
Sequence analysis

Hybrid correction of highly noisy long reads

using a variable-order de Bruijn graph

Pierre Morisse*, Thierry Lecroq and Arnaud Lefebvre

Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on December 22, 2017; revised on June 7, 2018; editorial decision on June 25, 2018; accepted on June 27, 2018

Abstract

Motivation: The recent rise of long read sequencing technologies such as Pacific Biosciences and

Oxford Nanopore allows to solve assembly problems for larger and more complex genomes than

what allowed short reads technologies. However, these long reads are very noisy, reaching an

error rate of around 10–15% for Pacific Biosciences, and up to 30% for Oxford Nanopore. The error

correction problem has been tackled by either self-correcting the long reads, or using complemen-

tary short reads in a hybrid approach. However, even though sequencing technologies promise to

lower the error rate of the long reads below 10%, it is still higher in practice, and correcting such

noisy long reads remains an issue.

Results: We present HG-CoLoR, a hybrid error correction method that focuses on a seed-and-

extend approach based on the alignment of the short reads to the long reads, followed by the tra-

versal of a variable-order de Bruijn graph, built from the short reads. Our experiments show that

HG-CoLoR manages to efficiently correct highly noisy long reads that display an error rate as high

as 44%. When compared to other state-of-the-art long read error correction methods, our experi-

ments also show that HG-CoLoR provides the best trade-off between runtime and quality of the

results, and is the only method able to efficiently scale to eukaryotic genomes.

Availability and implementation: HG-CoLoR is implemented is Cþþ, supported on Linux platforms

and freely available at https://github.com/morispi/HG-CoLoR.

Contact: pierre.morisse2@univ-rouen.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since a few years, long read sequencing technologies are being devel-

oped, and allow the solving of assembly problems for large and com-

plex genomes that were, until then, hard to solve with the use of

short reads sequencing technologies alone. The two major actors of

these long read sequencing technologies are Pacific Biosciences and

Oxford Nanopore. The latter, with the release of the MinION de-

vice, that can be run from a simple laptop, allows a low-cost and

easy long read sequencing.

Even though long reads can reach lengths of tens of kbps, they

also reach a very high error rate of around 10–15% for Pacific

Biosciences, and up to 30% for Oxford Nanopore. Due to this high

error rate, correcting long reads before using them in downstream

problems is mandatory. Many methods are available for short read

error correction, but they are not applicable to long reads for two

major reasons. First, these methods do not scale to the much higher

error rate of the long reads. Second, most of these methods focus on

substitution errors, the main error type in Illumina data, whereas

insertions and deletions are more frequent in long reads.

1.1 Related works
Recently, several methods for long read error correction have been

developed. These methods can be divided into two main categories:

either the long reads are self-corrected by aligning them against each

other [PBDAG-Con (Chin et al., 2013), PBcR (Berlin et al., 2015)],

or either a hybrid strategy, using complementary short reads is

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4213

Bioinformatics, 34(24), 2018, 4213–4222

doi: 10.1093/bioinformatics/bty521

Advance Access Publication Date: 28 June 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

https://github.com/morispi/HG-CoLoR
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: to
Deleted Text: (
Deleted Text:)
https://academic.oup.com/

adopted. In this case, the short reads can either be aligned to the

long reads [Nanocorr (Goodwin et al., 2015), CoLoRMap

(Haghshenas et al., 2016)], or be assembled into contig on which the

long reads are aligned [HALC (Bao and Lan, 2017)]. De Bruijn

graph based methods, where the long reads are corrected by travers-

ing the paths of the graph, also started to develop recently, in the hy-

brid case [LoRDEC (Salmela and Rivals, 2014), Jabba (Miclotte

et al., 2016)], as well as in the non-hybrid case [LoRMA (Salmela

et al., 2017), Daccord (Tischler and Myers, 2017, unpublished)].

NaS (Madoui et al., 2015), instead of using short reads to correct

the long reads, uses the long reads as templates in order to recruit

short reads and assemble them into contigs, used as corrected

sequences. This approach requires to align the short reads to the

long reads, in order to find seeds, which are short reads that aligned

to the long reads. The seeds are then compared to all the other short

reads, in order to recruit new short reads, corresponding to low

quality regions of the long read.

1.2 Contribution
We introduce HG-CoLoR, a new long read hybrid error correction

method that combines two ideas from the state-of-the art: the align-

ment of the short reads to the long reads (as in CoLoRMAp), and

the use of a de Bruijn graph, built from the short reads (as in

LoRDEC and Jabba). Unlike these methods, HG-CoLoR however

uses a variable-order de Bruijn graph, instead of a classical one. HG-

CoLoR thus focuses on a seed-and-extend approach where the seeds,

found by aligning the short reads to the long reads, are used as

anchors on the variable-order de Bruijn graph. The graph is then

traversed, in order to link the seeds together, and thus correct

regions of the long reads that are not covered by short reads. Our

experiments show that, when compared to state-of-the-art hybrid

and non-hybrid long read error correction methods, HG-CoLoR

provides the best trade-off between runtime and quality of the

results, and is the only method able to efficiently scale to eukaryotic

genomes. They also show that the efficiency of HG-CoLoR’s error

correction implies satisfying assembly results.

2 Variable-order de Bruijn graph

2.1 de Bruijn graphs
The de Bruijn graph is a data structure that is widely used in assem-

bly tools. Its nodes are defined as the k-mers of the reads, and its

edges represent prefix-suffix overlaps of length k � 1 between the

k-mers represented by the nodes. However, despite its usefulness, it

is known that the de Bruijn graph faces difficulties, due to the fact

that the k-mer size is fixed at construction time. On the one hand,

choosing a large k will allow the graph to better deal with repeated

regions, but will lead to missing edges in insufficiently covered

regions. On the other hand, choosing a small k will allow to correct-

ly retrieve the edges of the graph in insufficiently covered regions,

but will lead to more branches, and thus more difficulties, in

repeated regions.

To overcome these problems, modern assemblers usually build

multiple de Bruijn graphs of different orders. Although this ap-

proach allows to increase the quality of the assemblies, it also great-

ly increases both runtime and memory consumption, as multiple

graphs need to be built and stored.

More recently, a few methods were developed to allow the repre-

sentation of all the de Bruijn graphs, up to a maximum order K, in a

single data structure. The manifold de Bruijn graph (Lin and

Pevzner, 2014), for example, associates arbitrary substrings with

nodes, instead of associating k-mers. This structure is however

mainly of theoretical interest, as it has not been implemented yet.

Another implementation of a variable-order de Bruijn graph has

been proposed by Boucher et al. (2015). It relies on the succinct rep-

resentation of the de Bruijn graph by Bowe et al. (2012), and sup-

ports additional operations that allow to change the order of the

graph on the fly. However, the current implementation only sup-

ports construction up to an order of 64, which is too restrictive, as

we do not want to limit the maximum order.

As a result, we introduce a new implementation of the variable-

order de Bruijn graph. It relies on PgSA (Kowalski et al., 2015), an

index structure allowing to answer various queries about a set of

reads.

2.2 PgSA overview
PgSA is a data structure that allows the indexing of a set of reads, in

order to answer the following queries, for a given string f:

1. In which reads does f occur?

2. In how many reads does f occur?

3. What are the occurrences positions of f?

4. What is the number of occurrences of f?

5. In which reads does f occur only once?

6. In how many reads does f occur only once?

7. What are the occurrences positions of f in the reads where it

occurs only once?

In these queries, f can be given either as a sequence of DNA sym-

bols, or as a pair of numbers, representing, respectively, a read ID,

and the start position of f in this read.

As previously mentioned, in order to answer these queries, an

index of the reads has to be built. PgSA builds it as follows. First, all

reads with overlaps are concatenated with respect to these overlaps,

in order to obtain a pseudogenome. If some reads for which no over-

laps have been found are left after the pseudogenome creation, they

are simply concatenated at the end of it. Then, a sparse suffix array

of the pseudogenome is computed, along with an auxiliary array

allowing to retrieve the reads from the original set in the pseudoge-

nome. Each record of this auxiliary array associates a read ID in the

original set of reads to a read offset in the pseudogenome, and also

contains flag data that bring complementary information about the

read and that is used in order to handle the queries. The queries are

processed by a simple binary search over the suffix array, coupled

with the use of this complementary information.

As the reads are overlapped during the pseudogenome computa-

tion, and as PgSA does not record any information about their

lengths, it only allows to index and query a set of reads of constant

length. However, the length of the query strings is not set at compil-

ation time, and PgSA therefore supports queries for strings f of vari-

able length.

2.3 Variable-order de Bruijn graph representation
A maximum order K is chosen, and the K-mers of the reads are

indexed with PgSA, to be able to represent the nodes of all the de

Bruijn graphs up to this maximum order. The edges of a given node,

for any de Bruijn graph of order k�K, are retrieved by querying the

index, using the third query (i.e. what are the occurrences positions

of f?), with the suffix of length k � 1 of the k-mer represented by the

node. The query returns a set of pairs of numbers, each pair repre-

senting a K-mer ID and the occurrence position of the query string

in that K-mer. The pairs are then processed, and only those whose

position component does not represent the suffix of length k � 1 of

4214 P.Morisse et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

Deleted Text: (
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text: B
Deleted Text: B
Deleted Text: &hx2013;
Deleted Text: B
Deleted Text: &hx2013;
Deleted Text: &hx2013;

the associated K-mer are retained (so that the occurrence can be

extended to the right into a k-mer). These extended occurrences rep-

resent the k-mers that have a prefix-suffix overlap of length k � 1

with the k-mer represented by the currently considered node, and

thus define the edges of this node.

As the edges are retrieved by querying the index, it is also easy to

traverse the graph backward. For a given order k, instead of being

queried with suffixes of the k-mers represented by the nodes, the

index is simply queried with their prefixes. The returned sets of pairs

are then processed in the same fashion as for forward traversal, ex-

cept that only the pairs whose position component does not repre-

sent the prefix of length k � 1 of the associated K-mer are retained

to define the edges. For better understanding, the algorithm allowing

to retrieve the edges of any given node, forward or backward, in the

de Bruijn graph of any order k�K, is given in Supplementary

Algorithm S1.

3 Materials and Methods

3.1 Overview
As previously mentioned, HG-CoLoR combines two ideas from the

state-of-the art: the alignment of short reads to the long reads, and

the use of a de Bruijn graph, which has the particularity of being of

variable order. To do so, it focuses on a seed-and-extend approach

where the seeds are discovered by aligning the short reads to the

long reads. A seed is defined as a 5-tuple (id, pos, len, score, seq),

where: id is the id of the long read the seed is associated to, pos is

the start position of the alignment on the long read, len is the length

of the alignment, score is the score of the alignment, and seq is the

actual consensus sequence of the short reads which align to the long

read at this position. Once the seeds have been retrieved, they are

linked together by extending their sequences, with the help of the

previously described variable-order de Bruijn graph. This graph is

built from the short reads, by choosing a maximum order K and

indexing their K-mers with PgSA, and is traversed by querying the

index, as previously described. For each long read, the graph is trav-

ersed in order to link together the associated seeds, which are used

as anchors. The path of the graph that was followed to link two

seeds together thus dictates a corrected sequence for the uncovered

region of the long read. Finally, once all the seeds have been linked,

the tips of the obtained sequence are extended by further traversing

the graph, to reach the extremities of the original long read. HG-

CoLoR’s workflow is summarized in Figure 1, and its four main

steps are described below.

Despite high similarities with other graph based methods, in par-

ticular with LoRDEC, using sequences originating from the seeds as

anchors on the graph is quite different from using solid k-mers (i.e.

k-mers that occur more frequently than a certain threshold) from

the long reads. Indeed, in the case of highly erroneous long reads,

even short, solid k-mers have a high chance of being erroneous. Such

erroneous k-mers would therefore lead to the use of erroneous

anchors, and thus to unsatisfying correction results. However, as

short reads are accurate, the seeds they yield can be used as reliable

anchors, with little to no chance of being erroneous. Moreover,

using these seeds as anchors also allows to directly build the graph

with large values of k, without needing to perform multiple rounds

of correction, and increase the value of k at each step, in the same

fashion as LoRMA.

3.2 Short reads correction and graph construction
Even though short reads are already accurate prior to any correc-

tion, they still contain a small fraction of errors. As HG-CoLoR

seeks to build a variable-order de Bruijn graph of high maximum

order from the short reads, as much errors as possible have to be

removed from this data, to avoid erroneous paths in the graph. To

do so, the short reads are corrected with the help of QuorUM

(Marçais et al., 2015), which provides the best trade-off between

runtime and quality of the correction, among all the short read error

correction tools we tested.

A maximum order K is then chosen for the graph, and the

K-mers from the corrected short reads are extracted with KMC3

(Kokot et al., 2017). To further reduce the error rate of the short

reads, and thus avoid erroneous seeds and chimeric paths on the

graph, short reads containing weak K-mers (i.e. K-mers that appear

less than a certain threshold) are filtered out and not used in the fol-

lowing steps, and only the solid K-mers are used to build the graph.

3.3 Seeds retrieving and merging
To retrieve the seeds, the short reads are aligned to the long reads

with the help of BLASR (Chaisson and Tesler, 2012). Although it

was originally designed to align long reads dominated by insertion

and deletion errors to a reference genome, BLASR also manages to

nicely deal with this type of errors when aligning short reads to long

reads. Each long read is then processed independently, and two

phases of analysis are applied to the associated seeds.

First, the seeds are processed by pairs, in ascending order of their

alignment start position on the long read. If the alignment positions

and alignment lengths of a given pair of consecutive seeds indicate

Fig. 1. HG-CoLoR’s workflow. First, the short reads are corrected with QuorUM in order to get rid of as much sequencing errors as possible. Then, a maximum order

K is chosen for the graph, and the K-mers from the corrected short reads are obtained with KMC3. To further reduce the error rate, a filtration step is applied to the

corrected short reads, and those containing weak K-mers are removed. For the same reason, only the solid K-mers from the corrected short reads are indexed with

PgSA, to represent the variable-order de Bruijn graph. The previously filtered corrected short reads are then aligned to the long reads with the help of BLASR in order

to find seeds. Each long read is then processed independently. For each of them, the graph is traversed in order to link together the associated seeds, used as

anchors, in order to retrieve corrected sequences for the uncovered regions of the long read. Then, the tips of the sequence obtained after linking together all the

seeds are extended in both directions by traversing the graph, to reach the initial long read’s extremities. Finally, the corrected long read is output

HG-CoLoR 4215

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

Deleted Text: &hx2013;
Deleted Text: &hx2013;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data

that they overlap over a sufficient length, their assumed overlapping

sequences are compared, and the two seeds are merged accordingly.

If the assumed overlapping sequences do not coincide, or if the

alignment positions and alignment lengths indicate that the two

seeds do overlap, but over an insufficient length, only the seed with

the best alignment score is kept. The algorithm of this first merging

phase is given in Supplementary Algorithm S2.

Second, once all the seeds with overlapping alignment positions

have been merged or filtered out, the seeds are again processed by

pairs, in ascending order of their alignment start position on the

long read, and sequence overlaps between consecutive seeds having

close alignment positions are computed. As in the previous step, if a

given seed perfectly overlaps the following one over a sufficient

length, the two seeds are merged. This step allows to take into ac-

count small insertion errors in the long reads that were not detected

during the alignment step, and that could lead to difficult linkings in

the next step. The algorithm of this second merging phase is given in

Supplementary Algorithm S3.

We chose to always align all of the short reads, instead of only a

subset of them, because such an approach allows to discover more

seeds. Therefore, more long reads, and larger regions of these long

reads can be corrected, and smaller parts of the graph need to be

explored. Moreover, the proportion of time spent during the align-

ment step only represents 20–40% of the runtime of the whole

method on average, and tends to decrease as the size of the dataset

increases. Therefore, aligning only a subset of the short reads instead

of aligning them all would not significantly reduce the overall run-

time of the method.

3.4 Seeds linking
Once the seeds have been found and merged for all the long reads,

HG-CoLoR processes each of the long reads independently and

attempts to link together their associated seeds by considering them

as pairs, and traversing the graph. For a given pair, the seed that has

the leftmost alignment position is called the source, and the one that

has the rightmost alignment position is called the target. To link a

pair of seeds together, the rightmost K-mer of the source and the

leftmost K-mer of the target are used as anchors on the graph. The

graph is then traversed, in order to find a path between the two

anchors. When such a path is found, the sequence it dictates is used

as a correction for the uncovered region of the long read. The search

for a path between two seeds is first performed from the source to-

ward the target, and if no path can be found, the search is performed

again, from the target toward the source. The search is performed in

both directions, because according to the starting point of the traver-

sal, different parts of the graph might be explored, and thus lead to

different traversals.

HG-CoLoR traverses the variable-order de Bruijn graph starting

from its highest order. The order is decreased at a given node only if

this node does not have any edge for the current order, or if all its

edges for the current order have already been explored and did not

allow to reach the target. When the order of the graph is decreased,

the size of the k-mers from the source and from the target is

decreased accordingly, so that they can still be used as anchors. A

minimum order is also set, so that HG-CoLoR does not traverse

de Bruijn graphs representing short, and probably meaningless

overlaps.

When facing branching paths for a given order k, HG-CoLoR

performs a greedy selection. The edge leading to the node represent-

ing the k-mer having the highest number of occurrences is always

explored first. This greedy selection allows to avoid traversing too

many nodes representing k-mers having low frequencies, that, des-

pite the correction and filtration steps, may contain a sequencing

error. Moreover, following the exploration of an edge from a de

Bruijn graph of order k<K, due to the fact that no edge was found

for larger orders, the order of the graph is always reset to the max-

imum order K before resuming the traversal, in order to avoid

exploring too many branching paths.

When a path between two seeds is found, it is considered as opti-

mal due to the greedy selection and to the fact that the order of the

graph is only locally decreased. It is thus chosen as the correction for

the uncovered region of the long read. We voluntarily select the opti-

mal path this way, instead of exploring multiple ones and selecting

the one that aligns the best to the long read as the correction, in

order to avoid prohibitive runtimes.

We also set a mismatches threshold t when linking two seeds to-

gether. We therefore consider that the source and the target can be

linked together if a path starting from the anchor K-mer of the

source (resp. target) reaches a K-mer having less than t mismatches

with the anchor K-mer of the target (resp. source). Such a threshold

allows to overcome the few mismatches errors that can still be pre-

sent on the seeds, despite the correction and filtration steps. The

case where the two seeds contain an error, however, cannot be prop-

erly handled.

Moreover, HG-CoLoR might attempt to link together two seeds

that appear in unconnected regions of the graph. For instance, this

situation could arise in the case a short read originating from an-

other chromosome was wrongly aligned to the long read. In this

case, linking these seeds together would be impossible, as there

would exist no path between them. Therefore, to avoid costly explo-

rations of the graph in such cases, a limit on the maximum number

of branches explorations is set. If this limit is reached, and no path

has been found to link the source and the target, the current linking

iteration is given up, and HG-CoLoR attempts to skip the target

that could not be reached. In other words, the source remains the

same, the target that could not be reached is ignored, the target is

redefined as the following seed, and a new linking iteration is per-

formed. An illustration of this process is given in Supplementary

Figure S1.

As skipping seeds could however lead to an important number of

failed linking attempts, i.e, an impossibility to link two seeds to-

gether within the allowed maximum number of branches explor-

ation, a limit on the maximum number of seeds that can be skipped

is also set. Once this limit is reached, as none of the linking attempts

succeeded, HG-CoLoR fills in the uncovered region of the long read,

between the source and the first seed that was skipped, with bases

from the original long read. The graph is then traversed again, in

order to link together the remaining seeds, starting from the first

seed that was skipped, and correct the remaining parts of the long

read.

3.5 Tips extension
Finally, it is obvious that the seeds do not always align right at the

beginning and at the end of the long reads. Thus, in order to get as

close as possible to its original length, once all the seeds of a given

long read have been linked, HG-CoLoR keeps on traversing the

graph to extend the tips of the produced corrected long read. In

the same fashion as in the previous step, the traversal starts from the

highest order of the variable-order de Bruijn graph, and the order is

decreased at a given node only if this node does not have any edge

for the current order. The tips of the corrected long read are thus

extended until the original long read’s extremities or a branching

4216 P.Morisse et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: to
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data

path are reached. Indeed, in the case of tips extension, when facing a

branching path, HG-CoLoR has no clue as to which path to choose

and continue the extension with, nor any anchors, unlike when it

attempts to link two seeds together. Therefore, greedy selection and

exploration of multiple branches are useless, and the extension is

simply stopped when such a situation occurs. In this case, the tips of

the corrected long read are further extended with bases from the ori-

ginal long read, until the extremities of the original long read are

reached. Moreover, we chose to always stop the extension when the

extremities of the original long read are reached, even in cases where

the graph could be further traversed, as we seek to perform error

correction, and not assembly. Extending the long reads further

would indeed make the method closer to a contig assembly process

than to an actual error correction pipeline.

3.6 Output
Filling regions uncovered by seeds, and extending the tips of the cor-

rected long reads with bases from the original long reads allows to

keep the connectivity of the long reads, which can be useful for

applications such as scaffolding. For other applications where the

importance of corrected bases prevails, a classical trim and/or split

output is also proposed. Indeed, at the end of the correction process,

each base of a corrected long read can be considered as corrected if

it comes from a seed or from the variable-order de Bruijn graph, and

as uncorrected if it comes from the original long read. HG-CoLoR

outputs corrected bases in uppercase, and uncorrected bases in low-

ercase. Three versions of each corrected long read can thus be output

by HG-CoLoR. A first version, where all the uncorrected bases are

kept, a trimmed version where the uncorrected bases from the

extremities of the long read are removed, and a split version, where

all the uncorrected bases are removed, and only the regions of the

long read that could be corrected are output as separate sequences.

4 Results and discussion

We ran experiments on both Pacific Biosciences simulated data, and

real Oxford Nanopore data. In both cases, datasets from A. baylyi,

E. coli and S. cerevisiae were included, and complementary real

short Illumina reads were used. For real Oxford Nanopore data, a

fourth dataset from the larger, eukaryotic genome of C. elegans was

included. As no real Illumina reads of satisfying quality were avail-

able for this organism, the complementary Illumina short reads were

simulated with ART (Huang et al., 2012). Simulated Pacific

Biosciences long reads were obtained with the help of SimLord

(Stöcker et al., 2016), a state-of-the-art simulator based on an error

model developed from real Pacific Biosciences data. The following

parameters were used, to obtain an error rate around 15%: –prob-

ins 0.22, –prob-del 0.08 and –prob-sub 0.02. All details

on the different datasets are given in Supplementary Table S1.

We compare HG-CoLoR against hybrid error correction tools

CoLoRMap, HALC, Jabba, LoRDEC, Nanocorr and NaS, and also

against three self-correction tools, namely Daccord, LoRMA, and

the method used in the assembler Canu (Koren et al., 2017). Due to

its large runtime, NaS was only ran in fast mode. As methods such

as Jabba and Daccord only propose a split output, we also did split

the output of all the other tools marking the bases that were not cor-

rected, to allow fair comparison. Unless otherwise specified, all

experiments were run on a 32 GB RAM machine equipped with 16

cores.

4.1 Parameters
We ran multiple rounds of correction with HG-CoLoR on the real S.

cerevisiae dataset to experiment with the parameters. Thereby, we

found that using a variable-order de Bruijn graph of maximum order

K¼100 yielded the best compromise between runtime, number of

corrected long reads, proportion of split long reads, average length

and number of corrected bases (see Supplementary Figure S2). For

both merging phases, the minimum overlap length to allow the

merging of two seeds was set to 99, accordingly to the maximum

order K chosen for the graph. The maximum distance of the align-

ment positions between two consecutive seeds was set to 10 for the

second merging phase. The minimum order of the graph was set to

k¼40, as setting it to larger values resulted in greater proportions

of split, and thus shorter long reads, due to local drops of coverage.

Setting it to smaller values also resulted in more split, and shorter

long reads, due to the exploration of meaningless edges, especially in

repeated regions, in addition to larger runtimes (see Supplementary

Figure S3). The maximum number of branches explorations was set

to 1250, as decreasing it also resulted in more split, and shorter long

reads, and increasing it more barely yielded better results, but

increased the runtime (see Supplementary Figure S4). For similar

reasons, the maximum number of seed skips was set to 5, and the

mismatches threshold was set to 3. For the alignment of the short

reads to the long reads, BLASR was used with default parameters

except for bestn, which was set to 50 instead of 10, in order to ob-

tain a greater number of seeds, and therefore correct more long

reads. Yet again, increasing this parameter to larger values only

impacted the runtime, and did not meaningfully improve the correc-

tion results, while decreasing it induced a drop of the number of cor-

rected long reads. As we only used a 50� coverage of short reads in

our experiments, the K-mer solidity threshold was set to 1 (i.e. all

the K-mers were considered as solid). These last two parameters are

highly dependent of the characteristics of the input short reads. In

particular, the bestn parameter should be decreased when using a

higher coverage of short reads than 50�, and the solid parameter

should be increased either when using a higher coverage of short

reads than 50�, or when using very accurate short reads, displaying

an error rate lower than 1%. Canu was run with parameters -cor-

rect, stopOnReadQuality¼false, due to the high error rate

of the long reads, corOutCoverage¼300, in order to correct as

many long reads as possible, and genomeSize set to the exact num-

ber of bases of each reference genome. Additionally, -nanopore-

raw was used to correct the real Oxford Nanopore long reads, and

-pacbio-raw was used to correct the simulated Pacific Biosciences

long reads. Other tools were run with default or recommended

parameters. To allow better comparison, the short reads were cor-

rected with QuorUM before running Jabba, instead of using Karect

(Allam et al., 2015), the tool recommended by the authors. All tools

were run with 16 processes.

4.2 Comparison on simulated data
To assess the accuracy of the different tools, we first tested them on

the simulated Pacific Biosciences long reads. We were thus able to

know which errors were introduced, and at which positions, and to

precisely measure the accuracy of the correction. For that purpose,

we used LRCStats (La et al., 2017), a software specifically designed

to measure such accuracy on simulated data. LRCStats output statis-

tics of all the tools on the simulated A. baylyi and E. coli datasets

are given in Table 1, and discussed below. The S. cerevisiae dataset

was voluntarily excluded from the comparison, as LRCStats

HG-CoLoR 4217

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: x
Deleted Text: x
Deleted Text: x

reported erroneous statistics. These statistics are given in

Supplementary Table S2.

LoRMA’s runtimes were quite competitive, but it clearly per-

formed the worst out of all the tools, and displayed the smallest

throughputs and highest error rates on both datasets. Actually, the

error rates after error correction with LoRMA were even higher

than original error rates. Despite the low coverage depth of the long

reads, the two other self-correction tools did manage to reduce the

error rate, even though Canu only brought it down to about 8% on

the two datasets, and would have benefited from a higher coverage.

Canu and Daccord also managed to produce a high throughput of

corrected bases, Daccord even outperforming all the other methods

on this metric. The throughputs of all the hybrid methods but NaS

were comparable. This lower throughput does not mean that NaS

corrected less bases than the other tools, but rather comes from the

fact that the throughput reported by LRCStats is computed from

alignments between the original and the corrected reads. As NaS

assembles short reads into contigs and uses them as corrected long

reads, this indicates that a non-negligible amount of the produced

long reads do not realign with the long read they originally come

from, but instead do align in another region of the genome. All the

hybrid methods also satisfyingly reduced the error rates, always

below 1%, the highest coming from the A. baylyi dataset corrected

with Nanocorr, and only being of 0.57%. When looking more spe-

cifically at the different types of errors, it appears that Jabba faced

the most difficulties with deletions, CoLoRMap with substitutions,

and all the other tools with insertions, which were the most frequent

errors on the analyzed datasets. It is also worth noting that

CoLoRMap, HALC and LoRDEC did split an important proportion

of the long reads, meaning that large regions of these long reads

were not corrected, and thus, that large regions of the reference

genomes have a high chance to be uncovered. When looking at the

runtimes, Jabba always performed the best, meanwhile Nanocorr

and especially NaS displayed prohibitive runtimes. HG-CoLoR did

not reach such runtimes, despite being slower than all the other tools

but CoLoRMap. HG-CoLoR’s error rates were also lower than

those of all the other tools, except for Jabba on the E. coli dataset.

On both datasets, the throughput of HG-CoLoR was also higher

than that of all the other tools but Daccord. Finally, the proportion

of split long reads it yielded was smaller than that of all the other

tools for which the reads could be split. Therefore, HG-CoLoR

provided the best trade-off between runtime and quality of the

results on these two simulated datasets.

4.3 Comparison on real data
Following the results on simulated data, we chose to exclude

LoRMA from the comparison on real data, due to its globally unsat-

isfying results. We also chose to exclude CoLoRMap, HALC and

LoRDEC due to the important proportion of split long reads they

produced. Finally, as it performed the worst among all the hybrid

tools on the real datasets, we also exclude Nanocorr. Results of tools

excluded from this comparison are given and commented in

Supplementary Tables S3 and S4.

We evaluate the accuracy of the different tools with two different

approaches. First, we analyze how well the long reads align to the

reference genomes, and second, we investigate the quality of the

assemblies that can be generated from the corrected long reads.

4.3.1 Alignment-based comparison

The long reads were aligned with Last (Kielbasa et al., 2011) prior

to correction, as it deals better with raw long reads. The different

correction tools were then run, and the obtained corrected long

reads were aligned with BWA mem (Li and Durbin, 2010) given

their high accuracy. Results are given in Table 2 and discussed

below.

Jabba clearly performed the best when it comes to runtime, out-

performing all the other tools by several orders of magnitude. It also

produced corrected long reads that aligned with a high identity.

However, although highly accurate, these corrected long reads did

not manage to completely cover any of the reference genomes. These

unresolved regions likely come from the important proportion of

split long reads that were produced, due to the fact that Jabba uses a

de Bruijn graph of fixed order, and therefore faces difficulties with

local drops of coverage. Pre-processing the short reads using Karect

instead of QuorUM, as recommended by the authors, did not show

any significant improvement (see Supplementary Table S5).

Apart from Jabba, the two self-correction tools outperformed

the two other hybrid correction methods in terms of runtime.

However, the error correction was not very efficient, as the pro-

duced corrected long reads still displayed a large proportion of

errors, as high as 8% for those produced by Daccord on the A. bay-

lyi dataset, despite a coverage of 106�. The average length of the

Table 1. Statistics of the simulated Pacific Biosciences long reads after correction with the different methods, as reported by LRCStats

Method Original CoLoRMap HALC HG-CoLoR Jabba LoRDEC Nanocorr NaS Canu Daccord LoRMA

A. baylyi

Error rate (%) 17.8534 0.1023 0.0388 0.0310 0.0844 0.0374 0.5777 0.2961 8.5607 0.4967 21.7703

Throughput (Mbp) 71.9 62.6 63.7 64.6 61.6 61.1 64.4 48.2 59.1 64.7 0.2

Deletions (%) 3.8909 0.0193 0.0134 0.0121 0.0629 0.0092 0.1000 0.0360 1.5961 0.0955 2.1088

Insertions (%) 13.9605 0.0286 0.0184 0.0178 0.0233 0.0200 0.4967 0.1916 6.9289 0.4481 12.8142

Substitutions (%) 0.7186 0.0700 0.0130 0.0059 0.0111 0.0137 0.0675 0.1138 0.7860 0.0290 8.9844

Split reads (%) N/A 13.85 3.61 0.01 2.97 15.19 0 0 0 1.33 42.18

Runtime N/A 57 min 22 min 47 min 2 min 6 min 2 h 52 min 24 h 24 min 10 min 20 min 5 min

E. coli

Error rate (%) 17.9267 0.1036 0.0601 0.0596 0.0462 0.0669 0.3983 0.1935 8.8525 0.4498 32.9756

Throughput (Mbp) 93.0 78.4 81.3 83.4 78.0 78.5 83.3 62.4 75.7 83.8 0.3

Deletions (%) 3.9091 0.0198 0.0215 0.0280 0.0389 0.0133 0.0680 0.0257 1.6533 0.0866 2.8487

Insertions (%) 14.0186 0.0303 0.0269 0.0347 0.0109 0.0397 0.3360 0.1385 7.1604 0.4019 19.3079

Substitutions (%) 0.7215 0.0693 0.0209 0.0063 0.0036 0.0240 0.0549 0.0602 0.7997 0.0306 13.2367

Split reads (%) N/A 13.13 9.62 0.03 4.57 26.12 0 0 0 0.23 42.58

Runtime N/A 1 h 25 min 24 min 45 min 2 min 8 min 3 h 17 min 28 h 48 min 12 min 27 min 5 min

Note: The best result for each statistic is highlighted.

4218 P.Morisse et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: x

long reads corrected with Daccord was also smaller than the average

length of the original long reads, due to the high proportion of split

long reads. On the S. cerevisiae dataset, none of these two tools

managed to perform correction. Canu stopped because of an error,

caused by the high error rate of the long reads, and Daccord failed

because of memory limitations, even when ran on a cluster with

large resources, on which we had access to 256 GB of RAM. This

underlines the fact that hybrid error correction remains more effi-

cent to correct highly noisy long reads, even from moderately large

genomes.

Therefore, only NaS and HG-CoLoR managed to produce cor-

rected long reads that covered the whole reference genomes with a

high identity, except for a few regions of S. cerevisiae, due to the

fact that neither the original long reads nor the short reads did cover

the whole genome. HG-CoLoR however output more corrected long

reads, and thus covered the reference genome better. For all the

datasets, the long reads corrected with NaS aligned with a slightly

higher identity than those corrected with HG-CoLoR. However,

despite being run in fast mode, NaS was several orders of magnitude

slower than HG-CoLoR on all the datasets.

On the larger C. elegans dataset, NaS was not run due to its

prohibitive runtime, and once again, Daccord did not manage to

perform correction due to memory limitations, even on the afore-

mentioned cluster. Canu produced the greatest number of corrected

long reads. They covered the reference genome well, but still dis-

played a high error rate, of almost 15%. As mentioned in the experi-

ments on simulated data, this large proportion of errors is due to the

weak coverage of long reads that was used, and a better coverage

could greatly improve the results of Canu, as seen on the real A. bay-

lyi and E. coli datasets. HG-CoLoR, despite being slower, managed

to produce corrected long reads that displayed a high identity, and

covered the reference genome well. Moreover, it is worth noting

that the memory peak for HG-CoLoR was only of 10GB, making it

able to scale to large genomes even on a reasonable setup.

As a result, despite its larger runtimes than self-correction meth-

ods, and its slight disadvantage on the alignment identity of the cor-

rected long reads when compared to NaS, HG-CoLoR displayed the

best trade-off between runtime and quality of the results, and proved

to be the only tool able to efficiently scale to eukaryotic genomes.

4.3.2 Assembly-based comparison

After correction with the different tools, the long reads were

assembled using Canu, without performing the correction

and trimming steps. We only used Canu and not any other,

possibly hybrid, assembly tools, as assembly is not deemed to be

a crucial evaluation of the correction, nor the most important

outcome. The following parameters were used for all the

Table 2. Statistics of the real Oxford Nanopore long reads, before and after correction with the different methods

Method Original HG-CoLoR Jabba NaS Canu Daccord

A. baylyi

Number of reads 89 011 25 278 16 618 24 063 8122 19 623

Split reads (%) N/A 1.01 4.90 0 5.47 53.02

Average length 4284 11 157 10 260 8840 9345 3244

Number of bases (Mbp) 381 285 179 213 81 175

Average identity (%) 70.09 99.75 99.40 99.82 97.79 91.92

Genome coverage (%) 100 100 99.82 100 99.79 100

Runtime N/A 1 h 56 min 2 min 94 h 18 min 32 min 45 min

E. coli

Number of reads 22 270 21 970 21 005 21 818 17 154 17 478

Split reads (%) N/A 0.07 4.98 0 0.38 34.40

Average length 5999 6093 5797 7926 7080 4495

Number of bases (Mbp) 134 134 128 173 122 119

Average identity (%) 79.46 99.84 99.81 99.86 96.23 98.51

Genome coverage (%) 100 100 99.43 100 99.99 99.99

Runtime N/A 1 h 05 min 3 min 72 h 02 min 36 min 30 min

S. cerevisiae

Number of reads 205 923 72 228 33 484 71 793 — —

Split reads (%) N/A 5.13 11.47 0 — —

Average length 5698 6724 6455 5938 — —

Number of bases (Mbp) 1173 512 243 426 — —

Average identity (%) 55.49 99.10 99.54 99.59 — —

Genome coverage (%) 99.90 99.40 93.32 98.70 — —

Runtime N/A 8 h 36 min 12 min >16 days — —

C. elegans

Number of reads 363 500 278 614 219 840 — 340 826 —

Split reads (%) N/A 8.85 20.46 — 0 —

Average length 5524 5127 3905 — 5408 —

Number of bases (Mbp) 2008 1567 1058 — 1843 —

Average identity (%) 71.07 98.93 99.85 — 85.63 —

Genome coverage (%) 99.99 99.95 95.40 — 99.89 —

Runtime N/A 80 h 34 min 58 min — 16 h 38 min —

Note: The number of reads column accounts for the number of corrected long reads, not for the number of output fragments. Precise runtime is omitted for

NaS on S. cerevisiae because the results did not compute in 16 days, and the execution was therefore stopped. NaS corrected reads for this dataset were obtained

from the Genoscope website. Omitted results for a given method mean that the method was not run or did not manage to correct the long reads. The best result

for each statistic is highlighted.

HG-CoLoR 4219

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

assemblies: –assemble, OvlMerSize¼17, OvlMerDistinct¼
0.9925 and OvlMerTotal¼0.9925. The genomeSize parameter

was set independently to the exact number of bases of each reference

genome. All the other parameters were set to their default values. We

acknowledge that Canu has initially been designed to take as input a

whole set of uncorrected reads, and perform both correction and as-

sembly together. However, in practice, the two tasks are independent.

The long reads are corrected first, and only the long reads that could

be corrected are then assembled. As a result, directly providing

the long reads that could be corrected by Canu to its assembly

module, instead of providing the whole set of reads and performing

all tasks, does not impact the assembly results. Comparisons of the

assemblies with the reference genomes were performed with

MUMmer (Kurtz et al., 2004). Results are given in Table 3 and dis-

cussed below.

In agreement with what we observed in Table 2, the fact that

the long reads corrected with Jabba did not manage to cover the

whole reference genomes resulted in highly fragmented assemblies,

that could not resolve large regions of the reference genomes. As a

result, despite their high accuracy, these corrected long reads

yielded the most fragmented assemblies, that covered the least the

reference genomes, and that displayed the smallest NG50 sizes. In

particular, on the C. elegans dataset, the assembly did not reach

half of the reference genome size. MUMmer however reported a

genome coverage of slightly >50%, which was caused by dual

mappings of very small contigs, barely of the size of a long read, in

repeated regions.

As previously mentioned, compared to hybrid methods, the two

self-correction tools produced a weaker coverage depth of long

reads, that displayed higher error rates. Despite this fact, these long

reads still assembled into a small number of contigs, that displayed

high NG50 sizes, both on the A. baylyi and the E. coli datasets.

However, due to the high error rate of the long reads, these

assemblies displayed the lowest identities when compared to the ref-

erence genomes. Moreover, on these two datasets, Daccord outper-

formed Canu in terms of contiguity, NG50, and genome coverage of

the assemblies. On the A. baylyi dataset, the long reads corrected

with Daccord even assembled into a single contig.

On the A. baylyi and the E. coli datasets, NaS and HG-CoLoR

produced corrected long reads that assembled into a single contig.

The NG50 sizes were thus highly similar, and the two assemblies

only displayed two minor differences. First, a small region of E. coli

was not covered by the assembly yielded from NaS’s corrected reads.

Second, on the A. baylyi dataset, the assembly generated from HG-

CoLoR’s corrected reads displayed a slightly lower identity when

compared to the reference. However, on the S. cerevisiae dataset,

HG-CoLoR outperformed NaS in terms of contiguity, NG50 size,

and genome coverage of the assemblies.

On the larger C. elegans dataset, despite the fact that the long

reads corrected with Canu covered the reference genome well, the

assembly they generated failed to resolve 11% of the reference gen-

ome. As previously mentioned, the identity when compared to the

reference genome was also quite low. Therefore, only the long reads

corrected with HG-CoLoR resulted in an assembly displaying a high

identity, and covering the reference genome well. The number of

contigs and the NG50 size were also more satisfying than those

from the other assemblies, despite the fact that they remained far

from those of the actual genome.

4.4 Details on HG-CoLoR results
We further focus on HG-CoLoR results, and analyze more in depth

the way correction is performed, by observing where the bases of the

corrected long reads originate from, for both the simulated and the

real datasets. We also comment on how the length of the short reads

impacts the quality of the results.

Table 3. Statistics of the assemblies generated from the corrected real Oxford Nanopore long reads

Method HG-CoLoR Jabba NaS Canu Daccord

A. baylyi

Long reads coverage 793 50� 59� 22� 49�
Number of contigs 1 14 1 3 1

NG50 3 634 461 216 679 3 629 508 2 887 573 3 520 381

Genome coverage (%) 99.99 89.03 100 99.39 100

Identity (%) 99.94 99.94 99.99 97.04 97.06

E. coli

Long reads coverage 29� 28� 37� 26� 26�
Number of contigs 1 41 1 3 2

NG50 4 659 731 138 730 4 635 116 3 155 369 4 558 944

Genome coverage (%) 100 95.81 99.90 99.82 100

Identity (%) 99.99 99.99 99.99 97.23 97.84

S. cerevisiae

Long reads coverage 41� 20� 34� — —

Number of contigs 67 138 119 — —

NG50 297 575 47 164 146 459 — —

Genome coverage (%) 97.57 68.67 97.44 — —

Identity (%) 99.92 99.99 99.95 — —

C. elegans

Long reads coverage 15� 10� — 183 —

Number of contigs 352 1 369 — 1 049 —

NG50 458 250 — — 116 510 —

Genome coverage (%) 98.41 53.86 — 88.75 —

Identity (%) 99.86 99.97 — 95.60 —

Note: Reported identities stand for the 1-to-1 alignments. Omitted NG50 size mean that the assembly did not reach half of the reference genome size. The best

result for each statistic is highlighted.

4220 P.Morisse et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

Deleted Text: -
Deleted Text: ,
Deleted Text: more than

4.4.1 Origin of the bases

We provide a description indicating whether the bases come from

seeds, graph traversals or original long reads in Table 4. It appears

that on the three simulated datasets, for which the error rate was

around 17%, most bases of the corrected long reads come from the

seeds. As the error rate of these long reads was relatively low com-

pared to other datasets, the short reads could indeed align more eas-

ily, cover larger regions of the long reads, and less graph traversals

were therefore needed. Only very few uncorrected bases remain, the

largest proportion only being of slightly >1% on the S. cerevisiae

dataset. These observations also apply to the real E. coli dataset, for

which the error rate was of slightly >20%.

On the three other real datasets, that displayed a much higher

error rate, more bases originate from the traversals of the graph. On

the C. elegans dataset, displaying an error rate of 29%, almost

as many bases come from the seeds as from the graph traversals.

This tendency further accentuates as the error rate rises. On the

S. cerevisiae dataset, for which the error rate is higher than 44%,

more than twice as many bases come from the graph traversals than

from the seeds. In any case, the non-negligible proportion of bases

coming from graph traversals, for all the datasets, underlines the

usefulness of the graph.

The proportion of uncorrected bases also tends to rise with both

the error rate and the genome complexity. Indeed, the largest propor-

tion of such bases can be observed on the highly noisy S. cerevisiae

dataset. However, on the C. elegans dataset, which has a lower error

rate than that of A. baylyi, almost 7% of the bases could not be cor-

rected. This likely comes from the genome complexity, and from the

fact that repeated regions were therefore harder to resolve, even with

the high maximum order used for the graph.

4.4.2 Impact of the short reads length

All the short reads used in our experiments are of length 250–

300 bp, despite the fact that the vast majority of Illumina reads

being produced are shorter, and still in the 100–150 bp range.

However, HG-CoLoR does not require the short reads to be that

long in order to perform efficient error correction. Results of HG-

CoLoR, on both simulated and real datasets, when using a 50�
coverage of 125 bp short reads, are given in Supplementary Tables

S6–S8, and show that HG-CoLoR actually performs even better

with such shorter reads.

4.5 Impact of the variable-order de Bruijn graph
In order to further validate the usefulness of using a variable-order

de Bruijn graph over a classical one, we ran another experiment on

the real S. cerevisiae dataset. We used the same parameters as in the

previous experiments, except for the minimum order of the graph,

which we set to the same value as the maximum order, 100, in order

to only traverse a classical de Bruijn graph. Results of this experi-

ment, and comparison to the results achieved when using a variable-

order de Bruijn graph are given in Table 5.

These results show that using a variable-order de Bruijn graph in-

deed allows to perform a more efficient error correction, in particular

in subgraphs corresponding to regions where the short reads coverage

in insufficient. When using a classical de Bruijn graph, these sub-

graphs result in more uncorrected regions, and thus more split, and

shorter long reads, which can actually be properly corrected, without

any loss of quality, with a variable-order de Bruijn graph.

Although the type of graph does not affect the genome coverage

of the long reads, the quality of the assembly greatly decreases when

using a classical de Bruijn graph. Indeed, correcting the long reads

with a classical de Bruijn graph resulted in an assembly composed of

40 more contigs, reaching a NG50 two times smaller, and covering

the reference genome 1% less than the assembly generated after cor-

recting the long reads with a variable-order de Bruijn graph.

5 Conclusion

We described HG-CoLoR, a new hybrid method for the error cor-

rection of long reads that combines two approaches from the state-

of-the-art into a seed-and-extend strategy. The short reads are first

aligned to the long reads, in order to discover seeds. These seeds are

then used as anchors on a variable-order de Bruijn graph, built from

the short reads, and linked together by traversing the graph, in order

to correct uncovered regions of the long reads.

Our experiments show that, compared against state-of-the-art

hybrid and non-hybrid error correction tools, HG-CoLoR provides

the best trade-off between runtime and quality of the results, both in

terms of quality of the error correction itself, and in terms of quality

of the assemblies generated from the corrected long reads. Further

experiments also show that our method is the only one able to effi-

ciently scale to eukaryotic genomes.

The development of this method and our experiments underline

the fact that, despite already being useful, self-correction methods

are still not satisfactorily applicable to highly noisy long reads.

Indeed, they do not manage to perform error correction at all on

long reads sequenced with early chemistries, which display a very

high error rate. They also do not scale to eukaryotic genomes, either

completely failing to perform correction, or barely reducing the

error rate. Therefore, hybrid approaches remain more efficient to

correct long reads, either in the case of eukaryotic genomes, or in

Table 4. Proportion of bases coming from seeds, graph traversals

and original long reads, in the long reads corrected with HG-CoLoR

Dataset Seeds bases

(%)

Graph bases

(%)

Raw bases

(%)

A. baylyi (simulated) 68.95 30.97 0.08

E. coli (simulated) 67.01 32.74 0.25

S. cerevisiae (simulated) 63.97 34.82 1.21

A. baylyi (real) 36.37 60.53 3.10

E. coli (real) 62.61 37.04 0.35

S. cerevisiae (real) 24.41 60.22 15.37

C. elegans (real) 48.94 44.23 6.83

Table 5. Impact of the variable-order de Bruijn graph on the results,

on the real S. cerevisiae dataset

Graph Variable-order Classical

Correction

Number of reads 72 228 72 228

Split reads (%) 5.13 6.89

Average length 6724 6525

Number of bases (Mbp) 512 507

Average identity (%) 99.10 99.06

Genome coverage (%) 99.40 99.40

Runtime 8 h 36 min 6 h 13 min

Assembly

Long reads coverage 41� 41�
Number of contigs 67 107

NG50 297 575 153 845

Genome coverage (%) 97.57 96.57

Identity (%) 99.92 99.92

HG-CoLoR 4221

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

Deleted Text: more than
Deleted Text:
Deleted Text: more than
Deleted Text: -
Deleted Text: -
Deleted Text: x
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty521#supplementary-data
Deleted Text: B
Deleted Text: that

the case of very high error rates, as resequencing is not always af-

fordable, and that even recent data still frequently display high error

rates.

Our experiments also underline the usefulness of using a

variable-order de Bruijn graph instead of a classical one. Indeed, a

variable-order de Bruijn graph allows to efficiently correct the long

reads, in particular in regions where the short reads coverage is in-

sufficient, and where a classical de Bruijn graphs fails to perform

correction due to missing edges. The use of a variable-order de

Bruijn graph thus allows to correct larger regions of the long reads,

without any loss of quality. This does not only improve the error

correction itself, but also benefits the contiguity and overall quality

of the downstream assemblies.

As further work, we plan to focus on a new implementation of

PgSA, as the current one does not support parallel querying of the

index, and therefore forces HG-CoLoR to use mutexes. Getting rid

of that need would reduce the runtime of the method. Another index

structure allowing to query a set of k-mers with strings of variable

length, and supporting parallel querying, could also replace PgSA.

Another direction is to try out other aligners for the alignment step

of the short reads to the long reads, in order to possibly discover the

seeds quicker, or correct more long reads.

Acknowledgements

The authors would like to thank the Genoscope for the availability of most of

the data used in this paper. Part of this work was performed using computing

resources of CRIANN (Normandy, France).

Funding

This work was supported by Défi MASTODONS C3G project from CNRS.

Conflict of Interest: none declared.

References

Allam,A. et al. (2015) Karect: accurate correction of substitution, insertion

and deletion errors for next-generation sequencing data. Bioinformatics, 31,

3421–3428.

Bao,E. and Lan,L. (2017) HALC: high throughput algorithm for long read

error correction. BMC Bioinformatics, 18, 204.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Boucher,C. et al. (2015). Variable-order de Bruijn graphs. In Proceedings of

the 2015 Data Compression Conference, IEEE Computer Society,

Washington, DC, pp. 383–392.

Bowe,A. et al. (2012). Succinct de Bruijn Graphs. Springer, Berlin Heidelberg,

pp. 225–235.

Chaisson,M.J. and Tesler,G. (2012) Mapping single molecule sequencing

reads using basic local alignment with successive refinement (BLASR): appli-

cation and theory. BMC Bioinformatics, 13, 238.

Chin,C.-S. et al. (2013) Nonhybrid, finished microbial genome assemblies

from long-read SMRT sequencing data. Nat. Methods, 10, 563–569.

Goodwin,S. et al. (2015) Oxford Nanopore sequencing, hybrid error correc-

tion, and de novo assembly of a eukaryotic genome. Genome Res., 25,

1750–1756.

Haghshenas,E. et al. (2016) CoLoRMap: correcting long reads by mapping

short reads. Bioinformatics, 32, i545–i551.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Kielbasa,S.M. et al. (2011) Adaptive seeds tame genomic sequence compari-

son. Genome Res., 21, 487–493.

Kokot,M. et al. (2017) KMC3: counting and manipulating k-mer statistics.

Bioinformatics, 33, 2759–2791.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res., 27,

722–736.

Kowalski,T. et al. (2015) Indexing arbitrary-length k-mers in sequencing

reads. PLoS One, 10, e0133198.

Kurtz,S. et al. (2004) Versatile and open software for comparing large

genomes. Genome Biol., 5, R12.

La,S. et al. (2017) LRCstats, a tool for evaluating long reads correction meth-

ods. Bioinformatics, 33, 3652–3654.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics, 26, 589–595.

Lin,Y. and Pevzner,P.A. (2014). Manifold de Bruijn Graphs. Springer, Berlin

Heidelberg, pp. 296–310.

Madoui,M.-A. et al. (2015) Genome assembly using Nanopore-guided long

and error-free DNA reads. BMC Genomics, 16, 327.

Marçais,G. et al. (2015) QuorUM: an error corrector for illumina reads. PLoS

One, 10, e0130821.

Miclotte,G. et al. (2016) Jabba: hybrid error correction for long sequencing

reads. Algorithms Mol. Biol., 11, 10.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.

Salmela,L. et al. (2017) Accurate selfcorrection of errors in long reads using de

Bruijn graphs. Bioinformatics, 33, 799–806.

Stöcker,B.K. et al. (2016) SimLoRD: simulation of long read data.

Bioinformatics, 32, 2704–2706.

4222 P.Morisse et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4213/5046256 by guest on 23 April 2024

	bty521-TF1
	bty521-TF2
	bty521-TF3

