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Abstract

Motivation: The use of single nucleotide polymorphism (SNP) interactions to predict complex dis-

eases is getting more attention during the past decade, but related statistical methods are still im-

mature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate

45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computa-

tion burden. For large-scale studies, it is necessary to use a powerful and computation-efficient

method. The objective of this study is to develop an evidence-based mini-version of SIPI as the

screening tool or solitary use and to evaluate the impact of inheritance mode and model structure

on detecting SNP–SNP interactions.

Results: We tested two candidate approaches: the ‘Five-Full’ and ‘AA9int’ method. The Five-Full ap-

proach is composed of the five full interaction models considering three inheritance modes (addi-

tive, dominant and recessive). The AA9int approach is composed of nine interaction models by

considering non-hierarchical model structure and the additive mode. Our simulation results show

that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach,

and the impact of the non-hierarchical model structure is greater than that of the inheritance mode

in detecting SNP–SNP interactions. In summary, it is recommended that AA9int is a powerful tool

to be used either alone or as the screening stage of a two-stage approach (AA9intþSIPI) for detect-

ing SNP–SNP interactions in large-scale studies.

Availability and implementation: The ‘AA9int’ and ‘parAA9int’ functions (standard and parallel

computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.

github.io/LinHY_Software/.

Contact: hlin1@lsuhsc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is commonly known that individual single nucleotide polymorph-

ism (SNP) effects are not sufficient to explain the complexity of dis-

eases’ causality. It has been established that gene–gene/SNP–SNP

interactions may have a higher impact on the causality of complex

diseases (Cordell, 2009; Moore, 2003; Moore and Williams, 2002;

Onay et al., 2006). Despite many statistical methods having been

proposed for detecting SNP–SNP interactions during the past dec-

ade, there are still no breakthrough SNP–SNP interactions identified

in clinical studies. This may be due to insufficient statistical meth-

ods. Two of the major statistical challenges for detecting SNP–SNP

interactions include: (i) detecting SNP interactions for SNPs without

a strong main effect, and (ii) selecting a powerful screening method

for identifying a subset of candidates for further interaction analyses

(Li et al., 2015). In practice, the hierarchy rule is commonly applied

when testing interactions. Using this hierarchy rule for two-way

interactions, both main effects need to be included in the model

when testing their interactions. It has been shown that losing the

hierarchy rule for building a two-way interaction model allows for

the collapsing of covariates’ categories with similar risk profile so

that statistical power can be increased and the identified interaction

patterns can be biologically interpretable (Piegorsch et al., 1994).

For addressing the first issue of detecting SNP interaction for

SNPs without a strong main effect, we previously proposed the SNP
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Interaction Pattern Identifier (SIPI) approach (Lin et al., 2017)

which tests 45 SNP–SNP interaction models/patterns based on logis-

tic regression for binary outcomes. For the binary outcome, logistic

regression is the most well-accepted statistical method. Logistic re-

gression provides several good features compared to alternative

methods (such as chi-square and log-liner regression) which are

shown to be computed quickly. These benefits of logistic regressions

in SNP–SNP interactions include distinguishing the effects individual

SNPs and the interactions, considering the different SNP inheritance

modes and adjusting for other covariates (Herold et al., 2009). Our pre-

vious study (Lin et al., 2017) demonstrated that SIPI is more powerful

than several existing statistical approaches, such as the conventional full

interaction model with additive mode (AA_Full), Multi-factor

Dimensionality Reduction (MDR; Ritchie et al., 2001, 2003),

Geno_Full (full interaction model with additive or genotypic mode) and

SNPassoc (Gonzalez et al., 2007). FastEpistasis (Schupbach et al., 2010)

also uses the AA-Full method for detecting SNP–SNP interactions.

For large-scale studies with thousands of SNPs, an effective and

computation-efficient method needs to be used alone or to serve as a

screening method in the two-stage approach. For pairwise SNP

interactions, the number of testing pairs increases dramatically

when SNP numbers increase. With 1000 SNPs as an example, there

are 499 500 SNP pairs to be investigated. Using the SIPI approach,

22 million (¼499 500 x 45) models need to be tested. In the first

screening stage, a subset of SNPs is selected based on pre-defined

methods. These selected SNPs will be used for SNP–SNP interac-

tions in the 2nd stage. If a low-power statistical method is used in

the 1st stage, we can expect lots of false negative findings regardless

of how powerful a method is used in the 2nd stage. The majority of

existing methods use main effects or full interaction models as the

screening approach to select a subset of SNPs for interaction analy-

ses. INTERSNP (Herold et al., 2009) uses the multiple-step screen-

ing method to select the candidate SNPs for interactions, such as

SNP main effect and full interaction test using chi-square test, log-

linear and logistic regression (with additive and genotypic mode for

each SNP). BOOST applies the concept of genotypic full interaction

models for both stages in the two-stage approach (Wan et al., 2010).

These existing methods may not be effective because they do not

consider model structure, inheritance mode and mode coding direc-

tion, which are the key factors shown to be important in detecting

SNP–SNP interactions (Lin et al., 2017). By considering these import-

ant factors, SIPI tests the 45 biologically meaningful interaction pat-

terns. It is beneficial to develop a mini-version of SIPI with a reduced

number of testing models but with similar power compared to the ori-

ginal SIPI. Thus, we tested two simple versions of SIPI based on sim-

plifying model structure and inheritance mode. The objective of this

study is to develop an evidence-based mini-version of SIPI as the

screening tool or solitary use and to evaluate the impact of inheritance

mode and model structure on detecting SNP–SNP interactions.

2 Materials and methods

2.1 SIPI
SIPI combines model-based and pattern-based approaches and uses

45 interaction models to detect two-way SNP–SNP interactions

associated with an outcome of interest. SIPI can be applied for vari-

ous types of outcomes (such as binary and continuous). Only the

binary outcome was considered in this study. For binary outcomes,

logistic regressions are applied. SIPI considers three major factors:

(i) model structure, (ii) inheritance mode and (iii) mode coding dir-

ection. There are four model structures: full interaction model

[‘Full’, Equation (1)] with two main effects plus an interaction of

SNP1 and SNP2; one main effect of SNP 1 plus an interaction

[‘M1_int’, Equation (2)]; one main effect of SNP 2 plus an inter-

action [‘M2_int’, Equation (3)] and an interaction only [‘int’ only,

Equation (4)]. The three inheritance modes are additive (Add), dom-

inant (Dom) and recessive (Rec) modes. As shown in Supplementary

Table S1, we considered two mode coding directions: original cod-

ing (based on minor allele) and reverse coding. SIPI uses the

Bayesian information criterion (BIC) to search for the best inter-

action pattern with the smallest BIC.

Full interaction model (Full):

log
Pr Y ¼ 1ð Þ

1� Pr Y ¼ 1ð Þ

� �
¼ b0 þ b1SNP1 þ b2SNP2 þ b3SNP1 � SNP2

(Equation 1)

Main 11 interaction (M1_int):

log
Pr Y ¼ 1ð Þ

1� Pr Y ¼ 1ð Þ

� �
¼ b0 þ b1SNP1 þ b3SNP1 � SNP2

(Equation 2)

Main 21 interaction (M2_int):

log
Pr Y ¼ 1ð Þ

1� Pr Y ¼ 1ð Þ

� �
¼ b0 þ b2SNP2 þ b3SNP1 � SNP2

(Equation 3)

Interaction only (int only):

log
Pr Y ¼ 1ð Þ

1� Pr Y ¼ 1ð Þ

� �
¼ b0 þ b3SNP1 � SNP2 (Equation 4)

where Y is the binary outcome with a value of 0 or 1.

As shown in Table 1, each SIPI model has its own model label

(such as DR_Full, DR_M1_int_o1, DR_M2_int_o1, DR_int_or),

which has two major parts. The first part of the model label indicates

inheritance modes of the SNP1-SNP2 pair (such as DD_ and DR_),

where the first letter is for SNP1 and the second letter is for SNP2. For

example, ‘DR_’ indicate an SNP1 with a dominant mode and SNP2

with a recessive mode. The second part indicates model/coding details.

‘_Full’ indicates an interaction with two main effects of both SNP1

and SNP2 and their interaction. In ‘_M1_int_o1’, ‘M1_int’ indicates

the model with the main effect of SNP1 and interaction of SNP1 and

SNP2 and ‘_o1’ means SNP1 with the original coding. For a SNP is

not specified coding direction (‘o’/’r’) in the model label, the coding

direction (original or reverse) does not impact significance of the inter-

action test so the original coding is applied for this given SNP. In the

labels of the interaction only models, the last two letters indicates the

coding direction of SNP1 and SNP2, respectively. For example,

‘DR_int_or’ represents an interaction-only model with original-

dominant SNP1 and reverse-recessive SNP2. The details of 45 SIPI

models are listed in Table 1 and Supplementary Table S2.

2.2 Interpretation of SIPI models using interaction

patterns
For describing how one SNP interaction pair associates with a bin-

ary outcome, the easiest way is to use present outcome proportions,

which refer to proportions presenting the category of interest for an

outcome variable (such as disease prevalence), for each genotype

combination. We defined interaction pattern as the pattern of pre-

sent outcome proportions in the genotype combinations for a given

SNP pair. In addition to an observed interaction pattern using the

raw data, a predicted interaction pattern based on SIPI or AA9int

model can be calculated.

AA9int 4143
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We can interpret SIPI models using their corresponding

interaction pattern. For each SIPI logistic model, the predicted

proportion of the present outcome of each genotype combination

can be calculated based on the model b coefficients. For

multi-variable logistic models, a collection of p predictors

denoted by the vector X0 ¼ ðx1;x2; . . . xpÞ is considered.

Let the conditional proportion of the present outcome be

denoted by P Y ¼ 1Xð Þ ¼ p Xð Þ; where Y¼1 represents

Table 1. Model list of the SIPI, AA9int and Five-Full approaches

Model labela Inheritance mode

of SNP1-SNP2b

Model

structurec

Codingd Approachese Model Detailsf

SNP1 SNP2 SIPI Five-Full AA9int

DD_Full Dom-Dom Full-int o o X X dSNP1 þ dSNP2 þ dSNP1x dSNP2

DD_M1_int_o1

DD_M1_int_r1

Main1þint o

r

o

o

X

X

dSNP1 þ
rdSNP1 þ

dSNP1x dSNP2

rdSNP1x dSNP2

DD_M2_int_o2

DD_M2_int_r2

Main2þint o

o

o

r

X

X

dSNP2 þ
rdSNP2 þ

dSNP1x dSNP2

dSNP1x rdSNP2

DD_int_oo

DD_int_or

DD_int_ro

DD_int_rr

Int-only o

o

r

r

o

r

o

r

X

X

X

X

dSNP1x dSNP2

dSNP1x rdSNP2

rdSNP1x dSNP2

rdSNP1x rdSNP2

DR_Full Dom-Rec Full-int o o X X dSNP1 þ rSNP2 þ dSNP1x rSNP2

DR_M1_int_o1

DR_M1_int_r1

Main1þint o

r

o

o

X

X

dSNP1 þ
rdSNP1 þ

dSNP1x rSNP2

rdSNP1x rSNP2

DR_M2_int_o2

DR_M2_int_r2

Main2þint o

o

o

r

X

X

rSNP2 þ
rrSNP2 þ

dSNP1x rSNP2

dSNP1x rrSNP2

DR_int_oo

DR_int_or

DR_int_ro

DR_int_rr

Int-only o

o

r

r

o

r

o

r

X

X

X

X

dSNP1x rSNP2

dSNP1x rrSNP2

rdSNP1x rSNP2

rdSNP1x rrSNP2

RD_Full Rec-Dom Full-int o o X X rSNP1 þ dSNP2 þ rSNP1x dSNP2

RD_M1_int_o1

RD_M1_int_r1

Main1þint o

r

o

o

X

X

rSNP1 þ
rrSNP1 þ

rSNP1x dSNP2

rrSNP1x dSNP2

RD_M2_int_o2

RD_M2_int_r2

Main2þint o

o

o

r

X

X

dSNP2 þ
rdSNP2 þ

rSNP1x dSNP2

rSNP1x rdSNP2

RD_int_oo

RD_int_or

RD_int_ro

RD_int_rr

Int-only o

o

r

r

o

r

o

r

X

X

X

X

rSNP1x dSNP2

rSNP1x rdSNP2

rrSNP1x dSNP2

rrSNP1x rdSNP2

RR_Full Rec-Rec Full-int o o X X rSNP1 þ rSNP2 þ rSNP1x rSNP2

RR_M1_int_o1

RR_M1_int_r1

Main1þint o

r

o

o

X

X

rSNP1 þ
rrSNP1 þ

rSNP1x rSNP2

rrSNP1x rSNP2

RR_M2_int_o2

RR_M2_int_r2

Main2þint o

o

o

r

X

X

rSNP2 þ
rrSNP2 þ

rSNP1x rSNP2

rSNP1x rrSNP2

RR_int_oo

RR_int_or

RR_int_ro

RR_int_rr

Int-only o

o

r

r

o

r

o

r

X

X

X

X

rSNP1x rSNP2

rSNP1x rrSNP2

rrSNP1x rSNP2

rrSNP1x rrSNP2

AA_Full Add_Add Full-int o o X X X aSNP1 þ aSNP2 þ aSNP1x aSNP2

AA_M1_int_o1

AA_M1_int_r1

Main1þint o

r

o

o

X

X

X

X

aSNP1 þ
raSNP1 þ

aSNP1x aSNP2

raSNP1x aSNP2

AA_M2_int_o2

AA_M2_int_r2

Main2þint o

o

o

r

X

X

X

X

aSNP2 þ
raSNP2 þ

aSNP1x aSNP2

aSNP1x raSNP2

AA_int_oo

AA_int_or

AA_int_ro

AA_int_rr

Int-only o

o

r

r

o

r

o

r

X

X

X

X

X

X

X

X

aSNP1x aSNP2

aSNP1x raSNP2

raSNP1x aSNP2

raSNP1x raSNP2

aModel labels are based on the properties listed in the 2nd–4th columns. The aused abbreviations are underlined. If coding direction (‘o’/’r’) is not specified, the

original coding is applied.
bDom (or ‘D’ in the label): dominant, Rec (‘R’): recessive, Add (‘A’): additive.
cFull-int (or Full): full interaction model with two main effects plus interaction; Main1þint (M1_int): main effect of SNP1 plus interaction; Main2þint

(M2_int): main effect of SNP2 plus interaction and Int-only: interaction only.
dModel coding of SNPs; ‘o’: original coding; ‘r’: reverse coding; number in the last digit represent for the selected SNP (such as _o1: original coding for SNP1, _r2:

reverse coding for SNP2). If coding direction (‘o’/’r’) is not specified, the original coding is applied.
eSIPI (SNP Interaction Pattern Identifier), AA9int (Additive-additive 9 interaction-model approach) and Five-Full (Five full interaction-model approach).
fd: original dominant, r: original recessive, a: original additive, rd: reverse dominant, rr: reverse recessive, ra: reverse additive.
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the present outcome. The logistic regression is given by the

equation

logit p Xð Þ½ � ¼ log
p Xð Þ

1� p Xð Þ

� �
¼ b0 þ b1x1 þ b2x2 þ � � � þ bpxp

The predicted proportion of the present outcome can be calcu-

lated as

P Y ¼ 1Xð Þ ¼ p Xð Þ ¼
expðb0 þ b1x1 þ b2x2 þ � � � þ bpxpÞ

1þ expðb0 þ b1x1 þ b2x2 þ � � � þ bpxpÞ

For a logistic model with two candidate SNPs (SNP1 and

SNP2), there are four potential interaction model structures

[Equations (1)–(4)] when considering both hierarchical and non-

hierarchical structures. The non-hierarchical models, having a

reduced number of covariates, allow genotype sub-groups with a

similar risk profile to be combined. Using the dominant-dominant

model set as an example, DD-Full with three degrees of freedom

compares four different risk sub-groups, DD_M1_int_o1 with two

degrees of freedom compares three different risk sub-groups and

DD_int_oo with one degree of freedom compares two different risk

sub-groups. Let us denote the three genotypes of SNP1 as AA, Aa,

aa and of SNP2 as BB, Bb and bb, where a capital letter represents

a major allele and a lower case letter represents a minor allele. For

the dominant original coding, the (AA, Aa and aa) genotypes are

coded as (0, 1, 1) and the (BB, Bb and bb) genotype are coded as

(0, 1, 1). Using the dominant-dominant full model (DD-Full) as an

example (Table 2), the present outcome proportions for the four

different risk sub-groups are p AAþ BBð Þ ¼ p SNP1 ¼ 0 andð
SNP2 ¼ 0Þ ¼ expðb0Þ

1þexpðb0Þ
, p Aa=aaþ BBð Þ ¼ p SNP1 ¼ 1 andð SNP2 ¼

0Þ ¼ expðb0þb1Þ
1þexpðb0þb1Þ

, p AAð þBb=bbÞ ¼ p SNP1 ¼ 0 and SNP2 ¼ 1ð Þ

¼ expðb0þb2Þ
1þexpðb0þb2Þ

and p Aa=aaþ Bb=bbð Þ ¼ p SNP1 ¼ 1 and SNP2ð

¼ 1Þ ¼ expðb0þb1þb2þb3Þ
1þexpðb0þb1þb2þb3Þ

. For dominant-recessive full model

(DR-Full), p AAþ BB =Bbð Þ ¼ p SNP1 ¼ 0 and SNP2 ¼ 0ð Þ ¼
expðb0Þ

1þexpðb0Þ
, p Aa =aaþ BB =Bbð Þ ¼ p SNP1 ¼ 1 and SNP2 ¼ 0ð Þ ¼

expðb0þb1Þ
1þexpðb0þb1Þ

, p AAþ bbð Þ ¼ p SNP1 ¼ 0ð and SNP2 ¼ 1Þ

¼ expðb0þb2Þ
1þexpðb0þb2Þ

and p Aa =aaþ bbð Þ ¼ p SNP1 ¼ 1ð and SNP2 ¼ 1Þ ¼
expðb0þb1þb2þb3Þ

1þexpðb0þb1þb2þb3Þ
. For the other three full models (RD-Full, RR-Full

and AA-Full), the predicted present outcome proportions are shown

in Table 2.

Interaction patterns for two SNPs with the additive-additive mode

are different from patterns with the binary modes (dominant or reces-

sives). For AA9int approach, each SNP is treated as a continuous vari-

able with a coding of (0, 1 and 2) in modeling. Under the additive

mode, we assume there is a monotonic increase or decrease risk trend

based on the given allele for a specific SNP. For the conventional AA-

Full model with three degrees of freedom, there are nine sub-groups

with different risk profiles for AA-Full model (Table 2). When drop-

ping one SNP main effect from the model (such as AA_M1_int_o1),

the number of different risk sub-groups reduce to seven.

Under AA_M1_int_o1 model, the predicted present outcome

proportions of the seven sub-groups are listed below. If using the

additive-additive interaction only model (such as AA_int_oo), the

number of different risk sub-groups reduces further to five. For easy

interpretation, the SIPI pattern examples based on positive model

coefficients are shown in the 3 x 3 table with a heatmap format in

Supplementary Fig. S1a–c. The color of the heatmaps indicates mag-

nitude of risk, measured using present outcome proportions. The

darker the color, the higher the risk of outcome.

AA_M1_int_o1 model

Sub-group 1 : p AAþBB =Bb =bbð Þ¼p SNP1¼0ð Þ¼ expðb0Þ
1þexpðb0Þ

Sub-group 2 : p Aaþ BBð Þ ¼ p SNP1 ¼ 1 and SNP2 ¼ 0ð Þ

¼ expðb0 þ b1Þ
1þ expðb0 þ b1Þ

Sub-group 3 : p Aaþ Bbð Þ ¼ p SNP1 ¼ 1 and SNP2 ¼ 1ð Þ

¼ expðb0 þ b1 þ b3Þ
1þ expðb0 þ b1 þ b3Þ

Table 2. Risk profiles of the nine genotype combinations for the six SIPI models

SNP1\SNP2 AA_Fulla LN(odds) SNP1\SNP2 DD_Fulla LN(odds)

Genotype (code) BB (0) Bb (1) bb (2) Genotype (code) BB (0) Bb (1) bb (1)

AA (0) b0 b0 þ b2 b0 þ 2b2 AA (0) b0 b0 þ b2 b0 þ b2

Aa (1) b0 þ b1 b0 þ b1 þ b2þb3 b0 þ b1 þ 2b2 þ 2b3 Aa (1) b0 þ b1 b0 þ b1 þ b2þb3 b0 þ b1 þ b2þb3

aa (2) b0 þ 2b1 b0 þ 2b1 þ b2þ2b3 b0 þ 2b1 þ 2b2 þ 4b3 aa (1) b0 þ b1 b0 þ b1 þ b2þb3 b0 þ b1 þ b2þb3

SNP1\SNP2 AA_M1_int_o1a LN(odds) SNP1\SNP2 DR_Fulla LN(odds)

Genotype (code) BB (0) Bb (1) bb (2) Genotype (code) BB (0) Bb (0) bb (1)

AA (0) b0 b0 b0 AA (0) b0 b0 b0 þ b2

Aa (1) b0 þ b1 b0 þ b1þb3 b0 þ b1þ2b3 Aa (1) b0 þ b1 b0 þ b1 b0 þ b1 þ b2þb3

aa (2) b0 þ 2b1 b0 þ 2b1þ2b3 b0 þ 2b1þ4b3 aa (1) b0 þ b1 b0 þ b1 b0 þ b1 þ b2þb3

SNP1\SNP2 AA_int_ooa LN(odds) SNP1\SNP2 RR_Fulla LN(odds)

Genotype (code) BB (0) Bb (1) bb (2) Genotype (code) BB (0) Bb (0) bb (1)

AA (0) b0 b0 b0 AA (0) b0 b0 b0 þ b2

Aa (1) b0 b0þ b3 b0þ2b3 Aa (0) b0 b0 b0 þ b2

aa (2) b0 b0þ2b3 b0þ4b3 aa (1) b0 þ b1 b0 þ b1 b0 þ b1 þ b2þb3

aThe natural log of odds of present outcome are based on Equations (1)–(4). Model label: ‘D’ (dominant), ‘R’ (recessive), ‘A’ (additive); ‘Full’ (full interaction),

‘M1_int’ (SNP1 main effect plus interaction), ‘_o1’ (original coding for SNP1), ‘_oo’ (original coding for both SNP1 and SNP2). A lowercase and capital letter

denotes the minor and major allele, respectively. The labels of two axes are ‘genotype (coding)’.
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Sub-group 4 : p Aaþ bbð Þ ¼ p SNP1 ¼ 1 and SNP2 ¼ 2ð Þ

¼ expðb0 þ b1 þ 2b3Þ
1þ expðb0 þ b1 þ 2b3Þ

Sub-group 5 : p aaþ BBð Þ ¼ p SNP1 ¼ 2 and SNP2 ¼ 0ð Þ

¼ expðb0 þ 2b1Þ
1þ expðb0 þ 2b1Þ

Sub-group 6 : p aaþ Bbð Þ ¼ p SNP1 ¼ 2 and SNP2 ¼ 1ð Þ

¼ expðb0 þ 2b1 þ 2b3Þ
1þ expðb0 þ 2b1 þ 2b3Þ

Sub-group 7 : p aaþ bbð Þ ¼ p SNP1 ¼ 2 and SNP2 ¼ 2ð Þ

¼ expðb0 þ 2b1 þ 4b3Þ
1þ expðb0 þ 2b1 þ 4b3Þ

2.3 Five-Full and AA9int
In order to identify a mini-version of SIPI, we tested two simple

versions of SIPI based on simplifying model structure and inherit-

ance mode. We evaluated two candidate approaches: ‘Five-

Full’ (Five full interaction model approach) and ‘AA9int’

(Additive-Additive 9 interaction-model approach). The mode cod-

ing direction cannot be simplified because it controls the pattern’s

risk direction. Interaction detection was tested based on the signifi-

cance of the interaction using the Wald test. For these three

approaches, the best interaction pattern is selected based on the

BIC which is designed to select a parsimonious model with a good

model fit. This feature is beneficial for result generalization and

prediction model building, especially for high dimensional data

(Vandekerckhove et al., 2015).

The Five-Full approach is composed of the five full interaction

models with various inheritance mode combinations (Add-Add,

Dom-Rec, Rec-Dom, Dom-Dom and Rec-Rec) for the two selected

SNPs. Compared to SIPI, this Five-Full approach only considers full

interaction models and ignores the non-hierarchical model structure.

The mode direction does not impact the interaction significance in

the full models so only five models need to be tested in Five-Full.

Compared to SIPI, the AA9int approach only includes the Add-Add

mode and tests both hierarchical and non-hierarchical models. The

heat-maps of example patterns of the AA9int and Five-Full

approaches are shown in Figure 1.

2.4 Simulation
We conducted a simulation study to compare the power of Five-Full

and AA9int with SIPI in detecting SNP–SNP interactions associated

(a) (b)

Fig. 1. SNP–SNP interaction patterns of the AA9int and Five-Full approach. (a) Additive-additive 9 interaction-model approach (AA9int)1. (b) Five full interaction

model approach (Five-Full)1. 1Model label: D: dominant, R: recessive, A: additive (1st and 2nd letter represent inheritance mode for SNP1 and SNP2). Full: full

interaction; M1_int: SNP1 main effect plus interaction; M2_int: SNP2 main effect plus interaction and ‘int’ only: model with an interaction only. o1, _r1: original

coding (based on minor allele) for SNP1, and reverse coding for SNP1. _o2, _r2: original coding for SNP2, and reverse coding for SNP2. _oo, _or, _ro, _rr: based

on original–original, original-reverse, reverse-original and reverse-reverse coding for SNP1–SNP2. The labels of two axes are ‘genotype (coding)’. A lowercase

and capital letter denotes the minor and major allele, respectively. The darker the color, the higher the risk. These examples based on positive coefficients in SIPI

models. If coding direction (‘o’/’r’) is not specified, the original coding is applied
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with disease risk (case/control), a binary outcome. For better com-

parison, the simulation settings and testing interaction models are

the same as our previous SIPI study (Lin et al., 2017). We tested six

interaction models with two different sample sizes (n¼1000 and

5000). The six testing models were simulated based on the designed

SIPI models with positive model coefficients, which can be used to

define high- and low-risk genotype sub-groups. The details of these

six models are shown in Figures 2 and 3. Models 1–3 (RR_int_rr,

DD_int_oo and RD_int_rr) are interaction-only models and the pre-

sent outcome proportions for the high- and low-risk sub-groups are

0.3 and 0.2, respectively. The corresponding odds ratio (OR) is 1.7

for the high versus low risk groups. Model 4 (DD_M1_int_o1) is a

model with both SNP1 main effect and an interaction where both

SNPs have an original Dominant coding. The present outcome pro-

portions were set up to be 0.2, 0.3 and 0.4 for low-, moderate- and

high-risk sub-groups. The ORs are 1.7 and 2 for the moderate- and

high-risk groups compared to the low-risk groups. Model 5

(AA_Full) is a full interaction model where both SNPs have an ori-

ginal additive coding. This model was based on b0 ¼ –2.5 and b1¼
b2¼ b3¼ 0.6 in Equation (1). Model 6 (RD_int_oo) is an

interaction-only model simulated based on the real data with an OR

of 1.9. The two testing SNPs were generated independently based on

the Hardy–Weinberg equilibrium, and their minor allele frequencies

(MAF) are (0.5, 0.3), (0.5, 0.2) and (0.5, 0.05). We generated the

binary outcome variable based on the present outcome proportion

in each genotype combination of the two given SNPs using multi-

nomial distribution. All analyses were based on 1000 simulation

runs. Both power and Type I errors were compared. Statistical sig-

nificance is based on the Bonferroni correction for multiple compari-

son justification.

2.5 Application on prostate cancer aggressiveness
AA9int, the better approach compared to Five-Full based on the

simulation results, was applied for this prostate cancer (PCa) ap-

plication. We applied this AA9int approach to identify SNP–SNP

interactions associated with PCa aggressiveness in the same PCa

data used for our previous study (Lin et al., 2017). We evaluated

the 148 SNPs in the six genes involved in the angiogenesis path-

way (EGFR, MMP16, ROBO1, CSF1, FBLN5 and HSPG2),

which were reported in a genetic interaction network associated

with PCa aggressiveness (Lin et al., 2013). Aggressive PCa is

defined as a Gleason score > 8, PSA >100, disease stage of ‘dis-

tant’ (stage IV) or death from PCa. There were 21 316 PCa cases

of European ancestry from the 32 study sites in the Prostate

Cancer Association Group to Investigate Cancer Associated

Alterations in the Genome (PRACTICAL) consortium cohort. We

randomly selected half of the subjects in the discovery set and the

other half in the validation set in each study site. AA9int was

applied in the discovery set (n¼10 664). In this discovery set,

there were 1991 patients (18.7%) with aggressive PCa. In our pre-

vious study, there were 25 top SNP pairs associated with PCa

aggressiveness with P-value<0.001 in the discovery set using the

 

Model/ Pattern
Pr(outcome)1

Power comparisons2

N=1,000
Power comparisons2

N=5,000

Model 1
RR_int_rr

SNP1\ SNP2 BB Bb bb
AA 0.3 0.3 0.2
Aa 0.3 0.3 0.2
aa 0.2 0.2 0.2

Model 2
DD_int_oo

SNP1\ SNP2 BB Bb bb
AA 0.2 0.2 0.2
Aa 0.2 0.3 0.3
aa 0.2 0.3 0.3

Model 3
RD_int_rr

SNP1\ SNP2 BB Bb bb
AA 0.3 0.2 0.2
Aa 0.3 0.2 0.2
aa 0.2 0.2 0.2
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Fig. 2. Power comparison of AA9int, Five-Full and SIPI for Models 1–3. 1Model label: RD_int_rr (Interaction-only model with reverse-Rec SNP1 and reverse-Dom

SNP2), DD_int_oo (Interaction-only model with original-Dom SNP1 and original-Dom SNP2) and RD_int_rr (Interaction-only model with reverse-Rec SNP1 and re-

verse-Dom SNP2). Values in the 3 x 3 table are present outcome proportions (such as disease prevalence). A lowercase and capital letter denotes the minor and

major allele, respectively. 2SIPI (SNP Interaction Pattern Identifier), AA9int (Additive-additive nine interaction-model approach) and Five-Full (Five full interaction-

model approach). MAF: minor allele frequency
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SIPI approach. The coverage of selected SNP pairs using AA9int com-

pared with SIPI was reported. For demonstrating the impact of vari-

ous interaction patterns and approaches (Five-Full, AA9int and SIPI)

on SNP–SNP interactions, we presented the P-values of the 45 inter-

action patterns of rs2075110 and rs7538029 in EGFR gene associated

with PCa aggressiveness in the combined dataset. These SNP pairs

have been shown to be associated with PCa aggressiveness in both dis-

covery and validation sets (Lin et al., 2017).

2.6 Software
Our study results demonstrated that the AA9int approach per-

formed better than Five-Full. Thus, the AA9int approach is to be

used as the mini-version of SIPI to be applied alone or to serve as the

screening tool prior to use SIPI (AA9intþ SIPI). The new function of

‘AA9int’ and ‘parAA9int’, the standard and parallel computing ver-

sion of AA9int, are added in the SIPI R package. This software is

freely available at https://linhuiyi.github.io/LinHY_Software/.

3 Results

3.1 Simulations
The power of AA9int is similar to that of SIPI, and both of them per-

formed much better than Five-Full. In the majority of conditions,

the rank of power for detecting a SNP–SNP interaction is SIPI�
AA9int > Five-Full. AA9int is more powerful than Five-Full in the

majority of the testing conditions (Figs 2 and 3). Using Model 1

with a sample size of 1000 and the MAF combination of (0.5, 0.05)

for the two SNPs as an example, the power of AA9int and Five-Full

is 0.43 and 0.02, respectively. Under the same setting in Model 1

with an increasing sample size to 5000, the power of AA9int

increased to 0.99 but the power of Five-Full was still low (0.01). In

Model 1, Five-Full also had low power in other testing conditions

(0.04–0.21), including common variants and a large sample size.

This demonstrates that the Five-Full approach failed to detect this

interaction-only pattern.

Even when the true underlying model is AA-Full (Model 5),

which is one testing pattern in both AA9int and Five-Full, AA9int is

still more powerful than Five-Full, especially for a small sample size

and SNPs with a low MAF. For Model 5 and MAF of two SNPs of

(0.5 and 0.05), power of AA9int and Five-Full is 1.0 and 0.17, for a

sample size of 1000 and power of both is close to 1 when the sample

size increased to 5000.

The power of both Five-Full and AA9int to detect interactions of

rare variants (with a low MAF) is lower than that of common SNPs,

especially for studies with a small sample size. As shown in Figures 2

and 3, Five-Full had a larger penalty in detecting an interaction with

rare variants than AA9int and SIPI. For Model 2 with a sample size

of 5000, the power of SNPs with the MAF of (0.5, 0.2) and (0.5,

0.05) is 0.75 and 0.35 (reduce 0.4 power) for Five-Full, and the

power for AA9int and SIPI only reduced to a power of 0.05 and

0.13 under the same conditions.

 

Model/ Pattern
Pr(outcome)1

Power comparisons2

N=1,000
Power comparisons2

N=5,000

Model 4
DD_M1_int_o1

SNP1\ SNP2 BB Bb bb
AA 0.2 0.2 0.2
Aa 0.3 0.4 0.4
aa 0.3 0.4 0.4

Model 5
AA_full

SNP1\ SNP2 BB Bb bb
AA 0.08 0.13 0.21
Aa 0.13 0.33 0.62
aa 0.21 0.62 0.91

Model 6
RD_int_oo

SNP1\ SNP2 BB Bb bb
AA 0.18 0.18 0.18
Aa 0.18 0.18 0.18
aa 0.18 0.29 0.29
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Fig. 3. Power comparison of AA9int, Five-Full and SIPI for Models 4–6. 1Model label: DD_M1_int_o1 (Model with SNP1 main effect plus interaction with original-

Dom SNP1 and Dom SNP2), AA_Full (Full interaction model with Add SNP1 and Add SNP2) and RD_int_oo (Interaction-only model with original-Rec SNP1 and

original-Dom SNP2). Values in the 3 x 3 table are present outcome proportions (such as disease prevalence). A lowercase and capital letter denotes the minor

and major allele, respectively. 2SIPI (SNP Interaction Pattern Identifier), AA9int (Additive-additive nine interaction-model approach) and Five-Full (Five full inter-

action-model approach). MAF: minor allele frequency
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For some conditions (Models 2, 4, 5 with a small sample size of

1000), AA9int tends to be similar or more powerful than SIPI. For

Model 2 with a MAF of (0.5, 0.05) and a sample size of 1000,

power of AA9int is larger than one of SIPI (0.22>0.16). For

Model 4 with a MAF of (0.5, 0.3) and a sample size of 1000, power

of AA9int and SIPI is 0.84 and 0.73, respectively. For type I error

comparison, these three methods were adjusted for multiple

comparisons based on the Bonferroni corrections. As shown in

Supplementary Figure S2, all type I errors were less than 0.05, which

results from the conservative Bonferroni correction. The higher

number of testing models, the lower the type I errors.

3.2 PCa example
We applied AA9int to test SNP–SNP interactions from a total of

148 SNPs (with 10 878 SNP pairs) associated with PCa aggressive-

ness in the discovery set of the PCa study. As we reported previously

(Lin et al., 2017), there were 25 SNP pairs with a P<0.001 selected

using SIPI. Using AA9int, there are only two SNP pairs with the

same criterion of a P-value<0.001. When using AA9int with a cut-

off P-value<0.05 and <0.1, 1095 and 2557 SNP pairs were identi-

fied, respectively. Among the top 25 SNPs selected in SIPI, AA9int

with a cut-off P-value<0.05 and <0.1 can detect the 18 (72%) and

23 (92%) SNP pairs. This showed that AA9int with a liberal cut-off

can be used as a good screening tool for SIPI.

As for computation time for analyzing all 10 878 pairs for a

dataset with a sample size of 10 664 using the parallel computing

version, AA9int spent only 21% computing time compared with

SIPI (27 and 126 min, respectively) on a desktop computer with

3.0 GHz CPU and 8 cores. For the two-stage approach (AA9intþ
SIPI) under the same conditions, it took 40 and 57 min for detecting

SNP interactions for using a cut-off P-value<0.05 and <0.1, re-

spectively. In this example, AA9int with the cut-off P-value of 0.05

and 0.1 can detect 72–92% of the SIPI identified SNP pairs.

Compared with SIPI, AA9int alone spent 21% computing time and

the two-stage AA9intþ SIPI approach spent 32–45% computing

time. For testing feasibility, we also evaluated performance of

AA9int and SIPI (parallel computing version) for a dataset with a

sample size of 10 350 and 100 000 SNP pairs. SIPI spent 23 h

and 57 min and AA9int only took 4 h 51 min (20% time) to finish

this task in a supercomputer (ratio of core used for parallel

computing¼0.5, two 10-core 2.8 GHz E5-2680v2 Xeon processors

and 64 GB memory).

To demonstrate the impact of both the interaction patterns and

performance of AA9int and SIPI, the P-values of the 45 SIPI models

for two EGFR SNPs (rs2075110 and rs7538029) associated with

PCa aggressiveness in the combined dataset were presented in

Table 3. With the conventional AA-Full approach, the P-value of

this SNP pair associated with PCa aggressiveness is 0.138. Using the

Five-Full, AA9int and SIPI approach, the P-values are 0.011, 0.002

and 2.6 x 10�5, respectively.

4 Discussion

Based on our simulation results, it is clearly shown that non-

hierarchical models play a more important role in SNP interaction

detection than inheritance modes. AA9int has similar statistical

power compared to SIPI and is superior to Five-Full in detecting

SNP–SNP interactions associated with a binary outcome. Five-Full

acted poorly for SNP pairs with a small sample size, rare variants

and non-hierarchical true model structure. Using Model 1 as an ex-

ample, this model has the RR_int_rr pattern, which is an

interaction-only model with SNP1 with reverse-recessive coding and

SNP2 with reverse-recessive coding. Model 1 has the interaction pat-

tern with two risk genotype sub-groups: AA/Aa þ BB/Bb versus

other genotypes with at least aa or bb. Among the Five-Full, the

closest model is RR_Full, which tests four distinct risk sub-groups

[(AA/Aa þ BB/Bb), (AA/Aa 6 bb), (aa þ BB/Bb), (aaþ bb)]. The last

three sub-groups had a small sample size and a low risk, so this

made it more difficult to show distinct risk of these three sub-groups

by random. This is the reason why Five-Full had little power detect-

ing the Model 1 interaction pattern.

For the full interaction models for two SNPs, three degrees of

freedom are needed in modeling; therefore four unique sub-groups

are compared for the binary modes (Dom and Rec, Fig. 1b). It is na-

ture to have unstable interaction patterns because of nine genotype

combinations for testing pairwise SNP interactions. Even though the

true underlying interaction pattern is the full interaction pattern, the

interaction pattern in the testing data may reduce to a lower number

of distinct sub-groups (such as two or three) than the truth for a

SNP pair with a small sample size and/or rare variants. The non-

hierarchal interaction structures provide a useful feature to solve

this unstable pattern issue. Using Model 5 (AA_Full) as an example,

the true underlying model is the additive-additive full interaction

model. With a small sample size and a SNP with a rare variant

[n¼1000 and MAF ¼ (0.5, 0.05)], the Five-Full approach had low

statistical power compared with AA9int (power¼0.17 versus 1, re-

spectively). As shown in Supplementary Figure S1a–1c, the non-

hierarchal interaction structure allows the cells (individual genotype

combinations) with a similar outcome prevalence or a small sample

size to be combined. This explains why AA9int, which considers

non-hierarchical interaction models, performs much better than

Five-Full. Compared to the binary modes (dominant and recessive),

the additive mode shows the risk pattern in an ordinal way

(Supplementary Fig. S1a–c). Thus, there are some similarities of risk

patterns between additive modes and the other two binary modes.

This explains why the AA9int approach can be treated as an excel-

lent screening method for SIPI.

In addition, we are interested in comparing AA9int and Five-Full

with other two common approaches: MDR and Additive-Additive

full interaction models (AA-Full). With the same simulation settings,

Table 3. P-values of the SIPI 45 models for testing the interaction of

two EGFR SNPs (rs2075110 and rs7538029) associated with PCa

aggressiveness

Model Label AA DD DR RD RR

Full 0.138 0.995 0.608 0.011(f) 0.107

M1_int_o1 0.053 0.005 0.043 0.526 0.620

M1_int_r1 1.7 x 10�4 0.085 0.523 3.5 x 10�5 0.009

M2_int_o2 0.581 0.794 0.553 0.247 0.195

M2_int_r2 0.131 0.753 0.767 0.008 0.098

int_oo 0.028 0.005 0.040 0.829 0.802

int_or 0.904 0.033 0.702 0.155 0.158

int_ro 0.002(a) 0.227 0.581 0.001 0.014

int_rr 0.003 0.146 0.581 2.6 x 1025(s) 0.023

Note: A: additive; D: dominant; R: recessive mode. Full-int: full interaction

model with two main effects plus an interaction; Main1þint: main effect of

variable 1 plus an interaction; Main2þint: main effect of variable 2 plus an

interaction and (4) Int-only: an interaction only. Coding direction: ‘o1’ (ori-

ginal for SNP1), ‘o2’ (original for SNP2), r1’ (reverse for SNP1), ‘r2’ (reverse

for SNP2), ‘oo’ (original–original for SNP1-SNP2), ‘or’ (original-reverse), ‘ro’

(reverse-original), and ‘rr’ (reverse-reverse).The selections of SIPI, AA9int and

Five-Full were in bold with a label of (s), (a) and (f), respectively.
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we can compare the results of AA9int with the MDR and AA-Full

results, which were reported previously. Five-Full has similar statis-

tical power compared with conventional AA-Full (Lin et al., 2017).

That is, SIPI� AA9int � Five-Full � AA-Full for detecting SNP–

SNP interactions. AA9int has similar power to SIPI and MDR.

Using Model 2 with a sample size of 1000 and the MAF combin-

ation of (0.5, 0.2) for the two SNPs as an example, the power of

AA9int, SIPI and MDR is 0.59, 0.58 and 0.59 and power of Five-

Full and AA-Full is 0.13 and 0.19, respectively. Five-Full includes

four additional modes (Dom–Dom, Dom-Rec, Rec-Dom and Rec–

Rec), but did not improve too much in terms of power of SNP inter-

action detection compared with AA-Full. Based on our previous

studies (Lin et al., 2008, 2013), the majority of the selected SNP

pairs are interaction-only patterns, especially for studies with a small

sample size. This supports the importance of considering non-

hierarchical models in SNP interaction detection.

For application, researchers can use pathway analyses to select

candidate SNPs for interaction analyses. The SNP interaction pairs,

identified using AA9int or AA9intþSIPI, can be applied as compo-

nents to build prediction models or genetic risk scores. The genetic

models or scores with SNP interaction pairs tend to have better per-

formance than the ones with only main effects. The strengths of the

AA9int approach are (i) a powerful and computationally feasible

way to detect SNP–SNP interactions, (ii) easy interpretation using

interaction patterns and (iii) can be used for building predicted mod-

els or scores. The weakness of AA9int or AA9intþ SIPI is potential

high false positive findings. As we expected, a powerful approach

increases its true positive rate but also increases its false positive

rate. Thus, external validation using an independent set and further

laboratory experiments will be needed to confirm true biological

interactions.

Although AA9int is not as powerful as SIPI, AA9int is more com-

putational feasible for testing SNP–SNP interactions. Based on our

PCa project, AA9int can successfully identified 72–92% candidate

SNP pairs and only use �20% computation time compared to SIPI.

Different from other software, both AA9int and SIPI can allow the

users to input the candidate ‘pairs’ or candidate SNPs. This feature

can significantly reduce the amount of computation time for limiting

analyses on candidate SNP ‘pairs’ instead of all possible pairs of can-

didate SNPs. This study also clearly demonstrates that interaction

patterns have a dramatic impact on SNP–SNP interaction detection.

Using statistical methods without considering non-hierarchical

interaction model structures, studies will suffer false negative find-

ings and lose the chance to detect true interaction signals. In

summary, AA9int is not meant to replace the original SIPI but

provides a computationally efficient and still effective tool. For

large-scale genetic studies, the two-stage method (AA9int þ SIPI)

is a feasible and powerful approach for detecting SNP–SNP

interactions.
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