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Abstract

Background: Genome-scale metabolic network models and constraint-based modeling techniques

have become important tools for analyzing cellular metabolism. Thermodynamically infeasible

cycles (TICs) causing unbounded metabolic flux ranges are often encountered. TICs satisfy the

mass balance and directionality constraints but violate the second law of thermodynamics. Current

practices involve implementing additional constraints to ensure not only optimal but also loopless

flux distributions. However, the mixed integer linear programming problems required to solve be-

come computationally intractable for genome-scale metabolic models.

Results: We aimed to identify the fewest needed constraints sufficient for optimality under the

loopless requirement. We found that loopless constraints are required only for the reactions that

share elementary flux modes representing TICs with reactions that are part of the objective func-

tion. We put forth the concept of localized loopless constraints (LLCs) to enforce this minimal

required set of loopless constraints. By combining with a novel procedure for minimal null-space

calculation, the computational time for loopless flux variability analysis (ll-FVA) is reduced by a fac-

tor of 10–150 compared to the original loopless constraints and by 4–20 times compared to the cur-

rent fastest method Fast-SNP with the percent improvement increasing with model size.

Importantly, LLCs offer a scalable strategy for loopless flux calculations for multi-compartment/

multi-organism models of large sizes, for example, shortening the CPU time for ll-FVA from 35 h to

less than 2 h for a model with more than104 reactions.

Availability and implementation: Matlab functions are available in the Supplementary Material or

at https://github.com/maranasgroup/lll-FVA

Contact: costas@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A genome-scale model (GSM) provides an inventory of reactions for

a given organism that allows for the analysis of cellular metabolism

and the design of gene modulation strategies for bioproduction.

Despite extensive manual curations, thermodynamically infeasible

cycles (TIC) often exist in GSMs because of overly permissive reac-

tion inclusion or directionalities that can affect flux range calcula-

tions using flux balance analysis (FBA, Orth et al., 2010) and/or flux

variability analysis (FVA, Gudmundsson and Thiele, 2010;

Mahadevan and Schilling, 2003). A TIC is an internal cycle in the

metabolic network satisfying mass balances and directionality con-

straints without involving any exchange reactions, i.e. no system in-

put/output is required. For example, a TIC is formed by the

following three reactions:

i. H2O þ Glutamate þ NADþ $ Hþ þ NHþ4 þ NADH þ
2-Oxoglutarate
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ii. Alanine þ 2-Oxoglutarate$ Pyruvate þ Glutamate

iii. H2O þ Alanine þ NADþ $Hþ þ Pyruvate þ NHþ4 þNADH

The cycle can carry an arbitrarily large flux when performing FBA

despite the fact that any turn around the cycle does not produce or

consume any metabolites. Thus, it violates the second law of ther-

modynamics as the net change of Gibbs free energy is zero. FVA of

the TIC participating reactions always predicts unbounded flux

ranges. The unbounded fluxes may affect regulatory constraints by

making the regulated fluxes essentially unresponsive to any imposed

regulation (Dash et al., 2014). In addition, strain design algorithms

such as OptForce (Chowdhury et al., 2014; Ranganathan et al.,

2010) which rely on precise flux range calculations can also be ad-

versely affected by the presence of TICs.

While TICs can be eliminated by simply a priori restricting the

directionality of some reactions participating in TICs, this may also

rule out biologically realistic phenotypes. In the aforementioned

example, thermodynamics dictates that all three reactions are

reversible under standard cellular concentrations. Several methods

have been proposed to identify and eliminate TICs without over-

restricting directionalities. The min-sum flux procedure first

identifies the maximum biomass yield and then imposes this as a re-

quirement while minimizing the sum of fluxes in the network

(Holzhütter, 2004). A variation of this principle is adopted in parsi-

monious FBA (Lewis et al., 2010). The min-sum flux criterion,

however, can become too restrictive ruling out other possibly

physiologically meaningful flux distributions and does not necessar-

ily eliminate all TICs. Thermodynamic metabolic flux analysis is a

method which takes metabolite concentrations into account to deter-

mine directionality, but relies on a prior knowledge of the standard

Gibbs free energy and physiologically relevant ranges for metabolite

concentrations (Henry et al., 2007). Post-processing TIC removal

has also been proposed in the recent CycleFreeFlux framework

(Desouki et al., 2015). CycleFreeFlux detects and removes TICs in

a given flux distribution by solving an additional linear program-

ming (LP) problem and uses an iterative algorithm to calculate

FVA ranges for reactions participating in TICs. However, the

optimality of the flux distribution with respect to the objective

function after TIC removal cannot be guaranteed. Alternatively,

loopless FVA (ll-FVA) directly computes the flux range for a reac-

tion in the absence of any TICs (Maranas and Zomorrodi, 2016;

Schellenberger et al., 2011):

min=max vj

s:t:
X

j2J

Sijvj ¼ 0; 8i 2 I (1)

LBj � vj � UBj; 8j 2 J (2)

�Mð1� yjÞ � vj � Myj; 8j 2 Jint (3)

�Myj þ eð1� yjÞ � Gj � �eyj þMð1� yjÞ; 8j 2 Jint (4)

X

j2Jint

Nint
jr Gj ¼ 0; 8r 2 f1; . . . ;Rg

(5)

yj 2 f0; 1g;Gj 2 R; 8j 2 Jint

vj 2 R; 8j 2 J

where I is the set of metabolites, J is the set of reactions, Jint is the set

of internal reactions (non-exchange reactions), S ¼ ½Sij�i2I;j2J is the

stoichiometric matrix (S-matrix) of the network, vj is the flux of

reaction j, LBj and UBj are the lower and upper bounds respectively,

Nint ¼ ½Nint
jr �j2J;r2f1;...Rg is a null-space matrix of rank R of the

S-matrix for internal reactions Sint ¼ ½Sij�i2I;j2Jint , Gj is a continuous

variable associated with internal reaction j analogous to the change

in Gibbs free energy of the reaction, M is a large positive constant,

e is a small positive constant, yj is a binary variable. Figure 1A shows

a toy network and the associated S-matrix. There are three TICs:

R1þR2, R5þR6 and R5þR7, which are identified in the null-

space matrix (Fig. 1B). The null-space matrix also contains an in-

feasible loop R3þR4 (2nd column) because R3 and R4 form a cycle

if they are reversible reactions. ll-FVA formulates a mixed integer

linear programming (MILP) problem with the number of free binary

variables equal to the number of non-zero rows in the null-space ma-

trix (7 in the toy network, see Fig. 1B). It becomes more time con-

suming for larger models, e.g. 10 h for the E.coli iJO1366 model

(Orth et al., 2011) as reported in Saa and Nielsen (2016), which pre-

sented a novel approach to largely reduce the time for ll-FVA by

invoking a Fast-Sparse Null-space Pursuit (Fast-SNP) algorithm. Fast-

SNP selects a minimal sparse null-space basis Nint that spans a sub-

space containing all possible internal loops and excludes infeasible

loops when the reaction directionality is specified (e.g. R3þR4 in the

toy network; see Fig. 1B–C). In this way, variables Gj and yj become

uncoupled from the rest of the formulation and can be pre-calculated

for all reactions j that do not participate in any TIC, for example, GR3

and GR4, as the coefficients for rows R3, R4 are zero in the null-space

matrix. This reduces the number of binary variables from seven to

five. In general, the number of binary variables being active in ll-FVA

(the key determinant of the MILP complexity) is reduced to the num-

ber of reactions participating in any TICs using Fast-SNP.

In addition to null-space reduction, it is intuitively true that con-

straints for loopless solutions are redundant while performing FVA

analysis for reactions not present in TICs (e.g. R3 in Fig. 1A).

Moreover, when finding the flux range for a reaction in a TIC (e.g.

R7 of TIC R5þR7 in Fig. 1A), the constraints for restricting other

independent TICs (e.g. R1þR2 in Fig. 1A) can also be removed to

simplify the model. As a result, a complete set of loopless constraints

defined in ll-FVA is not necessary for analyzing every reaction.

Herein, we generalize these observations by introducing the concept

of localized loopless constraints (LLCs) along with a novel algo-

rithm to compute a minimal null-space basis. LLCs are constraints

that are only invoked for reactions present in the objective function.

The MILP problem has a reduced number of binary variables with

LLCs imposed during FVA compared to ll-FVA and finds an optimal

flux distribution that has no TIC involving the reactions present in

the objective function, thus attaining the same flux range as the ori-

ginal ll-FVA problem. By solving an additional LP problem to re-

move other independent TICs, an optimal loopless flux distribution

can be computed. We prove that the minimum number of the

required binary variables to enforce a loopless requirement when

maximizing or minimizing reaction j is equal to the number of reac-

tions that share an elementary flux mode of a TIC with reaction j.

We prove that as long as the reactions in the objective function and

ATP maintenance (ATPM, usually the only reaction with an active

lower bound) are not in any TICs, the optimum solution value is un-

affected without the constraints for loopless solutions. By using

LLCs and a novel null-space algorithm, we are able to further accel-

erate loopless flux calculations significantly. The null-space calcula-

tion time is reduced by 4–1000 times compared to the current

available fastest procedure Fast-SNP (Saa and Nielsen, 2016). For

the models previously tested using Fast-SNP, LLCs exhibits an im-

provement of 4 to 10 times in the overall computational time com-

pared to Fast-SNP and 10–150 times compared to the use of the
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original constraints (3)–(4) for loopless solutions. We tested commu-

nity models consisting of multiple E.coli and observed 8 to 20-fold

improvement by using LLCs compared to Fast-SNP. This implies

that LLCs is a tractable and scalable strategy for loopless flux calcu-

lations in multi-compartment/multi-organism models. The Matlab

functions for the COBRA Toolbox (Heirendt et al., 2017) are avail-

able in https://github.com/maranasgroup/lll-FVA.

2 Materials and methods

In this section, the concept and applications of LLCs for finding

loopless flux distributions given a minimal null-space matrix charac-

terizing all TICs are developed in Sections 2.1–2. 4. A novel algo-

rithm for computing a minimal null-space follows in Section 2.5.

The overall procedure is summarized in Section 2.6. Throughout

this work, a flux distribution v ¼ ½vj�j2J is defined as a vector satisfy-

ing the steady-state condition Eq. (1) and the bound constraint

Eq. (2). vint ¼ ½vj�j2Jint denotes the vector containing the fluxes of all

internal reactions in Jint. The proofs for the propositions presented

are given in Supplementary Methods. The network in Figure 1 is

used as a running example to explain the concepts and definitions.

2.1 Thermodynamically infeasible cycles
Thermodynamically infeasible cycles (TICs) are defined as follows:

Definition 1

A TIC is a nonzero flux distribution v such that Sintvint ¼ 0.

In the toy network, for example, vR1 ¼ vR2 ¼ 1 is a TIC and vExA ¼
vR1 ¼ vR3 ¼ vR5 ¼ vExD ¼ 1 is not. We now define the relation of a

flux distribution containing a sub flux distribution.

Definition 2

A flux distribution v is said to contain another flux distribution

v0, denoted by v0�v, if each flux v0j in v0 is either zero or has the

same sign as vj with a smaller or equal magnitude, i.e.

0 � sgnðvjÞv0j � sgnðvjÞvj; 8j 2 J

where sgn(vj) ¼ 1 if vj � 0 and ¼ �1 if vj < 0. Furthermore, v is

said to properly contain v0, denoted by v0 � v, if in addition to v0�v,

there exists at least one reaction having nonzero flux in v with zero

flux in v0, i.e.

9 j 2 J s:t: v0j ¼ 0 and vj 6¼ 0

The relation v0�v used in this article has a meaning different from

the common usage of v0 being component-wise less than v. Instead,

in the context of this work, it implies that v0 and v have the same

dimensions and the magnitude of all fluxes in v0 are between zero

and the corresponding value in v. The relation v0 � v implies that in

addition to v0�v as defined, v0 and v also satisfy that the set of reac-

tions with zero fluxes for v is a proper subset of the set of reactions

with zero fluxes for v0. We also invoke the concept of elementary

flux modes (EFMs), which are flux distributions not properly con-

taining any nonzero flux distribution (Schuster and Hilgetag, 1994).

Definition 3

A flux distribution e is an EFM if v � e ) v ¼ 0.

In other words, if a flux distribution e is an EFM then the only flux

distribution it properly contains is v¼0.

2.2 Localized loopless constraints
In this section, we present the localized loopless constraints (LLCs)

for inactivating TICs that involve a specific subset of reactions. Let

Jtic ¼ fjj9 TIC v such that vj 6¼ 0g be the set of reactions partici-

pating in any TICs (e.g. Jtic ¼ {R1, R2, R5, R6, R7} in the toy net-

work of Fig. 1A). Let K ¼ {1, . . ., K} be the index set for all EFMs

e1, . . ., eK, Kll ¼ fk 2 Kj9 j 2 JnJint such that ejk 6¼ 0g be the set

of loopless EFMs. Ktic ¼ K\Kll is then the set of all TIC EFMs (see

Fig. 1D). Assume that only specific TICs involving a set of target

reactions in T � Jtic are required to be inactivated in the flux distri-

bution, i.e. TICs not containing any reactions in T can still be part

A B

C D E

Fig. 1. Toy network for illustrating the idea of localized loopless constraints. (A) A toy network with TICs and the associated stoichiometric matrix. (B) The original

constraints for loopless flux calculations imposed on all internal reactions. (C) The previously proposed Fast-SNP (Saa and Nielsen, 2016) to find a minimal null-

space. GR3, GR4, yR3, yR4 become uncoupled from the rest of the formulation and can be pre-calculated. (D) The proposed LLCs using elementary flux modes that

represent TICs. Constraints are imposed only on reactions that are connected to the target reaction R7 by any EFM. The number of binary variables is reduced to

two. (E) The proposed LLCs based on the connected components of the null-space. The number of binary variables is three, equal to the size of the connected

component containing the target reaction R7. EFM calculations are not required

4250 S.H.J.Chan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4248/5026660 by guest on 10 April 2024

https://github.com/maranasgroup/lll-FVA


of the flux distribution. Denote the set of TIC EFMs involving

any reactions in T by Ktic
T ¼ fk 2 Kticj9 j 2 T such that ejk 6¼ 0g.

By the ‘no-cancellation’ rule (Schuster et al., 2002) used extensively

before (Carlson, 2009; Chan and Ji, 2011; Chan et al., 2014; Ip

et al., 2011; Schwartz and Kanehisa, 2005, 2006; Zhao and Kurata,

2009), any flux distribution v can be decomposed into EFMs as

follows:

v ¼ vll þ vtic

¼ vll þ vtic; nontarget þ vtic; target

¼
X

k2Kll

akek þ
X

k2KticnKtic
T

akek þ
X

k2Ktic
T

akek; ak � 0; 8k 2 K
(6)

where vll is the loopless part of the flux distribution v and vtic con-

sists of TICs only. vtic can be decomposed into TICs not involving

any target reactions in T (vtic, nontarget) and TICs through reactions

in T (vtic, target). From Eq. (6), blocking the target set of EFMs Ktic
T

is sufficient to ensure vtic, target ¼ 0 and thus eliminate TICs

through reactions in T from v. Let CEFM
T ¼ fj 2 Jticj9 k 2 Ktic

T

such that ejk 6¼ 0g be the set of reactions connected to T by any

target TIC EFMs. It contains all reactions that can have nonzero

fluxes in vtic, target. In the toy network, R7 is used as an example

target reaction, i.e. T ¼ {R7}. From the EFM matrix, only the

fifth EFM is a TIC EFM that involves R7, therefore, Ktic
T ¼ f5g

and CEFM
T fR5; R7g (see Fig. 1E). Proposition 1 states that the

LLCs imposed on CEFM
T , which are Eqs. (7)–(8), eliminate TICs

involving T.

Proposition 1

A flux distribution v does not contain any TICs involving reac-

tions in T if Eq. (3) and Eqs. (4)–(5) restricted to j 2 CEFM
T are

satisfied:

�Mð1� yjÞ � vj � Myj; 8j 2 CEFM
T (7)

�Myj þ eð1� yjÞ � Gj � �eyj þMð1� yjÞ; 8j 2 CEFM
T (8)

X

j2Jint

Nint
jr Gj ¼ 0; 8r 2 f1; . . . ;Rg (9)

Gj 2 R; 8j 2 Jint

yj 2 f0; 1g; 8j 2 CEFM
T

See Supplementary Methods for the proof. The idea is to derive the

equations by constraining vtic, target in Eq. (6) to zero. The LLCs and

the proof in Supplementary Methods refine the original constraints

and the previously presented proof Noor et al. (2012). In the toy net-

work, by Proposition 1, Eqs. (7)–(8) constraining only {R5, R7} are

sufficient to prevent any TIC involving R7. However, if T ¼ {R5},

since there is one TIC EFM connecting R5 and R6 and one connect-

ing R5 and R7, CEFM
T ¼ fR5; R6; R7g is required to be constrained

in Eqs. (7)–(8) to prevent TICs involving R5.

2.3 Determination of the target reaction set for

applying LLCs
Proposition 1 implies that the number of binary variables can be

reduced if only the specific TICs involving the target reactions in T

(e.g. R5 and R7 in the toy network) are required to be inactivated.

Indeed in many applications, the optimal objective function value of

a MILP with the original constraints for loopless solutions is equal

to that with suitably selected LLCs. The optimal loopless solution

can also be derived from the corresponding partially loopless solu-

tion. Consider the following general LP problem for fin ding a flux

distribution v:

min
X

j2J

cjvj

s:t:
X

j2J

Sijvj ¼ 0; 8i 2 I

X

j2J

apjvj � bp; 8p 2 f1; . . . ;Pg

vj 2 R; 8j 2 J

(10)

where P is the number of additional constraints. From Eq. (6), by

applying LLCs, we already have vtic, target ¼ 0. Obviousely, both vll

and vtic, nontarget satisfy the mass balance equation. Therefore, as long

as vtic, nontarget does not contribute to the optimal objective function

value (i.e.
P

j2Jtic cjv
tic; nontarget
j ¼ 0) and vll alone satisfies the addition-

al P constraints (i.e.
P

j2J apjvj � bp for all p), then vll is an optimal

feasible solution to problem (10). Proposition 2 establishes a useful

sufficient condition for using LLCs based on this idea.

Proposition 2

Denote the sets of reactions whose forward and reverse direc-

tions participate in TICs respectively by Jtic
fwd ¼ fj 2 Jticj9 k 2 Ktic s:t

: ejk > 0g and Jtic
rev ¼ fj 2 Jticj9 k 2 Ktic s:t: ejk < 0g. For the LP

problem (10), assume that the target reaction set T � Jtic contains

all reactions in TICs satisfying one of the following three conditions:

i. j 2 Jtic
fwd and cj < 0

ii. j 2 Jtic
rev and cj > 0

iii. Conditions (A) and (B) are satisfied:

(A) ðj 2 Jtic
fwd and 9 p s:t: apj < 0Þ or ðj 2 Jtic

rev and 9 p s:t:

apj > 0Þ
(B) 9 p s:t: apj 6¼ 0 and ðapj0 6¼ 0 for some j0 6¼ j or bp < 0Þ

Then the optimal objective function value of the LP

problem (10) constrained with the localized loopless constraints

Eqs. (7)–(9) is equal to the optimal objective function value of the

LP problem (10) constrained with the original loopless constraints

Eqs. (3)–(5).

Conditions (I) and (II) state that a reaction in Jtic
fwd or in Jrev

fwd

needs to be put in the target set T only when the reaction flux is

being maximized or minimized, respectively. In the toy network,

Jtic
fwd ¼ fR1; R2; R5; R6; R7g and Jtic

rev is empty. Though R1 and

R5 are reversible, the reverse direction does not participate in any

TIC. Condition (III.A) excludes a reaction that is in TICs from T

even when it is constrained in the problem as long as it participates

in TICs only in the forward (or reverse) direction and meanwhile the

corresponding constraint coefficients for that reaction are all non-

negative (or non-positive). Condition (III.B) excludes most of the

bound constraints on fluxes in Eq. (2) with LBj � 0 and UBj � 0.

For example, vR2 � 1 and vR2 � 0 do not satisfy conditions (III.A)

and (III.B) respectively. These constraints do not necessitate putting

R2 in T. For vR2 � 1 and �vR2 þ vR4 � 0, both of them satisfy con-

ditions (III.A) and (III.B). If any one of the two constraints is in the

problem, R2 must be included in T. The proof is provided in

Supplementary Methods. An optimal loopless flux distribution vll

can be obtained by removing all TICs not involving any target reac-

tions vtic, nontarget contained in the localized loopless flux distribution

Localized loopless constraints for flux balance calculations 4251
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v* which is the solution of problem (10) with LLCs, i.e. Eqs. (7)–(9)

imposed. vtic, nontarget is computed by maximizing the internal fluxes

contained in v* (Desouki et al., 2015):

vtic; nontarget ¼ argmax
vj ;j2J

X

j2Jint

sgnðv�j Þvj

s:t:
X

j2J

Sijvj ¼ 0; 8i 2 I

0 � sgnðv�j Þvj � sgnðv�j Þv�j ; 8j 2 Jint

vj ¼ 0 8j 2 JnJint

(11)

The loopless flux distribution is then calculated by vll¼ v* – vtic, nontarget.

In the toy network, Proposition 2 states that applying LLCs with

T ¼ {R7} is sufficient to find the maximum of vR7. Solving with

LLCs may result at the flux distribution:

R1 R2 R3 R4 R5 R6 R7 ExA ExD

½1000 1000 0 0 1000 1000 0 0 0�T

Despite the fact that it contains TICs, LLCs on R5, R7 prevent any

TICs through R7. The completely loopless flux distribution v¼0

can be obtained by solving problem (11). In this way, the number of

binary variables in solving MILP is reduced from 7 using the original

null-space (see Fig. 1B) to 5 using the Fast-SNP null-space (see

Fig. 1C), and further down to 2 using LLCs (see Fig. 1D). We define

the active fraction f as the fraction of active binary variables relative

to the number of reactions in TICs in an MILP problem for loopless

flux calculation, i.e.

f ¼ jCEFM
T j=jJticj

For finding the range for R7, i.e. T ¼ {R7}, we have f¼0.4. Taking

T ¼ {R5} as another example, although R5 is in TICs and is revers-

ible, only the forward direction of R5 is in TICs. When minimizing

vR5 (cR5 ¼ 1 and R5 62 Jtic
rev do not satisfy any of the conditions in

Proposition 2), solving the LP problem gives the same minimum

for vR5 as solving with the original constraints for loopless solu-

tions. In this case, f¼0. A common constraint in metabolic models

that satisfies condition (III) of Proposition 3 is the positive lower

bound for the ATP maintenance (ATPM) reaction. Nonetheless,

ATPM appearing in a TIC implies that it is coupled to an energy

generating cycle, which should be resolved by manual curation

(Fritzemeier et al., 2017). Therefore, Proposition 2 guarantees that

in a well-curated model free of ATP-generating cycles, the standard

FBA and FVA can be performed without any constraints for loop-

less solution when the objective function does not concern any

reactions in TICs (i.e. T is empty). In other applications where

dense objective functions are used, all loopless constraints may be

required depending on the sign of the objective coefficients for

reactions in TICs. In this case, the improvement brought by LLCs

may not be significant. Fortunately, the min-sum-flux objective

function, which is one of the most frequently used dense objective

functions, does not require any LLCs because it is equivalent to

splitting each reversible reaction into two irreversible reactions for

the forward and reverse directions and minimizing the sum of

fluxes, i.e. Jtic
rev is empty and cj ¼ 1 for all j. Therefore, none of the

conditions in Proposition 2 is satisfied. Another common situation

requiring LLCs is the presence of positive lower or negative upper

bounds on internal fluxes derived from experimental data (e.g.

Vmax) for reactions participating in TICs, which satisfies condition

(III) in Proposition 2.

2.4 Finding a superset for reactions connected to the

target set
One challenge in implementing LLCs is to determine CEFM

T , the set

of reactions connected to T by any TIC EFMs. This entails the use

of the entire set of EFMs which in some cases could be computation-

ally intractable due to combinatorial explosion (Klamt and Stelling,

2002). However, the minimal null-space matrix offers a computa-

tionally efficient way to find a superset of CEFM
T that is smaller than

Jtic when computing EFMs is not preferred. Using the minimal null-

space matrix, we can define that two reactions are connected if

(i) they both have nonzero values in a column in the null-space

matrix or (ii) if there is a reaction connected to both of them (i.e.

the connectivity is transitive). Figure 1E visualizes the relation in the

toy network. Pairs R5þR6 and R5þR7 satisfy condition (i).

Therefore, R5 is connected to both R6 and R7. By condition (ii), R6

and R7 are also connected via R5. Under this relation of connection,

the reactions in TICs Jtic can be partitioned into L connected compo-

nents Jtic
l � Jtic for l ¼ 1; . . . ;L (e.g. J1

tic ¼ {R1, R2} and J2
tic ¼ {R5,

R6, R7} in Fig. 1E). For any union of connected components

CNS
T ¼ [

Q
q¼1Jtic

lq
where 1� l1,. . ., lQ � L, we prove that if CNS

T con-

tains T, then it also contains CEFM
T (see Supplementary Methods for

proof), i.e.

T � CNS
T ) CEFM

T � CNS
T

Imposing LLCs on CNS
T is thus sufficient to ensure the absence of TICs

through reactions in T. In the toy network, we can apply LLCs on the

connected component CNS
T ¼ Jtic

2 ¼ fR5; R6; R7g to ensure no

TICs through R7. In this case, we still have an active fraction f¼0.6.

2.5 Algorithm for minimal null-space
In addition to introducing LLCs, we propose here a novel algorithm

for computing a minimal null-space. The current best method Fast-

SNP constructs a minimal null-space by iteratively solving LP prob-

lems to find a new feasible basis vector not lying in the null-space

under construction until no new basis vector is found. Instead, we

propose to solve a single MILP problem that find a maximal TIC such

that each reaction in Jtic carries nonzero flux. A minimal null-space

basis is then calculated from the submatrix Stic ¼ ½Sij�i2I;j2Jtic using a

sparse LU factorization algorithm termed LUSOL (Gill et al., 1987)

implemented in the COBRA toolbox. The procedure recovers the

null-space in a significantly shorter time for large models compared to

Fast-SNP. By introducing constraints similar to Eqs. (3)–(4) to model

the flux direction, the MILP problem is formulated as follows:

min
X

j2Jint

ðzþj þz�j Þ

s:t:
X

j2Jint

Sijvj¼0; 8i2 I

�MdL
j � vj �MdU

j ; 8j2 Jint

e�Mðzþj þ1�dU
j Þ � vj ��eþMðz�j þ1�dL

j Þ; 8j2 Jint

zþj ; z�j �0 8j2 Jint

vj2R 8j2 Jint

zþj ; z�j 2f0;1g 8j2 Jint if dL
j ¼dU

j ¼1

(12)

where dj
L ¼ 1 if LBj < 0 and zero otherwise whereas dj

U ¼ 1 if UBj >

0 and zero otherwise. Thus, for a reversible reaction j, dj
L ¼ dj

U ¼ 1.

The proof that all reactions in TICs have nonzero fluxes in the
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solution of problem (12) is provided in Supplementary Methods.

Problem (12) forces each reaction in TICs to have a nonzero flux by

minimizing zj
þ þ zj

�. zj
þ ¼ 0 implies that reaction j can have positive

flux in TICs and zj
� ¼ 0 implies that reaction j can have negative flux.

For each irreversible reaction j, one of the zj
þ, zj

� can be predeter-

mined (zj
þ ¼ 0 if dj

U ¼ 0 and zj
� ¼ 0 if dj

L ¼ 0) and only the other

needs to be determined. Modeling zj
þ, zj

� as continuous variables for

an irreversible reaction j suffices to force vj 6¼ 0 if it is feasible. For a

reversible reaction j, zj
þ, zj

� are required to be binary. A special prop-

erty of problem (12) is that during branch and bound for solving

MILP, branching down (take zj
þ or zj

� ¼ 0) whenever possible until

integer feasibility can always lead to an optimal solution (see

Supplementary Methods for more detailed analysis) implying that at

most 2nrev relaxed LPs need to be solved for nrev reversible reactions.

Solving problem (12) is similar to an iterative LP procedure but it

takes advantage of the built-in structure of any modern MILP solver.

In practice, problem (12) is pre-solved as LPs to determine j2Jtic
fwd and

j2Jrev
fwd simultaneously (see Supplementary Methods).

2.6 Overall procedure
Combining all the methods presented, we propose the following

procedure for performing loopless flux balance calculations:

1. Solve problem (12) to identify Jtic and compute a minimal null-

space matrix Nint using the submatrix Stic ¼ ½Sij�i2I;j2Jtic .

2. Identify the set of reactions whose forward directions are in

TICs j 2 Jtic
fwd and whose reverse directions are in j 2 Jrev

fwd by FVA

on reactions in Jtic with all exchange reactions shut down.

3. Find all connected components Jtic
l � Jtic from the null-space.

4. For each loopless flux calculation, determine the target set T for

applying LLCs using the conditions in Proposition 2.

5. Find the minimum CNS
T ¼ [

Q
q¼1Jtic

lq
such that T � CNS

T . For each

q ¼ 1, . . ., Q, calculate the complete set of EFMs for connected

component Jtic
lq

using the corresponding columns from the

S-matrix S. Determine CEFM
T from the EFMs.

6. Solve problem (10) with constraints (7)–(9) on CEFM
T to obtain

the localized loopless flux distribution v*.

7. (optional) Solve problem (11) to obtain vtic, nontarget. The

completely loopless optimal flux distribution is given by

vll 5 v* – vtic, nontarget.

See Supplementary Methods for more details on Step 1–3. If the cal-

culation of EFMs in Step 5 is not preferable, one can skip the EFM

calculation and solve the MILP problem with LLCs imposed on CNS
T

instead of CEFM
T . We have implemented the procedure in MATLAB

using the COBRA Toolbox (Heirendt et al., 2017) and the optimiza-

tion solver Gurobi (http://www.gurobi.com). EFMtool was used for

EFM computations (Terzer and Stelling, 2008).

3 Results

3.1 Single-organism models
Using the seven models tested in Saa and Nielsen (2016) excluding

the toy model therein (see Table 1), we compared the performance

between (i) ll-FVA using the original loopless constraint (referred to

as ll-FVA), (ii) ll-FVA with Fast-SNP preprocessing (referred to as

Fast-SNP), (iii) FVA with null-space-based LLCs, i.e. imposing LLCs

on CNS
T in Step 6 in Section 2.6 without EFM calculations (referred

to as NS-LLC) and (iv) FVA with EFM-based LLCs (referred to as

EFM-LLC). In the models tested, NS-LLC and EFM-LLC show

10–150	 reduction in computational needs (in CPU time) compared

to ll-FVA and 4–10	 reduction compared to Fast-SNP (Fig. 2A; see

Supplementary Table S1 for the numerical values). The time for NS-

LLC preprocessing is in general small and accounts for only <0.5%

of the total CPU time (Fig. 2B). In contrast, the time for EFM-LLC

preprocessing which includes EFM calculation is more model-

dependent and accounts for 12–64% of the total run time

respectively, for the E.coli core model and yeast6 models. In return,

EFM-LLC required an MILP solution time 2.5 times faster than that

of NS-LLC for the yeast6 model due to the overall smaller active

fraction f (fraction of active 0-1 variables relative to the number of

reactions in TICs after LLC preprocessing) using the information

from EFMs (last two columns in Fig. 2B). For all models except

yeast6, a significant amount of the solution time was spent on solv-

ing problems without any integer variables (active fraction f¼0),

i.e. LP problems only. We also tested the performance of the pro-

posed approach to obtain completely loopless flux distributions

(Step 7 in Section 2.6) when maximizing the biomass production

against ll-FBA with/without Fast-SNP preprocessing. Except

for the E.coli core model for which all methods performed similarly,

3–500-fold improvements were observed for other models

(Supplementary Table S2). Since all biomass reactions are not

part of any TICs, finding a loopless flux distribution required

solving only two LP problems [the standard FBA without any

constraints restricting TICs and problem (11) for removing inde-

pendent TICs], in contrast to solving an MILP problem in other

methods.

3.2 Multi-organism models
The computational performance of Fast-SNP, NS-LLC and EFM-

LLC was further compared using models for microbial communities.

The nine-species model previously used for modeling the gut micro-

biota (Chan et al., 2017b) and community models consisting of mul-

tiple copies of the E.coli iJO1366 (Orth et al., 2011) were tested

(Table 2). In the community models, inter-organism TICs are elimi-

nated without the need of over-restricting the directionality of intra-

cellular reactions by imposing suitable penalties on transport

reactions, e.g. consuming instead of gaining proton gradient by

exporting certain metabolites (Chan et al., 2017a). Otherwise, when

the number of organisms increases, extremely large inter-organism

TICs (involving hundreds to thousands of reactions) can appear and

cause the MILP problems to become intractable. Restricting TICs to

appear only within individual organisms and applying LLCs can be-

come a scalable procedure for loopless flux calculations for multi-

organism models because the number of binary variables in each

MILP problem solved is independent of the number of organisms.

Figure 3A shows the total CPU time of loopless FVA for all reactions

in TICs. They are the reactions for which non-trivial MILP problems

must be solved. Overall, NS-LLC and EFM-LLC show improve-

ments in computation speed of 8–16 times and 8–19 times, respect-

ively, compared to Fast-SNP. In particular for the eight-copy E.coli

community model Ec(8), Fast-SNP took 35 h of CPU time while

EFM-LLC took only 1.8 h. The reduction is caused by the larger ex-

tent of binary variable reduction (smaller active fraction f) when

solving MILP problems as the model size grows (Fig. 3B), confirm-

ing the particular advantage of LLCs for multi-organism and multi-

compartment models. Supplementary Figure S3 compares the solu-

tion time taken by NS-LLC and EFM-LLC compared to Fast-SNP

for the same MILP problems solved, respectively (see SI). They clear-

ly show that as the model size increases, the MILP complexity of

Fast-SNP grows more rapidly than NS-LLC and EFM-LLC. The

large standard deviations signify the fact that the actual reduction in

computational time is very problem-specific.
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3.3 Performance of the proposed null-space algorithm
Figure 4 shows the performance of the proposed algorithm for

computing minimal null-space compared to Fast-SNP for all

tested single-organism and microbial community models (see

Supplementary Figs S1 and S2 for the actual time spent for null-

space calculations and other steps). Except for the smallest E.coli

core model, the proposed algorithm outperformed Fast-SNP and the

advantage became more significant as the model size increases, rang-

ing from 4- to >1000-fold reduction in computational time. This

suggests that the proposed null-space algorithm scales better than

Fast-SNP.

4 Conclusions

In this paper, we propose the use of LLCs to further reduce the com-

putational cost for loopless flux calculations. Notably we proved

that for many models simply computing the LP problem without

loopless constraints is sufficient to guarantee optimality. An optimal

and loopless flux distribution can be derived from the LP solution

by a simple post-processing TIC removal. LLCs offer a scalable way

for loopless flux calculations for large multi-organism/multi-

compartment genome-scale metabolic models. Since in most tested

models except the yeast6 model, EFM-LLC slightly outperformed

NS-LLC, we recommend using EFM-LLC in the initial attempt. If

the EFM calculation is intractable, NS-LLC can be used. While NS-

LLC guarantees an efficient preprocessing (finding connected com-

ponents from the null-space matrix), it does not ensure the largest

degree of binary variable reduction as EFM-LLC does. However,

the cost of EFM computation in EFM-LLC preprocessing can be un-

predictably high due to combinatorial explosion (Klamt and

Stelling, 2002). The information required from the computed TIC

EFMs is only whether two reactions are linked by any TIC EFMs.

Computing the entire set of TIC EFMs is in most cases unnecessary.

If an efficient algorithm for determining whether a TIC EFM exists

between any two reactions in TICs can be devised, then the
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Fig. 2. Performance of the four methods for loopless FVA under comparison

on single-organism models. (A) Total CPU time. (B) Fractional breakdown of

the total CPU time into time for preprocessing and solving MILP problems

with various degree of active binary variables in terms of the active fraction f

Table 1. Single-organism models tested

Model #metabolitesa #reactionsa jJticj

E.coli core 68 87 2

iAF692 417 484 30

iNJ661 579 740 53

iYL1228 830 1223 59

STM 1086 1597 52

iJO1366 1136 1679 76

yeast6 756 1018 293

jJticj is the number of reactions in TICs.
aNumbers of metabolites and reactions after removal of blocked reactions.
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Fig. 3. Performance of Fast-SNP, NS-LLC and EFM-LLC for loopless FVA on

community models. (A) Total CPU time. (B) Fractional breakdown of the total

CPU time into time for preprocessing and solving MILP problems with vari-

ous degree of active binary variables in terms of the active fraction f. Ec(n) is

the community model of n copies of the E.coli iJO1366 model

Table 2. Microbial community models tested

Model #metabolitesa #reactionsa jJticj

9-species model 5758 7621 253

Ec(2) 2460 3615 130

Ec(3) 3625 5351 195

Ec(4) 4790 7087 260

Ec(5) 5955 8823 325

Ec(6) 7120 10559 390

Ec(7) 8285 12295 455

Ec(8) 9450 14031 520

Ec(n) is the community model of n copies of the E.coli iJO1366 model.

jJticj is the number of reactions in TICs.
aNumbers of metabolites and reactions after removal of blocked reactions.
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efficiency of loopless flux calculations can be further improved.

While we demonstrated primarily the capability of LLCs in acceler-

ating ll-FVA, LLCs are also applicable to other FBA-based calcula-

tions. For example, integrating LLCs into the recently proposed

semi-thermodynamic FBA (Noor, 2018) can prevent TICs related to

the objective function in addition to the prohibition of energy-

generating cycles depending on the allowable concentration ranges

for a subset of metabolites of interest. LLCs are also useful for regu-

latory FBA (Covert et al., 2001) by imposing the loopless require-

ment only for reactions that participate in the regulatory constraints

and as well as TICs at the same time. From a theoretical perspective,

Fast-SNP introduced the minimal null-space matrix and revealed

basic information about TICs in a metabolic network. The decom-

position of the null-space matrix into connected components intro-

duced in this study further characterizes the modular structure of

TICs and the constituent EFMs of a metabolic network.

Funding

This work was supported by the National Science Foundation (NSF) grant

no. NSF/MCB 1546840, the Bioenergy Research Center – Center for

Bioenergy Innovation (CBI), US. Department of Energy (DOE), Office of

Biological and Environmental Research (OBER) grant no. DE-AC05-

000R22725 and DE-SC0012377.

Conflict of Interest: none declared.

References

Carlson,R.P. (2009) Decomposition of complex microbial behaviors into

resource-based stress responses. Bioinformatics, 25, 90–97.

Chan,S.H.J. et al. (2014) Estimating biological elementary flux modes

that decompose a flux distribution by the minimal branching property.

Bioinformatics, 30, 3232–3239.

Chan,S.H.J. et al. (2017a) Computational modeling of microbial commun-

ities. In: Nielsen,J. and Hohmann,S. (eds), Systems Biology. Wiley-VCH

Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 163–189.

Chan,S.H.J. et al. (2017b) SteadyCom: predicting microbial abundances while

ensuring community stability. PLoS Comput. Biol., 13, e1005539.

Chan,S.H.J. and Ji,P. (2011) Decomposing flux distributions into elementary

flux modes in genome-scale metabolic networks. Bioinformatics, 27,

2256–2262.

Chowdhury,A. et al. (2014) k-OptForce: integrating kinetics with flux balance

analysis for strain design. PLoS Comput. Biol., 10, e1003487.

Covert,M.W. et al. (2001) Regulation of gene expression in flux balance mod-

els of metabolism. J. Theor. Biol., 213, 73–88.

Dash,S. et al. (2014) Capturing the response of Clostridium acetobutylicum to

chemical stressors using a regulated genome-scale metabolic model.

Biotechnol. Biofuels, 7, 144.

Desouki,A.A. et al. (2015) CycleFreeFlux: efficient removal of thermodynam-

ically infeasible loops from flux distributions. Bioinformatics, 31,

2159–2165.

Fritzemeier,C.J. et al. (2017) Erroneous energy-generating cycles in published

genome scale metabolic networks: identification and removal. PLoS

Comput. Biol., 13, e1005494–e1005414.

Gill,P.E. et al. (1987) Maintaining LU factors of a general sparse matrix.

Linear Algebra Appl., 88-89, 239–270.

Gudmundsson,S. and Thiele,I. (2010) Computationally efficient flux variabil-

ity analysis. BMC Bioinformatics, 11, 489.

Heirendt,L. et al. (2017) Creation and analysis of biochemical

constraint-based models: the COBRA Toolbox v3.0. ArXiv, 1710.04038.

Henry,C.S. et al. (2007) Thermodynamics-based metabolic flux analysis.

Biophys. J., 92, 1792–1805.

Holzhütter,H.G. (2004) The principle of flux minimization and its application

to estimate stationary fluxes in metabolic networks. Eur. J. Biochem., 271,

2905–2922.

Ip,K. et al. (2011) Analysis of complex metabolic behavior through pathway

decomposition. BMC Syst. Biol., 5, 91.

Klamt,S. and Stelling,J. (2002) Combinatorial complexity of pathway analysis

in metabolic networks. Mol. Biol. Rep., 29, 233–236.

Lewis,N.E. et al. (2010) Omic data from evolved E. coli are consistent with

computed optimal growth from genome-scale models. Mol. Syst. Biol., 6,

390.

Mahadevan,R. and Schilling,C.H. (2003) The effects of alternate optimal solu-

tions in constraint-based genome-scale metabolic models. Metab. Eng., 5,

264–276.

Maranas,C.D. and Zomorrodi,A.R. (2016) Optimization Methods in

Metabolic Networks. John Wiley & Sons, Inc., Hoboken, NJ.

Noor,E. et al. (2012) A proof for loop-law constraints in stoichiometric meta-

bolic networks. BMC Syst. Biol., 6, 140.

Noor,E. (2018) Removing both Internal and Unrealistic Energy-Generating

Cycles in Flux Balance Analysis. arXiv Prepr., 1803.04999.

Orth,J.D. et al. (2011) A comprehensive genome-scale reconstruction of

Escherichia coli metabolism–2011. Mol. Syst. Biol., 7, 535.

Orth,J.D. et al. (2010) What is flux balance analysis? Nat. Biotechnol., 28,

245–248.

Ranganathan,S. et al. (2010) OptForce: an optimization procedure for identi-

fying all genetic manipulations leading to targeted overproductions. PLoS

Comput. Biol., 6, e1000744.

Saa,P.A. and Nielsen,L.K. (2016) Fast-SNP: a fast matrix pre-processing

algorithm for efficient loopless flux optimization of metabolic models.

Bioinformatics, 32, 3807–3814.

Schellenberger,J. et al. (2011) Elimination of thermodynamically infeasible

loops in steady-state metabolic models. Biophys. J., 100, 544–553.

Schuster,S. et al. (2002) Reaction routes in biochemical reaction systems: alge-

braic properties, validated calculation procedure and example from nucleo-

tide metabolism. J. Math. Biol., 45, 153–181.

Schuster,S. and Hilgetag,C. (1994) On elementary flux modes in biochemical

reaction systems at steady state. J. Biol. Syst., 02, 165–182.

Schwartz,J.-M. and Kanehisa,M. (2005) A quadratic programming approach

for decomposing steady-state metabolic flux distributions onto elementary

modes. Bioinformatics, 21, ii204–ii205.

Schwartz,J.-M. and Kanehisa,M. (2006) Quantitative elementary mode

analysis of metabolic pathways: the example of yeast glycolysis. BMC

Bioinformatics, 7, 186.

Terzer,M. and Stelling,J. (2008) Large-scale computation of elementary flux

modes with bit pattern trees. Bioinformatics, 24, 2229–2235.

Zhao,Q. and Kurata,H. (2009) Maximum entropy decomposition of flux dis-

tribution at steady state to elementary modes. J. Biosci. Bioeng., 107,

84–89.

102 103 104

#reactions in the model

10-2

100

102

104

T
im

e 
ra

tio

Fig. 4. Time ratios of using Fast-SNP relative to the proposed null-space algo-

rithm for null-space calculation in all models tested

Localized loopless constraints for flux balance calculations 4255

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4248/5026660 by guest on 10 April 2024


	bty446-TF1
	bty446-TF2
	bty446-TF3
	bty446-TF4
	bty446-TF5

