concept explained in Section 2.3.

2.2 OTRIMLE clustering
Clustering gene expression data is a long-standing problem. Most

clustering algorithms are heuristically motivated in absence of theoret-

ical guarantees. The problem of defining what is a ‘good’ clustering

solution, is still open. In absence of a well-grounded statistical refer-

ence model, it is difficult to answer such questions. These issues are

extensively discussed in McLachlan and Peel (2000), Yeung et al.

(2001) and McLachlan et al. (2002), where advantages of the model-

based clustering approach are shown. One of the major advantages of

the model based approach is that assignment is smooth and this

allows to better manage situations where one cannot expect a straight

separation between the groups. Furthermore, the disastrous effects of

even few outlying measurements in clustering analysis are well docu-

mented in Hennig (2004) and Escudero et al. (2015). There are few

model-based clustering methods that are designed for being outlier/

noise-resistant: maximum likelihood (ML) for Gaussian mixtures

with uniform noise of Banfield and Raftery (1993), ML for Student’s

t-distribution mixtures by Peel and McLachlan (2000), the TCLUST

algorithm of Garcı́a-Escudero et al. (2008) and the OTRIMLE of

Coretto and Hennig (2016). Among these, the recently introduced

OTRIMLE method has been selected for some of its distinguishing

features: (i) the OTRIMLE is fully adaptive to the presence of noise/

outliers, and this is essential in multivariate measurements where no-

body really knows when noise/outliers are present in the data. (ii) The

extensive comparison of Coretto and Hennig (2016) and Coretto and

Hennig (2017) showed that OTRIMLE achieves a competitive per-

formance even in extremely adverse noise conditions. It also resulted
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to be consistent in noiseless situations. (iii) Theoretical guarantees

exists [see Coretto and Hennig (2017)] for the robustness of the

OTRIMLE method and its algorithm.

The OTRIMLE is now briefly introduced and motivated. It looks

for clusters having an elliptical-symmetric shape that can be ad-

equately represented by the contours of the Gaussian density.

Assume we want to discover k clusters within n objects on which the

feature vector y 2 Rp is measured. Let fyi; i ¼ 1;2; . . . ;ng be the

sample points. Let /ðy; lj;RjÞ be the Gaussian density at y centered

on the mean vector lj with a covariance matrix Rj. The shape of the

jth group is described by the level sets of /ð�; lj;RjÞ. Assume that the

expected proportion of each group is given by pj 2 0;1½ �, withPk
j¼1 pj ¼ 1� p0, where 0 � p0 < 1 is the expected proportion of

points not consistent with any of the k elliptical-symmetric groups.

These points are called ‘noise’, where ‘noise’ means a group of

points of arbitrary shape not consistent with the Gaussian proto-

type. The sampling distribution is represented by the improper mix-

ture density

wd y; hð Þ ¼ p0dþ
Xk

j¼1

pj/ðy; lj;RjÞ; (1)

where d is the so called ‘noise component’, i.e. a component having

positive constant density everywhere in the Euclidean space. Being

positive everywhere, the noise component can accommodate even ar-

bitrarily extreme outliers, but it makes w �ð Þ an improper density. The

parameter vector h contains p0 and all triplets ðpj;lj;RjÞ for all j ¼ 1;

2; . . . ;k and it is estimated by solving a constrained pseudo-

Maximum likelihood program. Let kmax hð Þ and kmin hð Þ be the max-

imum and minimum eigenvalues computed over all the cluster

covariance matrices in h, respectively; let c � 1, and 0 < pmax < 1,

the robust improper maximum likelihood estimator (RIMLE) is given

by the h vector that solves the following constrained optimization

problem:

maximise
h

Xn

i¼1

log wd yi; hð Þ

subject to 0 � pj � 1; for all j ¼ 0; 1; . . . ; k;

kmax hð Þ
kmin hð Þ � c;

Xn

i¼1

p0d
wd yi; hð Þ � npmax:

(2)

The solution to the optimization in (2) depends on d, the improper

noise density. The OTRIMLE method finds an optimal d level in

order to achieve an adequate representation of the data in terms of

Gaussian-type ellipsoids. Algorithms with proven convergence are

developed in Coretto and Hennig (2016, 2017) for the OTRIMLE

computing. Let h� the OTRIMLE solution, then objects are assigned

based on the optimal Bayes classifier

J yi; h
�ð Þ ¼ argmaxj2f0;1;2;...;kg sj yi; h

�ð Þ: (3)

where sj yi; h
�ð Þ ¼ p�j /ðyi;l

�
j ;R

�
j Þ=wd� yi; h

�ð Þ for clusters j ¼ 1; . . . ; k,

and s0 yi; h
�ð Þ ¼ p0d

�=wd� yi; h
�ð Þ for the noise.

Once k is decided (see the following section), there two parame-

ters for the OTRIMLE: pmax and c. These two constants are needed

to guarantee the existence of a solution to (2) as shown in Coretto

and Hennig (2017). The second constraints in (2) is called the ‘eigen-

ratio’ constraint (ERC). It restricts the relative shape of the clusters.

When c¼1 the clusters are enforced to be spherical. Larger values

of c allow for larger discrepancies between cluster shapes. For

instance, a large c permits to discover an almost collinear cluster along

with a spherical cluster. The ERC is also crucial to regularize the clus-

ter covariance matrices, and this is particularly important when the

product p� k is large compared to n. Since the choice of c has a cer-

tain impact the cluster solution, in this work it is not fixed in advance,

but is optimized with respect to the cluster-separation objective func-

tion elaborated in next section. The variations in terms of clustering

produced by larger values of c are stronger for lower values of c. That

is, the way the ERC impacts the cluster solution is better predicted in

terms of log cð Þ. Therefore, in Section 3 the ERC is optimized on a grid

of log cð Þ values as suggested in Coretto and Hennig (2017). The third

constraint in (2) is called the ‘noise proportion constraint’ (NPC), be-

cause it bounds the relative size of the noise component. In practice,

the NPC ensures that no more than pmax% of the units are assigned to

the noise component. The OTRIMLE is fully adaptive to the noise in

the sense that, noise is found only when the estimated p�0 > 0.

Therefore, the noise level is estimated and not specified as an input of

the algorithm. However, a maximum noise proportion pmax is needed.

A well accepted principle in robust statistics is that noise/outliers make

sense if they are not a majority. Therefore, if subject-matter knowledge

is not available, setting pmax ¼ 50% is a sensible choice for achieving

maximum protection [see Coretto and Hennig (2017)]. Hence, pmax

¼ 50% is used in this article.

The Gaussian distribution on which OTRIMLE is based is not

meant to be a model for the data generating process, but it can be

thought as a kernel function describing certain geometrical aspects

of the clusters. Noise here does not necessarily mean observations to

through away. Noise here is what it is not consistent with any of the

k clusters. If noise is found (i.e. estimated p�0 > 0), then the noise

population may be a group itself that probably has a less structured

conformation. Note that the OTRIMLE is flexible enough to cap-

ture a variety of shapes also captured by other clustering algorithms.

For instance when c ¼ 1;pmax ¼ 0 the OTRIMLE searches

for spherical clusters without noise as would do the more popular

k-means algorithm.With c ¼ þ1;pmax ¼ 0, the OTRIMLE will acts

as ML for Gaussian mixture models without noise.

2.3 Measuring cluster separation
Every clustering algorithm has its own input parameters, each of

which will produce some effects on the results. There is always a set

of impacting decisions: the number of clusters, the dissimilarity

measure in most partition methods, the type of metric and the link-

age function in hierarchical methods, etc. There are algorithms that

claim to be completely decision-free. The problem is that really none

of the proposed methods is shown to work universally. The biggest

issue is that the term ‘cluster’ has not a universal mathematical def-

inition. Therefore, none of the methods can be compared to a uni-

versal target. Every method looks for certain shapes, and pursues a

certain cluster concept via an objective function. The OTRIMLE,

for instance, looks for clusters that are optimal in the sense of the

pseudo-likelihood function in 2. However, the method objective

function rarely tells how relevant the clustering is.

The underlying implicit assumption driving our analysis is that a

cluster of patients is relevant if the units belonging to it have a re-

sidual life pattern significantly different from that of the patients

belonging to any other cluster. In other words, we propose to meas-

ure the relevance of a clustering solution based on the overall separ-

ation between the survival curves measured cluster-wise. Suppose

that survival data are available for all n individuals in the experi-

ment. Start from a clustering solution where each individual is

assigned to a cluster j ¼ 1; 2; . . . ; k, or eventually to the noise (j¼0).
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Let bSj tð Þ be the estimated survival curve for the individual belonging

to the jth cluster, where this estimate is based on the popular

Kaplanregl.e estimator. A common way to measure the separation

between any pair of survival curves is to consider the hazard ratio or

the median survival time difference. However, these criteria make

sense when the proportional hazard assumption holds, which in

practice is often violated (Royston and Parmar, 2013). Another pos-

sibility would be to consider their L1 or L2 distance, but these dis-

tances would not have a direct biological interpretation which is

what we want to achieve. Moreover, the maximum survival time in

each cluster may differ substantially, and after a certain time hori-

zon, the effect of a certain biological status on the survival pattern is

masked by other causes like the ageing. It would be more reasonable

to compare survival curves based on a suitable time support which is

common to all clusters. Assume that in each cluster individuals sur-

vive at least for t ¼ T�. The restricted mean survival time (RMST)

within the jth cluster is given by

RMSTj ¼
ðT�

0

bSj tð Þdt;

that corresponds to the area below bSj tð Þ between 0;T�½ �. RMSTj

measures the life expectancy in group j restricted to the time horizon

0;T�½ �. The quantity RMSTa � RMSTb gives the difference in life

expectancy between cluster a and b, but this is also equal to the area

between bSa tð Þ and bSb tð Þ, which in turns is a meaningful measure of

the distance between the two curves. In fact, all survival curves start

from the same point (that is bSj 0ð Þ ¼ 1 for all j), and they are mono-

tonically non-increasing, hence the area between them makes up an

interpretable measure of their separation. The separation between

clusters a and b is measured as the restricted life expectancy

difference

RLED a; bð Þ ¼ jRMSTa � RMSTbj (4)

A large RLED a; bð Þ implies that at some time point t < T� one of

the two curves becomes largely right shifted with respect to the

other. This kind of behaviour would mean that the underlying clus-

tering is effective. The overall cluster separation is measured by

RLEDmin ¼ minfRLED a;bð Þ; a; b ¼ 0;1; . . . ;k; and a 6¼ bg (5)

Clusterso configurations that are not well separated on the feature

space (the columns of Z mð Þ in our analysis) may well have a large

RLEDmin which makes them interesting. The parameters c and m

are chosen to maximize RLEDmin.

The parameter k remains the most difficult to deal with. In the

analysis of Section 3 we work with a fixed k set as for the state-of-

the-art SNF method in Wang et al. (2014). If an automatic decision

for k is ultimately needed, there are several well established methods

in the literature: the elbow method of Thorndike (1953), the silhou-

ette method of Rousseeuw (1987), information criterion approaches

[see Biernacki et al. (2000)], the GAP statistics method of Tibshirani

et al. (2001), etc. Unfortunately none of these methods is shown to

produce a generally accurate answer independently from the specific

problem. In many applications, a correct, or ‘true’, number of clus-

ters does not exists, and an effective k depends on the complexity de-

gree needed to describe the data structure. Clustering is a difficult

unsupervised learning task because there does not exist a universal

notion of prediction accuracy that can drive model selection in

all settings Hastie et al. (2001). In principle, it is possible to include

k in the optimization of (5). However, this could encourage the

method to form many smaller groups to increase the separation.

Optimization of RLEDmin with respect to k requires a penalty for

the increase of k. However, this would introduce a new user tuning,

penalty parameter, that only shifts the problem of choosing k. In the

application context of this article, our view is that k is better left to

a thorough analysis of the biological implications of the discovered

clusters. In biological studies, depending on the type of data and

experiments, there is usually a precise idea about a limited range of

possible values for k. Our suggestion is to run the analysis for plaus-

ible values of k, and then consider the implications of each optimal

solution.

3 Results

We developed a robust methodology for cluster analysis of gene

expression data for patient sub-typing. We compared it with a state-

of-the-art SNF method of Wang et al. (2014), and the TMIX ap-

proach of Peel and McLachlan (2000). Differently from the method

proposed here, the SNF algorithm is a more general data strategy for

integrative analysis, and in this article we only compare with it in

terms of performance with respect to patient subtyping. The TMIX

method is included in the comparison because it shares some similar-

ities with the OTRIMLE. The TMIX performs maximum likelihood

estimation for mixtures of Student’s t-distributions, therefore it is

also a model-based method that looks for elliptically-shaped clusters

with possibly heavier than normal tails. Both SNF and TMIX are

briefly discussed in the supplementary materials. It would have been

also natural to compare with the SBC method of Ahmad and

Fröhlich (2017). However, SBC cannot cope with a large number of

genes. In Ahmad and Fröhlich (2017) the authors of SBC suggest to

select the most relevant genes (they work with no more than 70

genes in their analysis). Since a method to choose the relevant genes

is not suggested, a fair comparison is not possible.

Using five cancer datasets from the TCGA database (see

Supplementary Table S1) we performed the survival analysis on dif-

ferent clusterings by estimating the survival curves with the Kaplan–

Meier estimator. Cluster separation is evaluated in terms of

RLEDmin criterion and by means of the log-rank test. Associated

P-values are reported in each case. The proposed methodology

depends on three input parameters that are: the number of compo-

nents of the spectral decomposition m, the eigenratio constraint par-

ameter c for the OTRIMLE algorithm, the restricted time horizon

for the RLEDmin statistic. The OTRIMLE solution is computed for

all pairs of (m; c) parameters selected on suitable grids of values. In

particular, we consider m from 2 to 30 (by steps of 1), from 33 to 48

(by steps of 3) and from 50 to 100 (by steps of 5). The grid for the c

is f1;2; 3; 5;10;20; 50; 100; 500;1000;10000;þ1g, this choice is

based on Coretto and Hennig (2017). Regarding the restricted time

point for the RLEDmin computation we choose T� ¼ 1825 days

(that is 5 years). This is because 5 years is generally considered a bio-

logical meaningful threshold above which death can be determined

by causes external to the disease under study. The parameters for

the SNF algorithm are set as suggested by the authors: the number

of neighbours is set to be equal to n/c where n is the number of

patients and c is the number of expected clusters. The specific values

are 18 for BREAST, 31 for COLON, 68 for GLIO, 30 for KIDNEY

and 24 for LUNG. The number of iterations (usually in the range

10; 20½ �) is set to 20, while the alpha hyper-parameter was varied be-

tween 0.3 and 1 by step of 0.1. The TMIX is performed for the same

grid of m values used for the OTRIMLE. The best solution is

selected based on the RLEDmin criterion. TMIX is performed using

the EMMIXskew R package of Wang et al. (2018). A detailed de-

scription of the settings regarding the TMIX method is given in the
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supplementary materials. The number of clusters k is set to be equal

to the optimal values identified in the SNF paper of Wang et al.

(2014) for each dataset (see Supplementary Table S1 in

Supplementary Materials). Since the OTRIMLE algorithm can find

a group of noisy objects, it runs with both the k and k� 1ð Þ values

identified by the SNF paper, and then we compare only those results

that, when running with k, do not find the noise cluster, and those

that when running with k� 1ð Þ find the noise group. In this way,

the number of groups in the solutions for a given dataset is always

the same (k).

Table 1 shows, for each dataset, the optimal OTRIMLE solution

vs the optimal SNF clustering and TMIX. The optimal solutions

here are the ones that maximizes the RLEDmin criterion by choosing

an appropriate m�; c�ð Þ pair for OTRIMLE, an appropriate m� for

TMIX and an appropriate a value for SNF. The P-values in Table 1

refer to the performed log-rank test on the Kaplan–Meier survival

analysis based on the cluster memberships. In the competition for

the OTRIMLE solutions, we first considered those for which the

associated P-value < 0.05. If no solutions with P-value < 0.05 are

available, the others are considered ranked by decreasing RLEDmin.

The distributions of the RLEDmin measure for all the combinations

of m and c parameters for all the datasets are reported in

Supplementary Section S6 of the Supplementary Information. For all

datasets, the top ranked OTRIMLE solutions in the competition

(those having larger RLEDmin) never reached a P-values > 0.05.

Both RLEDmin (with T� ¼ 1825 days) estimates and P-values are

also reported for the SNF and TMIX clusterings. For all the datasets,

but the colon cancer, the best separation in terms of RLEDmin criter-

ion is always achieved by the method proposed in this article. For

COLON data, SNF and TMIX achieve a marginally better perform-

ance in terms of RLEDmin; however, this happens with a P-value of

0.1649 and 0.0555 for SNF and TMIX respectively. In particular,

the P-value obtained by SNF is rather large compared to the canon-

ical 0.05 generally considered as an upper bound for the type-1 error

probability in statistical testing. With a maximum type-1 error prob-

ability (significance level) set to the canonical 0.05, with a P-value >

0.05 we are not rejecting the hypothesis that survival curves are

equal across clusters. Table 1 shows that, except that for the GLIO

dataset, SNF never achieved a P-value <0.1. On the other hand,

TMIX obtain statistically significant P-values but it has lower

RLEDmin compared to OTRIMLE. The method proposed in this

article produces a better separation between survival curves. The

two closest clusters are separated by no less than 49 days of life ex-

pectancy for the COLON data, 61 days for the for the GLIO data,

282 days for the KIDNEY data, and 68 days for the LUNG data.

The only exception is the BREAST dataset where there is a pair of

clusters with close enough curves, and in fact, we have a borderline

P-value¼0.0449 here. All this can be seen from Figures 2(B) and

3(B). The survival curves obtained from the SNF clusters are rather

overlapping. Moreover, the survival curves obtained by the TMIX

method on the BREAST cancer are fairly separated as shown in

Figure 2(C), while the survival curves obtained on the LUNG

dataset are overlapped [see Fig. 3(C)]. On the other side, the survival

curves of the clustering obtained with the OTRIMLE algorithm are

better separated [see Figs 2(A) and 3(A)). The survival curves for the

other datasets can be found in Supplementary Section S4 of the

Supplementary Materials.

Interestingly the RLEDmin optimization also leads to a consist-

ent choice of m�. In dimensional reduction based on PCA analysis,

the scree plot is often used as a guideline to decide how many fac-

tors to retain. The analog of the latter would be the m parameter

here. If there are few dominant directions along which most of

the joint variability is expressed, the scree plot will typically have

an elbow shape. A well-known method is to retain a number of

components that appears just prior to the elbow place. The

difficulty of such method is that in practice the transition towards

the elbow region is often too smooth to identify a precise corner

point. Therefore, this becomes usually a supervised task. In

Supplementary Section S6 of the Supplementary Materials we

show the distribution of the ordered eigenvalues of the R matrix

compared to m� for all datasets. It is remarkable that the RLEDmin

optimization almost always leads to a choice of m� that is in the re-

gion where the elbow takes place. The only exception is the

BREAST dataset, where m� is chosen much smaller than the one

suggested by the elbow criterion. All this supports the idea that

there is restricted set of linear combinations of gene expression lev-

els that explain: (i) most of the joint variability measured by R; (ii)

these combinations can define clusters of patients with well defined

Table 1. Optimal OTRIMLE solution maximizing the RLEDmin statistic compared to SNF and TMIX

Dataset Algo m� c� a� RLEDmin P-value Noise cl1 cl2 cl3 cl4 cl5

BREAST OTRIMLE 2 5 – 6.2321 0.0449 – 19 14 23 21 12

BREAST SNF – – 0.5 0.0000 0.1472 – 17 16 18 19 19

BREAST TMIX 2 – – 6.2000 0.0188 – 19 14 28 12 16

COLON OTRIMLE 28 3 – 43.1970 0.0168 45 31 16 – – –

COLON SNF – – 0.7 73.1306 0.1649 – 32 24 26 – –

COLON TMIX 3 – – 72.4615 0.0555 – 53 21 18 – –

GLIO OTRIMLE 17 Inf – 61.1765 0.0247 50 135 20 – – –

GLIO SNF – – 0.4 35.9031 0.0464 – 108 69 28 – –

GLIO TMIX 21 – – 12.9089 0.0504 – 19 11 175 – –

KIDNEY OTRIMLE 7 20 – 282.2017 0.0023 10 32 47 – – –

KIDNEY SNF – – 0.4 214.8555 0.1724 – 78 8 3 – –

KIDNEY TMIX 11 – – 265.5068 0.0304 – 9 12 68 – –

LUNG OTRIMLE 11 10 – 68.9026 0.0304 – 17 18 48 13 –

LUNG SNF – – 0.5 12.0707 0.0746 – 28 30 29 9 –

LUNG TMIX 7 – – 0.3917 0.4660 – 48 16 8 24 –

Note: The m� is the optimal number of spectral components used to cluster the patients, while c� is the optimal eigenratio parameter for the OTRIMLE algo-

rithm. a� is the optimal value for th local variance parameter of the SNF algorithm. RLEDmin is always computed with T� ¼ 1825 days. The P-value for the log-

rank test, between the Kaplan-Meier estimated curves for the corresponding, solution is also reported. Noise, cl1, cl2, cl3, cl4, cl5 contain the number of patients

in each cluster.
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survival patterns. This evidence also allows to increase computa-

tional efficiency because the m grid can be efficiently restricted to

the region where the elbow takes place. Finally, a comparison of

the computational time of the SNF and TMIX versus our method-

ology is considered. In Supplementary Section S10 of the

Supplementary Materials, the computational time of SNF and

TMIX methods (in term of seconds) is significantly lower than the

time used by our methodology. However in Supplementary Figure

S38 of the Supplementary Materials, it can be noted that the more

expensive computation of the OTRIMLE algorithm is worthwhile

in terms of RLEDmin. For example, for the GLIO dataset the com-

putational time of OTRIMLE with respect to SNF is 60 times big-

ger and the survival separation is almost doubled. For the same

dataset, with respect to TMIX, the computational time is eight

times bigger and the separability is almost five times bigger. For

the LUNG cancer dataset the execution times between OTRIMLE,

SNF and TMIX are comparable, but in terms of separability

OTRIMLE is 10 times better that TMIX and more than 5 times

better than SNF. For the BREAST cancer dataset OTRIMLE is 60

times slower than SNF, but it is 6 times better in terms of

RLEDmin. Moreover, OTRIMLE is 10 times slower than TMIX,

but it is 1.15 times better in term of RLEDmin. For KIDNEY data-

set OTRIMLE is 94 time slower than SNF, and 23 times slower

than TMIX. On the other hand OTRIMLE is 1.31 and 1.06 better

in terms of separability with respect to SNF and TMIX

respectively.

3.1 Over-represented pathways
Once the optimal clustering in terms of RLEDmin is obtained, the

differentially expressed genes between each cluster and all the others

are identified. The analyses were performed by using the R limma

package (Ritchie et al., 2015). The list of differentially expressed

genes associated to each cluster was divided into the up-regulated

and down-regulated genes. A pathway over-representation analysis

with respect to the KEGG pathways (Kanehisa et al., 2017) was per-

formed for each cluster and for the two separate lists of genes. This

is a powerful tool for clinicians since it allows to identify the bio-

logical mechanisms characterizing each cluster with the specific

effects on the genes. The analyses were conducted with the R

ClusterProfiler package (Yu et al., 2012). Furthermore, the CTD

database (Davis et al., 2017) was queried to check if the over-

represented pathways are known to be associated to the disease. The

association between a disease and a pathway is inferred by the num-

ber of genes that the pathway shares with those associated to the dis-

ease. For simplicity and space reasons, here we report only some

examples of the pathways associated to Breast Cancer and Lung

Cancer only. The results for the other datasets can be found in the

supplementary materials.

Fig. 2. Survival curves of the BREAST dataset. (A) Survival curves of the clusters obtained with the OTRIMLE algorithm with m� ¼ 2 and c� ¼ 5. (B) Survival curves

obtained with the SNF algorithm with a� ¼ 0:5. (C) survival curves obtained with the TMIX algorithm with m� ¼ 2

Fig. 3. Survival curves of the LUNG dataset. (A) survival curves of the clusters obtained with the OTRIMLE algorithm by using m� ¼ 11 and c� ¼ 10. (B) Survival

curves obtained with the SNF algorithm with a� ¼ 0:5. (C) Survival curves obtained with the TMIX algorithm with m� ¼ 7
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3.1.1 Breast cancer

The pathway over-representation analysis applied to the clusters of

the breast cancer dataset resulted in a total number of 163 relevant

pathways, of which 157 associated to breast cancer in the CTD

database. Of these 18 are associated to the first cluster (16 from

down-regulated genes and 2 from up-regulated genes), 43 are associ-

ated to the second cluster (9 from down-regulated genes and 34

from up-regulated genes), 50 are associated to the third cluster (39

from down-regulated genes and 11 from up-regulated genes), 25 are

associated to the fourth cluster (5 from down-regulated genes and

20 from up-regulated genes) and 27 are associated to the fifth cluster

(5 from down-regulated genes and 22 from up-regulated genes).

Some of the pathways showed in Figure 4, are also listed as the top

associated pathways to the breast cancer on the CTD database,

meaning that they contain a high number of genes that are reported

in literature to be associated with the disease. For example, the

Osteoclast differentiation has 15 genes associated to the breast can-

cer. It has been studied since breast cancer sometimes metastasises

to the skeleton inducing bone degradation (Le Pape et al., 2016).

Furthermore, Cell cycle is known to be associated to breast cancer

and its genes can be used for diagnosis purpose at different cancer

stages (Landberg and Roos, 1997). Another example is the NF-

kappa B signalling pathway, whose association with breast cancer is

under study since its genes are involved into the tumour existence

and in treatment resistance (Shostak and Chariot, 2011). The list of

pathways associated to the clusters obtained with the SNF and

TMIX algorithms can be found in the supplementary materials.

3.1.2 Lung cancer

The pathway over-representation analysis applied to the clusters of

the lung cancer dataset resulted in a total number of 76 relevant

pathways, of which 75 associated to breast cancer in the CTD data-

base. Of these 6 are associated to the first cluster (3 from down-

regulated genes and 3 from up-regulated genes), 32 are associated to

the second cluster (23 from down-regulated genes and 9 from up-

regulated genes), 20 are associated to the third cluster (3 from

down-regulated genes and 17 from up-regulated genes) and 18 are

associated to the fourth cluster (15 from down-regulated genes and

3 from up-regulated genes) and 27 are associated to the fifth cluster

(5 from down-regulated genes and 22 from up-regulated genes).

As shown in Figure 5 cluster 4 contains the patients that die ear-

lier. Most of its differentially expressed genes are down-regulated

and associated with pathways related to lung cancer such as

Pertussis, Toxoplasmosis that can cause complications in lung can-

cer (Lu et al., 2015), Staphylococcus aureus infection, etc.

Endocytosis is one of the pathways associated to the down regulated

genes of the second cluster. It is a mechanism for cells to remove

ligands, nutrients and plasma membrane (PM) proteins, and lipids

from the cell surface, bringing them into the cell interior. Its path-

way is associated to lung cancer by means of 8 genes on the CTD

database. It is known that activating mutants of EGFR in lung can-

cer exploits endocytosis-related mechanisms to reduce rapid inacti-

vation by internalization and MVB sorting, further enhancing their

oncogenic properties (Polo et al., 2004). The Neuroactive ligand-

receptor interaction pathway is strongly associated to the genes

down regulated in cluster one and up-regulated in cluster 2. It is usu-

ally related with cancer progression (Huan et al., 2014).

4 Conclusion

In this study, we proposed a methodology for the analysis of gene

expression data for patient sub-typing. The methodology is com-

posed of several steps using state of the art algorithms. First the pair-

wise robust correlation between the genes is computed by using the

RSC method. Then, the gene expression data are projected into the

space composed of the first m components of the spectral decompos-

ition. The OTRIMLE algorithm in then applied to identify robust

group of patients. The survival separability of the clusters is com-

puted in terms of the RLEDmin measure. Finally the differentially

expressed genes of each cluster are identified and an over-

representation pathway analysis is performed. We executed the

experiments on five real cancer datasets and we compared our

Fig. 4. Results of the KEGG pathways over-representation analysis on the op-

timal clustering obtained on the BREAST cancer dataset. For each cluster the

most relevant over-represented pathways from the lists of down-regulated

(left column) and up-regulated (right column) genes are reported. The darker

are the points in the figure, the higher is their relevance, in terms of P-values,

and of the association of the pathways to the up/down regulated genes

Fig. 5. Results of the KEGG pathways over-representation analysis on the op-

timal clustering obtained on the LUNG cancer dataset. For each cluster the

most relevant over-represented pathways from the lists of down-regulated

(left column) and up-regulated (right column) genes are reported. The darker

are the points in the figure, the higher is their relevance, in terms of P-values,

and of the association of the pathways to the up/down regulated genes
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method with the SNF method, that is a state of the art approach for

patient sub-typing, and with the TMIX algorithm. We showed the

effectiveness of the proposed methodology by comparing the sur-

vival curves of our clusterings, in terms of separability, with those

obtained with the SNF and TMIX methods. Our results suggested

that the usage of measures and algorithms robust to noise allows to

identify groups of patients with better survival curves even using

only gene expression data instead of integrative analyses of multi-

omic experiments.
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