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Abstract

Motivation: Intracellular signalling is realized by complex signalling networks, which are almost impos-

sible to understand without network models, especially if feedbacks are involved. Modular Response

Analysis (MRA) is a convenient modelling method to study signalling networks in various contexts.

Results: We developed the software package STASNet (STeady-STate Analysis of Signalling

Networks) that provides an augmented and extended version of MRA suited to model signalling

networks from incomplete perturbation schemes and multi-perturbation data. Using data from the

Dialogue on Reverse Engineering Assessment and Methods challenge, we show that predictions

from STASNet models are among the top-performing methods. We applied the method to study

the effect of SHP2, a protein that has been implicated in resistance to targeted therapy in colon can-

cer, using a novel dataset from the colon cancer cell line Widr and a SHP2-depleted derivative. We

find that SHP2 is required for mitogen-activated protein kinase signalling, whereas AKT signalling

only partially depends on SHP2.

Availability and implementation: An R-package is available at https://github.com/molsysbio/

STASNet.

Contact: nils.bluethgen@charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells constantly receive external cues that are integrated by signal-

ling networks in the cell to direct their cell fates. The topology of

those signalling networks is understood to a great extend (Caron

et al., 2010; Oda et al., 2005). However, the complexity of these

networks makes it difficult to predict what the outcome of a per-

turbation would be, as feedbacks and cross-talk render intuitive rea-

soning impossible.

During the last years, several approaches have been developed

that apply computational models to tackle this problem. These

approaches range from Boolean models that use logical rules to ab-

stract the interactions between the elements of the network (Grieco

et al., 2013) to complex models based on differential equations that

model details of the reaction kinetics (Raue et al., 2015) or more

phenomenological stimulus-response kinetics (Korkut et al., 2015).

Boolean approaches have proven useful to predict the outcome in re-

sponse to major alterations such as mutations or copy number alter-

ations, but they fail to explain more subtle differences between cells

and have problems to describe dynamic processes or effects of feed-

backs (Saadatpour and Albert, 2013). On the other side of the
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spectrum, differential equations can be used to describe the system

in details. However, fitting those models requires a tremendous

amount of data, limiting them to a very small scale. Intermediate

approaches typically require a limited amount of data and model

quantitative responses of the signalling networks to perturbations.

Those methods have the major advantage of providing a way of sim-

ulating complex networks with relatively little data. Modular

Response Analysis (MRA) is an example of such approaches, where

the individual phosphorylation and dephosphorylation events of kin-

ases and phosphatases are abstracted as influences between modules

(Kholodenko et al., 2002). MRA was first formulated as a matrix in-

version problem, and the corresponding singular value decompos-

ition approach has been used to study the activation of the MAPK

cascade by nerve growth factor (NGF) and epidermal growth factor

(EGF) (Santos et al., 2007). A maximum-likelihood formulation has

been developed to study regulatory interactions between signalling,

proteins and mRNA (Stelniec-Klotz et al., 2012), and refined to pre-

dict drug combinations to overcome resistance mechanisms (Klinger

et al., 2013). MRA has been extended using Bayesian methods to in-

tegrate prior information (Halasz et al., 2016).

In this article, we describe an R-package that implements an aug-

mented version of MRA that extends a method that we previously

developed (Klinger et al., 2013). This package contains a number of

features not described previously that make it particularly suited to

model networks using perturbation data and apply it to data from

(isogenic) cell line panels. These include, (i) estimates of the confi-

dence intervals for the estimated response coefficients allowing to

compare models; (ii) semi-automatic network extension and reduc-

tion to refine literature networks; (iii) improved numerical methods

for response coefficient estimation and (iv) visualization of the

results and networks.

We benchmark our approach using data from a public modelling

challenge and illustrate how the approach can be applied by model-

ling the role of PTPN11 (SHP2) in epidermal growth factor receptor

(EGFR) signalling. To this end we modelled the networks of a colon

cancer cell line and a PTPN11 knock-out (KO) derivative, which

shows that PTPN11 is required to activate mitogen-activated pro-

tein kinase (MAPK) signalling, but has little influence on PI3K/AKT

signalling, which contradicts previous literature (Wu et al., 2001).

Our results show how modelling perturbation data of isogenic cell

lines can help to uncover the role of individual proteins in signalling

networks. We provide our method as an open-source R-package

called STeady-STate Analysis of Signalling Networks (STASNet).

2 Materials and methods

2.1 STASNet implementation and availability
The core functions of STASNet are implemented in Cþþ which are

accessible via wrapper functions in R. STASNet is available as an

R-package under https://github.com/molsysbio/STASNet. It requires

GiNaC for symbolic computation. STASNet provides dedicated ana-

lysis functions to perform (i) profile likelihood computations to esti-

mate confidence intervals, (ii) pre-estimation of local response

coefficients to reduce the exploration space using linear regression,

(iii) semi-automatic network extension, (iv) automatic pruning of

the network and (v) visualization of the network, the response coef-

ficients and the confidence intervals. For details, see below.

2.2 Modular response analysis
MRA allows to infer the direct interaction strengths between pairs

of nodes in a network, termed local response coefficients, from the

changes in steady-state induced by perturbations, termed global re-

sponse coefficients. STASNet incorporates non-linear effects of

inhibitions as described in Klinger et al. (2013) and computes

the global response coefficient matrix R as Rðs; iÞ ¼ �~r�1ðsþ iÞ,
where s and i are coefficients of stimulation and inhibition, respect-

ively, and ~r is the local response coefficient matrix, scaled

to accommodate the non-linear effect of the inhibitors. The deriv-

ation and definition of the matrices/coefficients are detailed in

Supplementary Material S1.

2.3 (Semi-)automatic network refinement
We use the likelihood-ratio test to perform (semi-)automatic net-

work refinement. For network extension, we exhaustively add all

possible links individually to the network and refit the data. For the

network(s) having the best likelihood, we calculate P-values using

the likelihood-ratio test that is based on the v2-distribution between

the log-likelihoods under the null hypothesis. Typically, there are a

number of equivalent networks that all improve the likelihood to

the same level. Therefore, at each step the modeller has to choose

one link (e.g. which is best supported by literature). For network re-

duction, we test how removal of each link decreases the likelihood,

and automatically reduce the network iteratively by removing the

link which results in the best likelihood until removal of any link

results in only significant decreases in likelihood, as quantified by a

likelihood-ratio test.

2.4 Model fitting and coefficient pre-estimation
Numerical estimation of the local response and perturbation

coefficients was performed by minimizing the log-likelihood that is

given by the sum of squared differences between data and model fit,

scaled by the measurement error (see Supplementary Material S1).

Numerical optimization is done using multiple runs of the

Levenberg–Marquardt algorithm which is initialized using Latin

hypercube sampling from a normal distribution (default: l¼0,

r¼2). For local response coefficients between incoming and out-

going nodes that are both measured, STASNet optionally uses pre-

estimations derived from a linear log-fold-change relationship as

starting values (Supplementary Material S5). Data of incoming

nodes that were inhibited are disregarded for pre-estimation.

2.5 Profile likelihood analysis
STASNet implements profile likelihood calculation for the local re-

sponse and perturbation coefficients as described in Raue et al.

(2009). Briefly, for each coefficient a likelihood profile is generated

by refitting the model with one coefficient kept constant at different

values around its optimum. These profiles are used to detect non-

identifiable coefficients, which correspond to an over-paramet-

rization of the model relative to the data available and to assess the

reliability of parametrization by calculating the pointwise confi-

dence interval (see e.g. Fig. 5C).

2.6 Visualization
STASNet uses Rgraphviz to visualize the final networks including

numerical coefficients and the experimental design (i.e. perturbed

and measured nodes, see e.g. Fig. 4). It also contains functions to

display the coefficients and their confidence intervals as well as

data, model fits and simulations.

2.7 Generation of perturbation data
All cell lines are derived from the colon cancer cell line Widr. Cell lines

were cultured in RPMI Medium 1640 (Gibco, Life Technologies) with
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indicator, L-glutamine 20nM, 100 U/ml Penicillin and Streptomycin,

and 10% FCS. After serum starving for 24 h, the cells were treated

90 min before harvesting with an inhibitor (MEK: AZD6244 1 lM,

PI3K: GDC0941 1 lM, pan-RAF: Sorafenib 10 lM, BRAF600E:

Vemurafenib 10 lM; all SelleckChem) or DMSO, and 30 min be-

fore harvesting with a ligand (EGF 20 ng/ml, NRG1 25 ng/ml,

HGF 25 ng/ml; all R&D System) or BSA. The cells were then lysed

with Bio-Plex Pro Cell Signalling Reagent Kit (Bio-Rad) and multi-

plexed by incubating with antibody-coated magnetic beads as

described previously (Klinger et al., 2013) detecting the signals:

AKTS473, ERK1=2T202;Y204=T185;Y187, MEK1S217;S221, p90RSKS380,

GSK3A=BS21=S9, RPS6S235=S236 and mTORS2448. The plates were

read using Bio-Plex Protein Array system (Bio-Rad, Hercules, CA)

and the resulting .lxb files were processed using the R-package

lxb and a custom script to generate MIDAS-formatted files

(Supplementary Material S3).

2.8 DREAM4 challenge 3 availability
All input files (i.e. literature network, training and prediction data)

as well as evaluation scripts, description and leader board tables are

available at https://www.synapse.org/#Synapse:syn2825304/wiki/

71129.

3 Results

3.1 A pipeline to model signal transduction networks

from perturbation data
We developed a computational pipeline called STASNet to model

signalling networks from perturbation data using MRA. It is based

on a previously established maximum-likelihood formulation of

MRA (Stelniec-Klotz et al., 2012), and extensions that cover

the effects of inhibitors on interactions and a path computation to

account for non-identifiable coefficients (Klinger et al., 2013);

for details confer Materials and methods, and Supplementary

Material S1.

In the following we describe the typical steps to model and ana-

lyse the data (see also Fig. 1): given a (prior knowledge) structure of

the signalling pathway and the experimental layout (i.e. which nodes

are stimulated or inhibited, and which nodes are measured), our al-

gorithm constructs an MRA-based model. Briefly, the algorithm

constructs a symbolic local response matrix (i.e. a normalized

Jacobian matrix), inverts this matrix and then computes symbolic

expressions for the global response matrix. Next, data on signalling

node activity (such as phosphorylation of kinases) before and after

perturbation by e.g. ligands and inhibitors are used to estimate the

coefficients using a maximum-likelihood approach. By iteratively

probing if addition of links significantly increases fit quality, or re-

moval of links does not alter fit quality significantly, the network

can be refined. Once a model with reasonable fit quality is gener-

ated, its coefficients can be analysed (and confidence intervals com-

puted) using profile likelihood. Models that were generated for

different cell lines can be compared, and model simulations can be

used to predict unseen perturbations.

3.2 STASNet model derivation example
We will next illustrate the computations of STASNet on a small ex-

ample consisting of a cascade of three nodes (A, B and C), where the

last node (C) inhibits the first (A), and a ligand S stimulates A. We

further presume node A can be inhibited and that node B is not

measured (Fig. 2A). From this scenario we can derive four different

conditions: control, stimulation of A by S, inhibition of A and a

combination of the two perturbations. Our STASNet pipeline

requires three input files (Fig. 2C) containing (i) the perturbation

data in Minimum Information for Data Analysis in Systems Biology

(MIDAS) format (.csv) (described in Saez-Rodriguez et al., 2008),

(ii) the network structure as a two-columned table describing the

links (.tab) and (iii) the nodes with basal activity (.dat). The latter

file lists all signalling nodes in the network that have basal activity,

i.e. those nodes where inhibition alone leads to decreased activity in

downstream nodes, as discussed below. From these input files,

STASNet derives the symbolic local response matrix, from which,

Fig. 1. Features of the STASNet package STASNet uses network structure, experimental design and perturbation data as inputs to generate a signalling network

model. This model can then be used to suggest modifications in the network structure that are necessary to explain the data (network refinement), analysed with

profile likelihood (Raue et al., 2009) (coefficient analysis), compared to models from other cells (model comparison) or used to simulate the response of the net-

work to—also novel—perturbations (simulation)

Modelling signalling networks from perturbation data 4081

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/23/4079/5040310 by guest on 17 April 2024

http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty473#supplementary-data
https://www.synapse.org/#Synapse
http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty473#supplementary-data
http://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty473#supplementary-data


after inversion, it computes the symbolic global response coefficients

which are then used to model the data. They represent the log-fold-

changes for each measured node in response to the perturbations.

Examples of such global response coefficients are shown in

Figure 2B. The first equation describes the global response of node

A to stimulation S. It should be noted that the two local response

coefficients rBA and rCB, that describe the strength of signalling be-

tween A and B, and B and C, respectively, cannot be inferred from

the data separately, as node B is not measured. STASNet analyses

the equations to re-parameterize the model using Gaussian elimin-

ation, as described previously (Klinger et al., 2013). In brief, the al-

gorithm detects coefficients that only occur together in products or

ratios, and defines new identifiable coefficient combinations (or

paths, see Supplementary Material S1). In our example, the re-par-

ametrization defines a new path that represents the product

rBA � rCB.

The second equation in Figure 2B shows the global response of A

to the inhibition of A. Here we assume that A has basal activity, i.e.

the inhibitor perturbs downstream signalling with a coefficient iA in-

dependently of upstream activation of A. Without basal activity of

A, this response would be 0. In addition to being a perturbation on

downstream nodes, inhibition of A also alters the local response

coefficients, which we model by multiplying the respective control

coefficients with exp ðiAÞ. This altered response coefficient is visible

in the effect of feedbacks (subtracted in the denominator).

3.3 Benchmark on signalling network DREAM challenge
To evaluate the STASNet pipeline on an experimental dataset we

decided to apply our methodology to data of the Dialogue on

Reverse Engineering Assessment and Methods (DREAM) project

(round 4, challenge 3, Prill et al., 2011). The task of this challenge

was to predict seven phosphosignal responses in HepG2 liver cells

by a minimal network model. The participants were supplied with a

generic prior knowledge network and a training dataset consisting

of a combination of single inhibitions and single stimulations for 30

and 180 min (Fig. 3A and B top). From this, a set of dual inhibitions/

stimulations (at 30 min) had to be predicted (Fig. 3B bottom) and

the prediction quality together with network size was evaluated.

We trained a STASNet model on the provided literature network

using the training data provided for 30 min single stimulation. Using

STASNet’s network refinement feature, we removed insignificant

and redundant links using likelihood-ratio tests and profile likeli-

hood, respectively, reducing the network by 21 links. Next, we

searched for significantly contributing missing links (v2, q�0.05)

and extended the network by two edges (Fig. 3C, dashed links).

Afterwards, we shrunk the combinations of coefficients termed iden-

tifiable by our method to be represented by a single link, further

reducing the network by 21 links. In a subsequent reduction and ex-

tension round two more links were removed. Thus, using STASNet

we adapted the literature network from 58 to 16 edges (Fig. 3C).

We then simulated the combinatorial perturbations and submit-

ted these to the scoring functions of the challenge providers. Among

the 12 original participants, the STASNet prediction ranks second

(Fig. 3DI). However, the DREAM challenge participants were also

given some part of the test data to re-calibrate their methods, as

training and test data were from different batches. When we also

used this data to refit either the inhibitor strength or all link coeffi-

cients to the pre-given part of the prediction dataset, STASNet pre-

dictions were ranked first (Fig. 3DII and III). Thus, constructing a

MRA-based model using the functions of the STASNet package

allowed to make predictive models that can compete with other,

more complex approaches such as ODE-based strategies that require

more data and can integrate time-series data (Prill et al., 2011, see

an exhaustive description in Supplementary Material S6).

3.4 Perturbation data for RTK signalling in a colorectal

carcinoma cell line
Having confirmed the validity of STASNet in signal transduction

modelling, we used the pipeline to study a specific biological ques-

tion by investigating the role of PTPN11, a phosphatase that is im-

portant in receptor tyrosine kinase (RTK) signalling and has been

implicated in feedback control of EGFR signalling and drug resist-

ance (Prahallad et al., 2015). To do so, we chose to generate a model

of RTK signalling in the colorectal cancer cell line Widr containing

an activating BRAFV600E mutation, and then to compare this model

with a model of the same cell line, where PTPN11 is inactivated

using CRISPR/Cas9.

We generated a time series after stimulation with EGF, to assess

at which time point the signalling networks are in quasi steady-state

(see Supplementary Material S5), which is a pre-requisite for apply-

ing MRA. We noticed that after 30 min, the initial strong transient

response has passed and signalling reaches some stable plateau, and

chose 30 min as an appropriate time point for stimulation. To par-

ameterize the model, we measured the phosphorylation state of

seven kinases involved in MAPK and PI3K signalling, and their re-

sponse to three ligands (EGF, HGF and NRG1) and two inhibitors

(MEK and PI3K inhibitors), alone and in combination (see Fig. 4A).

We performed linear regression between those nodes that were dir-

ectly connected and measured (see Materials and methods and

Supplementary Material S5), and confirmed that these network

A B C

Fig. 2. Example of STASNet inputs and the underlying symbolic equations. (A) Perturbation scheme: stimulation of S (blue outline), inhibition of A (red outline)

and measurement of A and C (yellow highlight). (B) Symbolic equations of selected global responses generated by the package. As node B is neither measured

nor perturbed, rBA rCB is treated as one structurally identifiable coefficient by STASNet. The inhibitory coefficients are depicted in red. (C) Input files for STASNet:

data_MIDAS.csv specifies the experimental layout in (A), network.tab contains the network structure and basal.dat the nodes that have basal activity
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responses were locally linear in logarithmic space, complying with

MRA requirement.

3.5 Adapting the literature signalling network
Apart from the perturbation data, our modelling framework

requires the signalling network topology as input. The MAPK and

PI3K pathways are well studied, which allowed us to generate a

literature-derived interaction network (Fig. 4B). The network con-

sists of the three ligands, their receptors, RAS, PI3K and RAF as

unmeasured signalling intermediates, the measured pathway compo-

nents of AKT and MAPK signalling and pathway targets that in-

clude mTOR (as an AKT target) and GSK3, p90RSK and RPS6 as

common targets of both signalling pathways. In addition, we

included two well-studied feedback loops in MAPK signalling

(ERK!RAF and ERK!EGFR) that are known to play a role

in drug resistance (Fritsche-Guenther et al., 2011; Klinger et al.,

2013).

The model contained 19 coefficients that represent either entries

of the local response matrix (or lumped combinations of them), or

inhibitor strengths. When estimating these 19 coefficients using a

maximum-likelihood procedure, the weighted sum of squared resid-

uals was 52, which is compatible with the 74 measurements. An

interesting aspect of the network are the different modes of activa-

tion of the two pathways: while the MAPK pathway is solely acti-

vated through RAS, AKT is activated both in a RAS-independent

and -dependent way (Hemmings and Restuccia, 2012). However, as

we neither measure nor perturb elements of these two pathways

leading to AKT activation, their coefficient values cannot be

estimated independently. This is known as structural non-

identifiability. Our pipeline allows to calculate the profile likelihood

for the model, which shows the change in maximum-likelihood

when one (primary) coefficient is varied (Raue et al., 2009). When

plotting the profile likelihoods and the optimized coefficients, this

structural non-identifiability is directly visible by flat profiles and

compensatory changes in related (secondary) coefficients (Fig. 4C).

To resolve this, the model can be reduced by removing one of the

links HER2!PI3K, RAS!PI3K, Met!PI3K or EGFR!PI3K with-

out changes in the likelihood (Supplementary Material S2). As all

three models have the same likelihood, we decided to remove the

link RAS!PI3K as it separates the PI3K and RAF cascades (Fig. 4B)

and allows for more straight forward interpretation of the coeffi-

cients. It also leads to a numerically more stable model and results in

a network model where all links are identifiable.

When comparing the data and the model fit, we noticed that al-

though in general the data can be reproduced reasonably well, there

are some discrepancies for mTOR upon PIK3 inhibition (see Fig. 4E

model versus data). To investigate if any additional links can resolve

these discrepancies, we use the extension suggestion feature of

STASNet (Supplementary Material S2). Briefly, this feature tests all

possible links, ranks them according to their likelihood and evalu-

ates their significance. We noticed that adding a link to mTOR from

any of the nodes MEK, ERK, p90RSK or RPS6 does improve fit

quality equally well (Fig. 4D). Since the experimental setup did not

permit us to discriminate these links we searched the literature and

could only find a proof for ERK activation of mTOR by inhibiting

mTOR inhibitory complex protein TSC2 via phosphorylation of ser-

ine 664 (Rolfe et al., 2005). We thus updated the network to include

this link (Fig. 4B), which led to an improved fit (Fig. 4E).

3.6 Assessing the effect of SHP2 knock-out with

STASNet
After having established a model for the cell line with wild-type

SHP2, we next aimed to model the network when SHP2 is inacti-

vated. For this, we used a SHP2 KO cell line derived from the Widr

cell line using CRISPR/Cas9 (Prahallad et al., 2015). SHP2

(PTPN11) is a phosphatase that binds to the tyrosine kinase recep-

tors through adaptors such as GAB1 and participates in the activa-

tion of the MAPK cascade by relieving inhibitions on RAS and RAF.

SHP2 has been shown to be re-activated in BRAF inhibition resistant

cell lines (Prahallad et al., 2015) (Fig. 5A).

We applied the same perturbation experiments to the SHP2 KO

cells and compared the response to the parental cell line (Fig. 5B).

It is evident that the KO led to a reduction of phosphorylation re-

sponse throughout the network. We then generated a signalling

model for the SHP2 KO cell line, using the network derived for the

parental cell line, and obtained a maximum-likelihood fit suffi-

ciently complying with the experimental error. We then quantita-

tively compared the coefficients fitted for the SHP2 KO to those
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Fig. 3. STASNet performance on DREAM signalling prediction challenge LEFT Input provided by challenge organizers (A) prior knowledge network with meas-

ured and perturbed nodes indicated as in Figure 2. (B) Perturbation scheme for provided datasets to train and predict. Perturbations in prediction marked by black

squares were additionally given. Numbers indicate nodes in A. RIGHT Performance of STASNet (C) optimal network derived by STASNet using repetitively the
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the prediction data STASNet ranks first. Details in Supplementary Material S6
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fitted for the parental cell line using confidence intervals obtained

by profile likelihood (Fig. 5C). For intracellular paths and inhibi-

tors the values between parental and KO cell lines did not signifi-

cantly differ (Fig. 5C middle and right panel). For the receptor

connecting paths we found several coefficients that were signifi-

cantly (and qualitatively) different between the two cell lines. Four

of these coefficients correspond to all paths in the network that

connect the receptors to MAPK signalling. While these coefficients

are numerically large in the parental cell line, they are close to zero

in the SHP2 KO (Fig. 5C, indicated in blue). This confirms the

known role of SHP2 as being between the receptor and the activa-

tion of RAF (Fig. 5A). Accordingly, the ERK!RAF!MEK feed-

back is still functional in the SHP2 KO. Surprisingly however, the

coefficients corresponding to the activation of AKT by two of the

three ligands are not significantly altered, suggesting that SHP2 is

only partly required for the activation of the PI3K/AKT pathway

(Fig. 5C). Interestingly, the ERK!EGFR!AKT crosstalk is also

still functional which indicates that ERK regulation of EGFR does

not depend on SHP2.

3.7 Predicting the impact of RAF inhibition
Having generated specific models for the parental and SHP2 KO

cells, we can then ask how other perturbations would affect the net-

works. RAF is an important therapeutic target for which two main

classes of inhibitors exist. Some inhibitors, such as Vemurafenib,

target specifically mutant BRAF (BRAFV600E, Bollag et al., 2010),

whereas others, such as Sorafenib, are pan-RAF inhibitors that in-

hibit all RAF isoforms (Wilhelm et al., 2004). The Widr cell system

that we study harbours the BRAFV600E so we could investigate the

effects of these two inhibitor classes in our model and experimental-

ly validate them afterwards.

As we calibrated our model on data where RAF activity

was neither directly measured nor perturbed, the RAF!MEK link

is only fitted as a part of an identifiable path. We therefore had to

augment our model, by including a new node, BRAFV600E muta-

tion that is connected to MEK and receives no upstream

signal (Fig. 6A), as the BRAFV600E mutation renders BRAF in-

sensitive to upstream and feedback signals (Friday et al.,

2008). Note that since we had to give a reasonable but

E

D

B

CA

Fig. 4. Building and adapting a network model using STASNet (A) experimental data of human CRC Widr cell line and simulation results from the initial literature-

derived network [depicted in (B)]. Grey squares indicate missing values. (B) Kinase interaction network, including experimental design with measured (yellow),

stimulated (blue) and inhibited (red) nodes. Updates from the initial network are indicated by bold links: removal of RAS!PI3K, and addition of ERK!mTOR. (C)

Profile likelihood of paths containing a link between receptors and AKT computed for the initial network. Red marks indicate the fitted value of the primary coeffi-

cient. (D) Top links suggestion with equal improvement from the network extension feature. (E) Data (middle) to model comparison of mTOR response with

(right) or without (left) the ERK!mTOR link
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arbitrary value for the inhibition strength for both RAF inhibitors

(set to 3), the resulting predictions can only be understood

qualitatively.

One of the resistance mechanisms for RAF inhibition is the re-ac-

tivation of the RAF-MEK-ERK signalling pathway and the activa-

tion of AKT by loss of feedback inhibition of the EGF receptor

(Klinger et al., 2013; Prahallad et al., 2012). We therefore decided

to simulate to what extend EGF stimulation rescues MEK and AKT

phosphorylation upon RAF inhibition. In our simulation for the

wild type model, we noticed qualitative differences between the two

inhibitors (Fig. 6B). While EGF stimulation hyperactivates AKT for

both inhibitors, it only rescues MEK phosphorylation after treat-

ment with the BRAFV600E -specific inhibitor. This is consistent with

the idea that this inhibitor specifically blocks the mutant allele,

while the non-mutated allele and other isoforms can still relay the

signal. When comparing the simulations of the two different cell line

models it can be noted that in the parental model, both MEK and

AKT are upregulated with EGF, whereas under SHP2 KO this upre-

gulation is completely blocked for MEK, and is attenuated for AKT

(Fig. 6B).

Fig. 6. Predicting effects of RAF inhibitors (A) localization of RAF and BRAF inhibition in the network derived for the Widr cell line; predicted nodes are highlighted.

(B) STASNet simulation of the impact of BRAFV600E and pan-RAF inhibitors on both cell lines (C) experimental measurements of the impact of Vemurafenib

(BRAFV600E inhibitor) and Sorafenib (pan-RAF inhibitor) on the parental and SHP2 KO cell lines (error bars in SD, n¼2)

Fig. 5. Comparative analysis of SHP2 KO with parental cell line (A) literature knowledge of the role of SHP2 in EGFR signalling. (B) Perturbation data for the paren-

tal and SHP2 KO cell lines. (C) Model coefficients (black dots) with pointwise confidence interval of the respective models. Note that all receptor-MEK links are dis-

abled by SHP2 KO (blue)
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To confirm our model prediction, we performed experiments in

which we pre-incubated the cells with either Vemurafenib

(BRAFV600E inhibitor) or Sorafenib (pan-RAF inhibitor) for 60 min,

then stimulated the cells with EGF for 30 min, and measured AKT

and MEK phosphorylation (Fig. 6C). These data are in qualitative

agreement with our model predictions, confirming the disruption of

the EGF!MEK path and the attenuation of the EGF!AKT path in

the SHP2 KO.

4 Discussion

Perturbation-response datasets are key for the analyses of signalling

networks and many different approaches have been developed to gen-

erate computational models from such systematic datasets. Most of

these methods binarize data and use logic approaches to describe the

data (Morris et al., 2010), or alternatively, use dynamic information

to fit quantitative data (Raue et al., 2015). In this article, we describe

an approach that uses an augmented version of MRA (Kholodenko

et al., 2002; Klinger et al., 2013), that allows the generation of semi-

quantitative models from snapshot perturbation data. We developed

an R-package called STASNet, that implements this approach and

provides analysis functions to improve and compare models.

In this article, we applied STASNet to model the effect of a

SHP2 KO on the MAPK and PI3K signalling network. By comparing

the coefficients of the MRA models for the two isogenic cell lines we

could recover the known role of SHP2 in mediating MAPK signal-

ling. However, it was unclear if SHP2 is required to activate PI3K/

AKT signalling in RTK/EGFR signalling. We found that PI3K/AKT

signalling triggered by the receptors HER2 and HGF is largely inde-

pendent of SHP2, whereas it is partly dependent on SHP2 when trig-

gered by EGFR.

SHP2 has been implicated in resistance of BRAF mutant colorec-

tal carcinoma, where loss of feedback to SHP2/EGFR leads to re-ac-

tivation of MAPK signalling after treatment with BRAF inhibitors

(Prahallad et al., 2015). Our study confirms that SHP2 has a major

role in re-activation of MAPK signalling, as our model predictions

show and the data confirm that MEK phosphorylation cannot be

recovered in SHP2 KO with EGF. The data further confirms the

model prediction that with functional SHP2, pan-RAF inhibitors

also prevent activation of the MAPK pathway, and may be consid-

ered an alternative treatment option to prevent resistance.

When we applied STASNet to a dataset of the DREAM challenge, it

ranked first compared to the 12 DREAM challenge participants. This

confirms that modelling using the MRA methodology is a working

compromise between complexity and prediction quality, as scoring was

done using network size and prediction quality. It also shows that using

quasi steady-state data at 30 min for growth factor signalling is a valid

approach to parameterize efficient network models. It furthermore

shows that the linearity assumption inherent to MRA is not hampering

the potential to make quantitative predictions.

Only few other approaches exist to deal with single time point

steady-state signalling perturbation data. CellNOptR (Terfve et al.,

2012) can be applied to such data after discretization or normaliza-

tion of the data, which implies to define thresholds and might re-

quire external data. Other more precise approaches like CNORode

(Terfve et al., 2012) or Data2Dynamics (Raue et al., 2015) rely

on ordinary differential equations and require more data to be para-

metrized, limiting their application to small networks.

To conclude, STASNet provides a convenient R-package to gen-

erate MRA-models using a maximum-likelihood approach for single

time point signalling data.
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