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Abstract

Motivation: Antibiotic resistance is an important global public health problem. Human gut micro-

biota is an accumulator of resistance genes potentially providing them to pathogens. It is important

to develop tools for identifying the mechanisms of how resistance is transmitted between gut

microbial species and pathogens.

Results: We developed MetaCherchant—an algorithm for extracting the genomic environment of

antibiotic resistance genes from metagenomic data in the form of a graph. The algorithm was

validated on a number of simulated and published datasets, as well as applied to new ‘shotgun’

metagenomes of gut microbiota from patients with Helicobacter pylori who underwent antibiotic

therapy. Genomic context was reconstructed for several major resistance genes. Taxonomic anno-

tation of the context suggests that within a single metagenome, the resistance genes can be con-

tained in genomes of multiple species. MetaCherchant allows reconstruction of mobile elements

with resistance genes within the genomes of bacteria using metagenomic data. Application of

MetaCherchant in differential mode produced specific graph structures suggesting the evidence of

possible resistance gene transmission within a mobile element that occurred as a result of the anti-

biotic therapy. MetaCherchant is a promising tool giving researchers an opportunity to get an

insight into dynamics of resistance transmission in vivo basing on metagenomic data.

Availability and implementation: Source code and binaries are freely available for download at

https://github.com/ctlab/metacherchant. The code is written in Java and is platform-independent.

Cotanct: ulyantsev@rain.ifmo.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The spread of microbes’ resistance to antimicrobial drugs (antibiotic

resistance, AR) is a global healthcare problem. Pathogenic microbes

with multidrug resistance pose especially high hazard. According to

the report of AMR (O’Neill, 2016), the burden of AR-related deaths

is predicted to increase to 10 million lives annually by 2050 and the

global economic burden—to 100 trillion US dollars. The major

factors contributing to the resistance spread are extensive medical

and agricultural use of antibiotics (Rolain, 2013).

Human gut microbiota is a reservoir of AR (Sommer et al.,

2009).During antibiotic therapy, composition of microbiota and

resistome can change drastically (Shashkova et al., 2016; Wright,

2007). Specific genes might increase in abundance because they give

their carrier microbe advantage via resistance to the antibiotic.
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In part, they can be transmitted to other bacterial species through

horizontal transfer. In cases when they do not confer resistance to

the consumed substance themselves, the dissemination can happen

because of the colocalization on the same mobile element with such

genes. At the same time, presence of other genes might deplete

because of the decreased fraction of their carriers due to the drug

action.

Due to active horizontal gene transfer (HGT) within gut micro-

biota, the increase in resistome, amplified by the number of subjects

in world population consuming antibiotics strongly increases the

chance for pathogenic microbes to obtain genetic resistance determi-

nants from resistant commensal microbes inhabiting human body.

Therefore, identification of resistome dynamics during and after

antibiotic intake as well as of the mechanisms of AR transmission

within human gut is of utmost actuality.

Metagenomic analysis of gut resistome in populations of the

world showed that national specifics of healthcare related to antibi-

otic usage and socioeconomic factors are reflected in the resistome

composition as well as in the extent of its replenishment from the

environment (Forslund et al., 2013; Pehrsson et al., 2016).

Interestingly, significant levels of AR determinants were also

detected in gut metagenomes of isolated populations having no

access to antibiotics (Rampelli et al., 2015) thus suggesting the

global nature of AR transmission in microbial world.

Isolation and sequencing of individual bacterial genomes allows

examining genetic AR determinants at strain level (Dai et al.,

2016)—particularly, examining the genomic features surrounding

the gene in order to assess the AR transmission history and poten-

tial. However, only a small fraction of microbes can be cultivated

using state-of-the-art methods, particularly, among gut-dwelling

species. On the other hand, each ‘shotgun’ human gut metagenome

potentially contains information about all major species present in

the community—thus making it possible to predict the data avail-

able from sequencing of an isolated strain. It can be performed at

the general level of comparing relative abundance of AR genes

(Yarygin et al., 2017a,b), as well as at a more detailed level—by

exploring the genomic context (environment) of an individual AR

gene or operon. Common approaches to this task include metage-

nomic de novo assembly and subsequent analysis of contigs. The AR

genes are identified in the contigs and their genomic context is ana-

lyzed to identify the location of the gene within a genome, the com-

position of the mobile element surrounding the gene and the

environment of this element.

Such scenario works well in the case when the gene is present in

a single species within a metagenome and occurs exactly once in a

genome. However, besides the fact that the genome can contain sev-

eral AR gene copies, gut microbiota is known to exhibit significant

subspecies-level diversity, i.e. multiple subspecies of a single species

with diverse genomes (Greenblum et al., 2015). Moreover, within a

gut microbiota of a single subject, a gene can be present in several

species simultaneously—a phenomenon which is likely to activate

under the impact of antibiotics (Crémet et al., 2012; Goren et al.,

2010). The mentioned conditions suggest that during ordinary meta-

genomic assembly the linear contigs are likely to end at the location

corresponding to genomic repeats and will provide only an oversim-

plified consensus image of the real genomic context of AR gene.

Such simplified representation does not allow assessing the environ-

ment correctly thus impeding the identification of the species—the

donor of AR gene and the respective acceptor. A more precise recon-

struction of the AR evolution in vivo would improve the efficiency

of personalized resistance profiling for a patient and selection of

optimal antibiotic therapy scheme. From the perspective of global

healthcare, it would facilitate the tracking of significant trends in

resistome spread as well as its control.

Here we present MetaCherchant—a method for exploratory

analysis of genomic context of genes conferring AR directly from

the metagenomic data based on local de Bruijn graph (dBg) assem-

bly. Unlike traditional assembly, MetaCherchant preserves the origi-

nal unflattened structure of this context thus providing a more

accurate description of resistome dynamics in human microbiota.

The method was validated using simulated datasets. Its application

to gut metagenomes from patients before and after antibiotic ther-

apy revealed evidence of potential horizontal transfer of AR genes

between different species.

2 Materials and methods

2.1 Workflow of the algorithm
2.1.1 Partial metagenomic assembly algorithm using

a starting point

We developed a novel algorithm that performs classic steps of meta-

genomic assembly up to the point of construction of dBg using the

metagenomic reads. As the result, it builds a subgraph of that graph

around a target nucleotide sequence—the AR gene of interest. The

algorithm allows analyzing dBg paths that contain the selected

sequence thus making it possible to extract more information about

the environment of the AR gene in the genome of one or multiple

species within the microbiota. The algorithm was implemented bas-

ing on previously developed MetaFast software (Ulyantsev et al.,

2016) using Java programming language and can be run in parallel

mode. The source code is available on GitHub: https://github.com/

ctlab/metacherchant.

The first step of the algorithm is decomposing the input metage-

nomic reads and target sequence into k-mers (nucleotide sequences

of length k). The k-mers are stored in a hash table along with their

coverage (the total number of times a particular k-mer has appeared

in the reads). All the k-mers that are detected with frequency below

a fixed threshold are discarded as erroneous.

Due to the specificity of the problem the algorithm aims to solve,

it is possible to overcome the k � 31 restriction and, for larger val-

ues of k, only store the hash value instead of the actual k-mer. As

the sequence of the target gene is known, it is only necessary to

check if some specific k-mer is present in the reads without actually

storing all the k-mers. This feature allows increasing memory effi-

ciency of the algorithm and using higher values of k thus providing

high-detailed analysis of the graph structure with only a slight loss

in performance. Although this solution might produce undesirable

hash collisions (because multiple k-mers can be mapped to the same

hash value), the frequency of the latter is low compared with

sequencing errors. These collisions affect the resulting graph in just

a few k-mers that can be easily identified and removed. A trimming

function described below automatically processes such collisions.

Then a dBg is constructed using the k-mers obtained from meta-

genomic data. Vertices in the graph correspond to k-mers, and edges

correspond to to (k þ 1)-mers. Two vertices in the graph are con-

nected with an edge if the nucleotide sequence on that edge is

obtained by joining the vertices’ sequences overlapped by k�1.

Genomic environment of a target gene is defined as some subgraph

of the dBg containing the gene.

To identify the subgraph, we apply a modification of the stand-

ard breadth-first search (BFS) algorithm. In this algorithm, all visited

vertices in the dBg are stored in a queue and processed in the order

of extraction. Thus, all vertices are added to the subgraph in
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increasing order of distance from the target gene. Therefore, the tar-

get environment subgraph is a set of k-mers closest to the target

gene, and the sequences that are close to the target gene are likely to

be close to the target gene in the metagenome itself. Two stopping

conditions are possible: either the maximum amount of vertices in

the subgraph is reached or the maximum distance from the target

gene is reached (the user can choose which one to use).

For comprehensive visualization, each long non-branching path

in a subgraph is displayed as one long sequence (also known as a

unitig). This visualization is achieved by the following algorithm: as

long as a pair of vertices can be merged, they are merged. Two verti-

ces are merged when they are connected by an edge and have no

other ingoing/outgoing edges. No edge in the graph is processed/

examined twice, so the complexity is linear to the size of the graph.

The resulting graph is saved in one of several formats including GFA

(Graphical Fragment Assembly) and Velvet LastGraph. The graphs

can be visualized with any program supporting these formats,

including Bandage (Wick et al., 2015).

In single-metagenome mode (default), the algorithm processes a

single metagenome to yield a single graph. Differential mode allows

comparing genomic environments of the same target gene between

two different metagenomes by constructing the combined graph

from both datasets. When applied to paired datasets, this functional-

ity allows the user to identify the changes in the environment—e.g.

differences in the environment of an AR gene in gut metagenome of

a patient before and after antibiotic treatment (such changes indicate

possible horizontal transfer event). The algorithm allows finding

common and different parts of two subgraphs, detecting overlapping

subgraphs for different bacteria and postulating hypotheses about

AR gene presence and transfer mechanisms.

As input, MetaCherchant accepts metagenomic reads, single or

multiple target gene sequence(s) and configuration parameters. The

output of MetaCherchant comprises a dBg in GFA format, a k-mer

frequency distribution and a FASTA file with unitigs from the con-

structed subgraph. Documentation and examples are available at

https://github.com/ctlab/metacherchant and in Supplementary Note

S1. The workflow of the algorithm is presented in Figure 1. The

pseudocode of the algorithm is shown below.

2.1.2 Trimming of genomic environment graph

To correct the effects of sequencing errors and hash collision, a trim-

ming feature was implemented. The feature aims to improve the

quality of dBg by removing nodes that are likely to be the result of

either an error in the input data or a hash collision when using

k > 31. The process of trimming is as follows: when doing BFS,

mark all the nodes that could be but were not prolonged because of

the termination condition. After that, run a BFS in reverse direction,

Algorithm 1 Single-mode algorithm workflow

1: Read metagenomic data from files specified in—reads

parameter

2: All k-mers are stored in hash map: k-mer ! its coverage

3: if k � 31 and –force-hashsing option is not set then

4: Use k-mer’s 2k-bit representation as key for hash map

5: else

6: Use hash(k-mer) as key for hash map

7: Read all DNA sequences from file in—seq parameter

8: Create a thread pool

9: for all input sequences in input.fasta file do

10: run OneSequenceCalculator for this sequence using

thread pool

Algorithm 2 Multi-mode algorithm workflow

1: loadInput()

2: Create a thread pool

3: for all input sequences in input.fasta file do

4: run OneSequenceCalculator for this sequence using

thread pool

Algorithm 3 OneSequenceCalculator main routine

1: if—both-dirs option is set then

2: runBFS({forward, backward})

3: else

4: runBFS({forward})

5: runBFS({backward})

6: Save found k-mers as env.txt

7: Merge non-branching k-mers into unitigs

8: Output all unitigs longer than—unitig-length parameter to

seqs.fasta

9: Build, color (if applicable) and print graph as graph.gfa

Algorithm 4 runBFS routine

Accepts a subset of {forward, backward} as input.

Outputs a genomic envinronment: a set of k-mers reachable

from the starting sequence.

1: Initialize data structures:

• queue—a queue storing all k-mers in order of increasing

distance from starting k-mers
• dist—map from k-mer to its distance
• lastKmers—set of k-mers that are a” boundary” of the

graph

2: Add all k-mers of the starting sequence to queue with dist

equal to 0.

• If none are found, report an error.

3: while the queue is not empty do

4: Dequeue a k-mer, call it x

5: for all x’s neighbors in input direction that are present in

input reads do

6: If the max-kmers and max-radius constraints are not

violated, add it to queue and dist.

7: Otherwise, add it to lastKmers set.

8: if –trim-paths option is enabled then

9: Run the same BFS, but with starting k-mers as lastKmers

and input directions reversed

10: Remove all k-mers that are not visited during this BFS

run

11: return All k-mers visited and not removed
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starting from the marked nodes and only passing through nodes that

were visited during the first BFS. This procedure removes all nodes

that do not have a path to the ‘border’ of the graph; as a result, all

erroneous nodes are removed. However, in case of insufficient cov-

erage, there is a chance that a valid node that was not prolonged is

removed.

2.1.3 Choosing k-mer length and coverage threshold

The k-mer length depends on the read length and is user-defined.

However, in order to allow the use of environment-finder-multi

function, it is required to construct graphs with a fixed value of k

because the algorithm uses k-mer frequency distributions to con-

struct the differential graph.

Some k-mers have low coverage because they represent

sequencing errors: a sequencing error in one read position can cre-

ate up to k erroneous k-mers. Filtering of erroneous k-mers

improves the resulting graph, makes it more accurate and simpli-

fies the subsequent analysis. The k-mer filtering happens before the

construction of dBg. Only those k-mers which occur in input data

more often than a specified value of coverage parameter (set by

coverage parameter of MetaCherchant) are used by the algorithm.

This parameter is set to 5 by default, but the user can select a dif-

ferent value.

2.1.4 Analytical comparison of multiple graphs

We compare two graphs using abundance of k-mers in these graphs.

Each k-mer has abundance, which is the number of times it appears

in the data. For each k-mer and each graph we calculate this abun-

dance and denote this number as abgraphðk�merÞ. After that we

compute ‘distances’ between every two graphs using following

‘measures’.

Jsym ¼ 1� jA \ Bj
jA [ Bj

Jalt ¼ 1� jA \ Bj
jAj

So these measures belong to [0, 1]. Values around 0 mean that

graphs are similar but values around 1 mean difference. In our case

these are:

JsymðA;BÞ ¼ 1�
P

minðabAj; abBjÞ
P

maxðabAj; abBjÞ

JaltðA;BÞ ¼ 1�
P

minðabAj; abBjÞ
P

abAj

where sums run over j 2 k-mers.

The distance Jsym is better for graphs which are similar in size.

Otherwise, the Jalt is better.

For example, in case when we have JaltðA;BÞ � 0 and

JaltðB;AÞ � 1, we can see that A � B and A is much greater than B.

2.2 Datasets
MetaCherchant was tested on several simulated and real metage-

nomic datasets listed in Table 2.

2.2.1 Simulated data

To validate the algorithm, simulated Illumina pair-end reads

were randomly generated from selected microbial genomes using

ART (Huang et al., 2011). Single-genome (‘genomic’) simulation

was performed using Klebsiella pneumoniae HS11286 genome

(Liu et al., 2012). Multi-genome (metagenomic) simulation was per-

formed by randomly mixing the reads simulated from that and other

four genomes: Enterococcus faecium EFE10021, Escherichia coli

Fig. 1. MetaCherchant workflow. (A) Single-metagenome mode (environment-finder function). 1. Read metagenomic data and decompose it into k-mers. 2. Find

all k-mers included into the target gene sequence. 3. BFS on the dBg starting from k-mers of target gene. 4. Compress non-branching paths of dBg into unitigs.

5. Save the graph to file in one of supported formats. (B) Differential multi-metagenome mode (environment-finder-multi function). 1. Download k-mers distribu-

tions (>2), which were obtained on single-mode. 2. BFS on the dBg starting from k-mers of target gene. 3. Compress non-branching paths of dBg into unitigs.

4. Save the graph to file in one of supported formats. *k-mer frequencies can be used to combine contexts and calculate distances between different contexts
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K12, Bifidobacterium longum BG7 and Bacteroides vulgatus

ATCC_8482 downloaded from NCBI GenBank database. In each of

the simulations, targeted coverage for each of the genomes was 20�.

For the insertion simulations, the sequence of AR gene (or a mobile

element including the gene) was inserted at a random location of a

microbial genome. For the simulation of HGT event that occurred

between the first and the second time points (corresponding to two

metagenomes), the sequence of K.pneumoniae transposon Tn1331

was inserted into the genome of K.pneumoniae as well as of E.coli.

The first metagenome was simulated from the transposon-carrying

K.pneumoniae and transposon-free E.coli, and the second—from

transposon-carrying K.pneumoniae and transposon-carrying E.coli.

To examine the occurrence of false positive detections (i.e. when

a gene is present in a genome but is not displayed in the constructed

subgraph due to low coverage), we performed experiments with

simulated metagenomes generated from multiple gut microbial

genomes including AR genes. Ten sets of metagenomic reads were

generated from 10 bacterial genomes, and proportion of reads

from each genome was randomly obtained with/by means of expo-

nential distribution using BEAR (Better Emulation for Artificial

Reads) (Johnson et al., 2014) software (see Supplementary Tables

S1 and S2).

2.2.2 Real sequencing data

The algorithm was applied to ‘shotgun’ metagenomes of stool sam-

ples collected from the patients with Helicobacter pylori before and

after the H.pylori eradication therapy that included antibiotics

intake (Glushchenko et al., 2017). The respective time points were

denoted ‘time point 1’ (before the therapy), ‘time point 2’ (immedi-

ately after the therapy) and ‘time point 3’ (1 month after the end of

the therapy). Datasets from four publicly available sources were

used for additional testing of the algorithm (Korpela et al., 2016;

Rose et al., 2017; Willmann et al., 2015) (http://www.ebi.ac.uk/

metagenomics/projects/ERP005558).

2.3 Data analysis and visualization
Taxonomic profiling of metagenomes was performed using

MetaPhlAn2 (Truong et al., 2015). AR genes were identified in the

metagenomes by mapping the metagenomic reads to MEGARes

database (Lakin et al., 2017) using Bowtie2 (Langmead and

Salzberg, 2012). Relative abundance of AR genes was calculated

using ResistomeAnalyzer (Lakin et al., 2017). The genomic context

of AR genes was obtained by running MetaCherchant in the parallel

mode in 10 threads. Taxonomic annotation of sequences corre-

sponding to graph nodes was performed using Kraken (Wood and

Salzberg, 2014) and BLAST. Graphs were visualized in Bandage

(Wick et al., 2015). Statistical data processing and visualization

were conducted in RCoreTeam (2014). Workflow of the data analy-

sis described in the study is shown in Supplementary Figure S1.

2.4 Comparison of SPAdes and MetaCherchant
Genomic context of the target gene was reconstructed with

MetaCherchant using preprocessed metagenomic reads and contigs

assembled in SPAdes (Bankevich et al., 2012) (parameter: meta).

Using the environment-finder-multi function of MetaCherchant,

SPAdes contigs were fragmented into k-mers and converted into a

graph that was then combined with MetaCherchant graph to iden-

tify common and unique segments.

The output of MetaCherchant, MetaPhlAn2 and other analysis

results as well as scripts are available at http://download.ripcm.com/

Olekhnovich_et_al_2017_MetaCherchant_files/.

3 Results

3.1 Validation of the algorithm on simulated data
In order to check that the algorithm produces correct graph topol-

ogy around the starting AR gene, we conducted a series of tests on

simulated data of increasing complexity (see Supplementary Fig.

S2). During the first simulation, we reconstructed the genomic con-

text of a CTX-M (extended-spectrum beta-lactamase) gene naturally

included in the genome of K.pneumoniae using simulated reads of

this single genome. As expected, the produced graph was linear

and the nodes flanking the target gene were annotated correctly.

Secondly, in order to assess how the algorithm processes multiple

occurrences of a gene in multiple species, the algorithm was applied

to reads simulated from two genomes (K.pneumoniae and E.coli)

with CTX-M gene sequence introduced into each of them. The

obtained graph had a branching structure (Supplementary Fig. S2A);

taxonomic annotation of nodes indicates two unique ways of cross-

ing the graph to assemble the fragments of the genomes containing

the target gene. The results show that the algorithm correctly recon-

structs the gene environment topology in the case when the gene is

located in chromosomes of different species.

In the third simulation, we ran the algorithm in differential mode

to visualize a simulated HGT of a mobile element containing AR

gene from one bacterial species (K.pneumoniae) to another (E.coli)

within gut microbiota (see ‘Materials and methods’ Section).

The graph visualize the dynamics of genomic environment by com-

bining the subgraphs from two time points—before and after

the HGT event—and highlighting the differences between them

(Supplementary Fig. 2B). Black color shows the sequences present in

each of the metagenomes (all belonging to K.pneumoniae), while the

blue color—the sequences that were only present in the second meta-

genome (all belonging to E.coli), green—K.pneumoniae transposon

Tn1331. Thus, our algorithm allows visualizing the transmission of

a mobile genomic element between the species. During further simu-

lations, the algorithm correctly reproduced gene environment for

CTX-M gene for metagenomes generated from up to five bacterial

genomes. The graph complexity increased with the number of

Table 1. Metagenomic datasets used for testing MetaCherchant algorithm

Dataset No. metagenomes No. reads per metagenome (mean 6 SD), mln Sequencing platform (read length, bp)

Simulated metagenomic dataset 1 5 4 N/A (150)

Simulated metagenomic dataset 2 10 5.3 6 3.0 N/A (250)

Glushchenko_2017 10 17 6 9 Illumina HiSeq (250)

Korpela_2016 80 14 6 5 Illumina HiSeq (100)

PRJEB6092 (from EBI) 24 58 6 14 Illumina HiSeq (100)

Rose_2017 14 19 6 4 Illumina MiSeq (300)

Willmann_2015 12 68 6 11 Illumina HiSeq (100)
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genomes, and the values of k and minimum k-mer coverage were

adjusted to achieve the most clear result (Supplementary Fig. S2C).

Although the algorithm allows correct detection of genomic con-

text for sufficiently covered AR genes, real metagenomes contain bac-

terial taxa with widely varying relative abundance. As mentioned,

MetaCherchant filters potentially erroneous k-mers basing on the cov-

erage, and in cases of low-abundant microbes or exceeding coverage

threshold, certain information about the context of a resistance gene

might get lost. To calculate the relation between the coverage depth

and abundance of microbes detected in the context, we performed

experiments with different simulated coverage on artificial metage-

nomes containing various proportions of defined microbial species

(see Supplementary Fig. S3). As a result, coverage threshold value for

a metagenome was estimated to be 1.0� 109–1.5� 109 bp to provide

optimal detection of AR gene environment. These observations can be

used by researchers as guidelines at the phase of metagenomic experi-

ment design to calculate the minimum required coverage of metage-

nomes. Recommendations for the input metagenomes properties are

provided in Supplementary Note S2.

3.2 Analytical comparison of multiple graphs
MetaCherchant constructs metagenomic context graphs that can be

visualized in Bandage to gain insights about AR gene environment.

However, this method does not produce comprehensive results for

multiple graphs. Accordingly, we implemented a function for calcu-

lating the Jaccard distance between k-mer distributions during merg-

ing contexts (environment-finder-multi tool) that allows comparing

AR gene contexts across multiple samples and display such cases as

a table. An example of applying this function to simulated data is

shown in Supplementary Figure S4.

3.3 Real gut metagenomes: analysis of taxonomic

composition and resistome
Real datasets from (Glushchenko et al., 2017) were used to test the

algorithm. Before analyzing the genomic environment of AR genes,

we assessed the complexity of the gut metagenomes from the patients.

As the result of taxonomic analysis, we detected 71 6 18 species per

metagenome in the analyzed gut metagenomes, signifying that the

complexity of community structures is similar to the one observed in

human gut microbiota studies performed using similar approaches

(Tyakht et al., 2013). Within each metagenome, 53 6 31 AR gene

groups were detected. The abundance profiles of AR genes are shown

in Figure 2. Presence of multiple AR genes with sufficient coverage

suggests that the data is suitable for testing the algorithm.

3.4 Real gut metagenomes: analysis of

AR genes context
MetaCherchant was applied to explore the context of the major AR

genes detected in the metagenomic datasets. For each metagenome,

the graph was constructed for the major detected AR gene groups

mentioned earlier—specifically, for the most abundant gene of each

group (14 6 8 genes per metagenome, totally 43 genes). The analy-

sis was performed over a range of control parameters (k ¼ 71, mini-

mum allowedk-mer coverage—10�). According to the results of

graph reconstruction, some of the AR genes (or highly homologous

genes) were detected in a genomic environment of a single bacterial

species. An example is adeC gene (multidrug resistance efflux pump)

surrounded by sequences classified as E.faecium (Fig. 3A). We iden-

tified a structure homologous to transposon of Streptococcus spp.

within the genome of S.parasanguinis that contained mel and msrD

genes (macrolide resistance efflux pumps) (Fig. 3B). Some of the

other genes were surrounded by environments from multiple species:

cfxA3 gene (Class A beta-lactamase) together with short additional

sequences was surrounded by two related but distinct species—

Bacteroides dorei and Parabacteroides distasonis (see Fig. 4, red and

black parts of graph). Genomic reconstructions of six other genes

(including msrC, cblA and others) showing linear or branching top-

ology of the environment are displayed in Supplementary Figure S5.

If an AR gene is a part of a large mobile element (>70 Kbp),

other mobile elements present in the microbiota are likely to contain

sequences with high homology to that element. In such cases, the

topology of the obtained graph becomes complex (in part due to

Fig. 2. Relative abundance of the major bacterial species and AR gene groups in gut metagenomes (time points and subject IDs are shown in the right-side legend bars

as different colors). (A) Relative abundance of major different bacteria species (percent). (B) Relative abundance of major different group AR-genes (mass weight) (Color

version of this figure is available at Bioinformatics online.)
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presence of multiple adjacent resistance genes) and might include

chimeric sequences. Future implementations of the algorithm will

allow resolving the distribution of such genes among individual

microbial species. Currently, MetaCherchant already allows assess-

ing the mobile genetic elements associated with AR from metage-

nomic data in an ‘unflattened’ way (without simplifying the graph

into contigs). Particularly, it is possible to discover potential associa-

tions of an AR gene with a specific taxon or mobile element from

the graph. More detailed results are presented in additional materi-

als. An example—graph showing links of ermT and OXA genes to

B.dorei genome—is shown in Supplementary Figure S6A.

Due to highly variable abundance of microbial species within

microbiota, there are many low-abundant species for which the

genomes are incompletely covered by the metagenomic reads. In

such cases, when the genomic environment includes uncovered

regions, only fragments of the graph can be reconstructed. However,

sometimes it is possible to assemble a large part of it, and, when the

total length of the fragments is sufficient, to identify the taxonomic

annotation of the gene—provided that it is localized on the chromo-

some; an example of such case is shown for cfxA3 gene in

Supplementary Figure S7.

As mentioned above, detection of a microbial genome in the con-

text depends on the coverage and the choice of the coverage thresh-

old. The problem of losing a part of the graph with the increase of

coverage threshold is demonstrated in Supplementary Note S3 and

Supplementary Figure S8. In order to address this problem, a ‘graph

trimming’ function was implemented that allows reducing the noise

level while preserving a higher fraction of ‘correct’ k-mers (see

Materials and methods).

3.5 Differential mode of MetaCherchant allows

identification of possible events of AR gene

transmission
Besides the above-described single-metagenome mode, it is possible

to run MetaCherchant in differential mode allowing to overlay

genomic environments of the same AR gene from several metage-

nomes. We applied differential mode to paired gut metagenomes

obtained from the same subjects before and after antibiotic treat-

ment to identify potential evidence of AR gene transmission—for

three subjects in total (HP_003, HP_009 and HP_028, 14 6 8 genes

per metagenome). For some of the genes, it was possible to combine

the environments across multiple time points.

An example of such case is displayed in Figure 4: the analysis of

the gut metagenomes collected at two time points from a patient

potentially shows a transition of cfxA3 gene resistance from one

genomic environment to another (red to blue, as shown in the fig-

ure)—i.e. appearing to be a HGT event. Taking into account the

fact that the two analyzed time points correspond to the samples

collected immediately after the H.pylori eradication course and 1

month afterwards, we speculate that the shown graph reflects the

specifics of ‘relaxation’ of the gut resistome following the end of

antibiotic impact on gut microbiota.

For a single time point, the lack of certain microbial species in

AR gene environment can reflect two different effects—when species

is absent/low-abundant in microbiota or this gene is not present in

the genome of that species. To bring distinction in the case shown

in Figure 4, we analyzed read coverage of the context (see

Supplementary Fig. S9 and Supplementary Table S5). Although the

fragments annotated as ‘Unclassified bacteria’ were included by

MetaCherchant only for the time point 3, significant coverage of

these sequences by metagenomic reads showed that this microbe is

present at all three time points 1–3. Similarly, the species B.dorei

and P.distasonis were also present at all time points—however, only

at time point 2 they are sufficiently abundant to identify them in the

Fig. 4. Combined graph of AR gene context produced from two metagenomes

of the same subject by running MetaCherchant in differential mode (patient

HP_003, cfxA3 gene, time points 2 and 3). Red color denotes the part of the

graph present only at the time point 2, blue color—only at the point 3, black—at

both points; green color denotes the graph nodes corresponding to the target

AR gene (Color version of this figure is available at Bioinformatics online.)

Fig. 3. Genomic environment of AR genes reconstructed directly from real gut metagenomes. (A) adeC gene (subject HP_003, time point 2) in genome context

E.faecium. Target AR gene is shown in red. (B) A structure homologous to transposon of Streptococcus spp. within the genome of S.parasanguinis that contained

mel and msrD genes (macrolide resistance efflux pumps). Target AR genes are shown in yellow; Streptococcus spp. transposon-like structure—in red (Color

version of this figure is available at Bioinformatics online.)
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context of this gene (13.80 and 5.95% of total relative abundance,

respectively, according to MetaPhlAn2 results). One of the possibil-

ities is that the transposon structure (based on the BLAST results)

shown in the graph was present in all these microbes at three time

points and the algorithm showed its presence only as the coverage

became sufficiently high. To summarize, while the described case of

cfxA3 gene does not necessarily reflect a potential HGT event, our

method allows generation of hypotheses for further testing using

alternative experimental techniques like PCR.

3.6 Comparison with the results of de novo assembly
To assess the efficiency of our tool compared with a related

approach—a de novo assembly coupled with a visualization pro-

gram—we assembled 2 metagenomes from the patient HP_003

using SPAdes and visualized the results in Bandage. We identified

the parts of the graph corresponding to cfxA3 gene and compared

them to the respective results of MetaCherchant (Fig. 5).

The output of SPAdes (Supplementary Fig. S10) corresponded

that in the metagenome of subject HP_003 at time point 2 we

observe branching in the region of the target gene. However, it is dif-

ficult to suggest its possible localization in a mobile element in dif-

ferent bacterial genomes. In the metagenome of the same subject at

time point 3, we observe an ambiguous result. The target gene

cfxA3 is associated with the unclassified Bacteroides spp.

During formation of contigs, SPAdes algorithm looks for a path

in the assembly graph that maximizes the length of the assembly.

Here the algorithm selected the only path and the AR gene was

placed only into the contig from B.dorei, while no contig(s) of

P.distasonis that contained cfxA3 gene were found in the assembly.

The union of the results from MetaCherchant and SPAdes using

environment-finder-multi function of MetaCherchant confirmed

our hypothesis that SPAdes assembler did not recover the informa-

tion about genomic environment completely: association of target

gene with the genome P.istasonis was lost in this ‘flattened’

representation.

Another disadvantage of assembly using SPAdes is that it is a

computationally expensive process. On the other hand, reconstruc-

tion of a subgraph around the target gene requires substantially

lower computing resources.

3.7 Real gut metagenomes: comparison

of multiple datasets
MetaCherchant allows the user to explore the AR gene contexts

within multiple sets of metagenomic data. This is useful in the explo-

ration/summary analysis, because it is quite difficult to assess the

topology of each single graph visually. In this section, we describe

the techniques that allowed us to discover interesting cases and fur-

ther visualize them.

MetaCherchant was tested on various metagenomic datasets (see

Table 2; running options coverage ¼ 5 and k ¼ 41). The summary

information on the assemblies is presented in Table 2. The results of

an analysis of the distributions of taxa and resistome are presented

in Supplementary materials (Supplementary Figs S11 and S12;

Supplementary Tables S3 and S4).

We obtained a set of graphs for the presented AR-genes for each

dataset during processing by MetaChechant. With a relatively low

read length (100 bp), it is not always possible to assemble an

adequate topology of the graph, due to the fact that it is necessary to

select low k values. The data from Korpela_2016 dataset had low

coverage and it was not always possible to assemble unfragmented

context in this case. The most clear results were obtained using

Rose_2017 and Glushchenko_2017 datasets—in particular, due to

long reads (and subsequent higher k) and sufficient coverage. It is

recommended to use data with read length of 250–300 bp and cov-

erage > 2.0 � 109–2.5 � 109 bp for obtaining optimal results.

Graphs constructed from the listed datasets are presented in the

Fig. 5. Merging of graph environments obtained using SPAdes and MetaCherchant allows comparing the two methods. The environment of cfxA3 gene in meta-

genomes of subject HP_003 was analyzed. Black color denotes the fragments common for SPAdes and MetaCherchant graphs, red—only the fragments present

in MetaCherchant graph, blue—only the fragments present in SPAdes graph. (A) Time point 2. (B) Time-point 3 (Color version of this figure is available at

Bioinformatics online.)

Table 2. Statistics of MetaCherchant assemblies using different datasets (k ¼ 41, coverage ¼ 5)

Dataset No. unitigs number (mean 6 SD) unitigs length (mean 6 SD), kbp, mln assembly length (mean 6 SD), kbp

Glushchenko_2017 1252 6 1061 0.22 6 0.34 153 6 110

Korpela_2017 531 6 904 0.23 6 0.10 124 6 116

PRJEB6092 1747 6 1106 0.10 6 0.16 178 6 97

Rose_2017 253 6 378 0.31 6 1.50 79 6 88

Willmann_2015 681 6 676 0.18 6 0.45 124 6 111
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additional materials at http://download.ripcm.com/Olekhnovich_

et_al_2017_MetaCherchant_files/.

3.7.1 Comparison of multiple metagenomes using k-mer

frequency distribution

MetaCherchant function environment-finder-multi allows compar-

ing gene environments via dissimilarity of their k-mer frequency

spectra (see ‘Materials and methods’ Section), a typical approach for

pairwise comparison of metagenomic sequences (reference-free

methods) (Benoit, 2016; Dubinkina, 2016). It provides a convenient

way for explore the dynamics of the gene context across multiple

(>2) samples. As an example of this analysis, distances between

multiple metagenomic datasets were computed for two genes—CFX

and APH3-Prime (as annotated by MEGAres; see Fig. 6).

Data shown in Figure 6A suggest that while CFX gene had simi-

lar environments in microbiota of subjects HP_003 and HP_028 at

time point 2, they became distinct at time point 3, as reflected by the

k-mer spectra of the respective graphs. This change is indicated

by red (HP_003) and blue (HP_028) arrows. Comparison of k-mer

frequency distributions allows performing a comparison even if the

topology of respective differential graphs is not obvious (as shown

in Supplementary Fig. S13A1 and A2). For example, Supplementary

Figure S13A1 and C shows graphs based on the same data (subject

HP_003, time points 2 and 3) and the same parameter coverage ¼ 5,

but with different values of k. Supplementary Figure S13A1 con-

structed with k ¼ 41 shows that there is no clear orientation of the

unitigs (visual confirmation of potential presence of a gene in several

bacterial species). Another clear graph is shown in Supplementary

Figure S13C (constructed with k ¼ 83). Rose_2017 dataset contain-

ing gut metagenomes of premature infants did not contain the genes

of the CFX group, probably due to the absence of Bacteroides genus

typically carrying these genes.

We were able to assemble genomic context for APH3-Prime gene

for 3 time points for the patient HP_003 (Fig. 6B). The results show

a strong context change at the second time point (immediately after

taking antibiotics). However, the context becomes again similar to

the state before therapy at the third time point. For subject HP_009,

we observe a change towards the first time point of subject HP_003.

Differential graphs for several time points are shown in

Supplementary Figure S13B1–B4. Noteworthy, the samples from

Rose_2017 dataset reflect the context for this gene as

Staphylococcus aureus, whereas the respective context for

Glushchenko_2017 dataset includes E.faecium and other taxa.

Coverage of metagenomes from Korpela_2016 dataset was not

sufficient to get adequate reconstruction of the context of CFX and

APH3-Prime genes. In most cases, fragmented graphs were obtained

for this data set; when comparing by k-mer frequencies, they formed

‘outliers’ distinct from the general cluster.

3.8 Performance
Analysis of metagenomic data was performed on a computational

cluster at FRCC PCM on a single 24-core node with 64 Gb RAM;

operating system Centos 6.0, Sun Grid Engine scheduler.

MetaCherchant was allocated 10 cores.

According to the described experiments, the total time for recon-

structing a genomic environment of a single AR gene in a single meta-

genome (10 threads) was about 11–20 min including data download

time (3–5 min), graph reconstruction (<1 min) and taxonomic anno-

tation with Kraken (3–10 min). The relation between the value of k

and RAM usage is shown in Supplementary Figure S14.

4 Discussion and conclusions

Gut resistome of healthy humans is distributed among commensal

bacteria and does not pose a threat by itself. However, in case of

infection with antibiotic-sensitive pathogenic microbes, the AR

genes could be transferred from normal microbiota, even from mem-

bers of a distantly related genus, to the infectious agent. This phe-

nomenon was observed in patients after antibiotic therapy (Crémet

et al., 2012; Karami et al., 2007) and demonstrated experimentally

on animals and healthy donors (Lester et al., 2004, 2006). Cases of

disseminated infections with organisms that acquired resistance

genes from the gut microbiota were reported (Crémet et al., 2012;

Goren et al., 2010). Thereby, gut microbiota represents an impor-

tant reservoir of AR genes open to infectious agents of socially sig-

nificant diseases.

Fig. 6. Dissimilarity of k-mer frequency spectra between multiple metagenomic datasets calculated for two genes—CFX (A) and APH3-Prime (B) (Jaccard metric,

non-metric MDS). (A) CFX gene. Red arrow shows dynamics for subject HP_003 (transition from time points 2 and 3), blue arrow—similar transition for subject

HP_028. (B) APH3-Prime gene. Red and blue arrows show transitions for subject HP_003 (time points 1–3) and subject HP_009 (time points 1–2) (Color version of

this figure is available at Bioinformatics online.)
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At the moment, two major families of methods for processing

metagenomic data are those based on assembly and mapping to

reference sequences. Algorithms that include mapping such as

MetaPhlAn2 (Truong et al., 2015), MEGAN (Huson et al., 2007),

MIDAS (Mielczarek et al., 2013) allowing assessment of relative

abundance of microorganisms in environmental samples. By map-

ping metagenomic reads using algorithms like Bowtie2 (Langmead

and Salzberg, 2012), BLAST, DIAMOND (Buchfink et al., 2014),

bwa (Li and Durbin, 2009) to reference databases of AR genes

[CARD (Jia et al., 2017), MEGARes (Lakin et al., 2017) and other],

it is possible to obtain the abundance of the AR genes in the metage-

nomes. With all the inherent advantages of these approaches, such

methods do not allow solving the problems of exploring the localiza-

tion of genes in the microbial genomes in a reference-independent

manner. PanPhlAn (Scholz et al., 2016) and HUMAnN2

(Abubucker et al., 2012) can be used to study bacterial pangenomes.

However, these methods have limitations because they work with

existing data and some new findings (e.g. HGT events) may not be

detected.

Other methods of data analysis implement ‘whole’ assembly of

metagenomic reads to contigs based on paradigm of overlap-layout-

consensus and dBg. For example, metagenomic assemblers based on

dBg are metaSpades (Nurk et al., 2017), Ray Meta (Boisvert et al.,

2012), SOAPdenovo2 (Luo et al., 2012), MetaVelvet (Namiki et al.,

2012), MEGAhit (Li et al., 2015). However, they possess significant

limitations for researchers. For the complete assembly of metage-

nomes, sufficiently high computational resources are required and

the process is very time-consuming. High rate of accumulation of

metagenomic information increase this problem. The ‘whole’ assem-

bly is useful when a researcher needs to study the metagenome

entirely, carries out de novo assembly of genomes of unknown bac-

teria and for others similar tasks. This approach is not always rele-

vant, when researcher is performing the task of quickly extracting

information from the metagenomes. Thus, there is a need to create

algorithms allowing to process large datasets quickly.

An alternative approach that is computationally efficient is to

analyze k-mer frequencies from metagenomic data and work

with this distribution. In MetaCherchant, k-mers distribution is

used to construct a dBg and unify unbranching paths into unitigs.

Subsequent taxonomic annotation of unitigs can be performed using

a wide range of software. The proposed algorithm allows exploring

the connections between AR genes and genomes of taxa present in

microbiota using a graph representation. Unlike existing methods,

MetaCherchant provides a richer representation of genomic context

of AR gene, thus showing the resistance potential of species in

gut microbiota in an unbiased way, as well as providing means

for examining potential ways of resistance transmission. When com-

pared with an alternative method providing similar results (combi-

nation of SPAdes and Bandage), the presented pipeline is simpler

and less computationally demanding. It does not require global

assembly of the whole graph and its graphic rendering. Moreover, it

can also provide more detailed information about the context of the

target gene.

Sequencing errors in metagenomic reads hinder reconstruction of

gene environment. Filtration of rare k-mers removes noise, but is

also associated with deterioration detection of low-abundant

microbes. To address this problem, we implemented graph trimming

function that simplifies the graph and at the same time filters errone-

ous k-mers. It provides clearer visualization of metagenomic data

and improves accuracy of biological assumptions about potential

HGT events and taxonomic annotation of ARGs.

Certain recommendations can be made for a researcher planning

to compare metagenomic time series of subjects undergoing antibi-

otic treatment. At the stage of experiment design of metagenomic

survey, in order to provide higher precision of HGT events detec-

tion, it is recommended to provide deeper coverage of the initial

time point. The reason is that the AR-conferring gene sequences sub-

ject to HGT might be insufficiently covered, since they are localized

in low-abundant species.

MetaCherchant has certain limitations related to the complexity

of graph structures emerging when the AR gene is located within

high-covered mobile genetic element. Plasmids and transposons can

be present at higher copy number in microbiota than their bacterial

hosts—so their coverage can be much higher than one of bacterial

chromosomes. When filtering erroneous k-mers, it is required to

increase the coverage threshold—but then the display of chromoso-

mal regions becomes deteriorated. Under low coverage threshold,

identification of chromosomal sites is possible but the mobile ele-

ment part of the graph is perplexed by erroneous k-mers. In addi-

tion, plasmids and transposons of different taxa can contain highly

homologous regions further complicating the graph. These limita-

tions do not allow constructing comprehensive graphs. To overcome

the problems of inaccuracy of taxonomic annotations and percep-

tion of ‘overcomplicated graphs’, it is logical to include the option

of comparing the graphs analytically. We implemented the option of

k-mer frequency distribution analysis allowing to compare a multi-

ple datasets independently of the graph complexity. The smaller the

reads’ length, the lower value of k can be used for assembly, the

greater the proportion of false detections. This method was

employed to process five metagenomic datasets obtained on various

Illumina platforms (HiSeq, MiSeq) with different read length. The

length of the reads at the level of 250–300 bp was sufficient for

reconstructing context of target sequences properly. If read length is

around 100 bp, the graph created by MetaCherchant is not always

visually clear. This approach allowed us to identify differences in the

environments of the AP genes, in part, to find interesting cases that

can be further accurately visualized.

To summarize, MetaCherchant offers an original representation

of genomic environment of AR genes of interest that goes beyond

‘flattened’ images of microbiota diversity provided by traditional

methods. The method can be used in metagenomic analytics to com-

pare gene contexts of arbitrary gene of interest. The full-cycle proc-

essing and visualization provided by MetaCherchant can be applied

not just to gut metagenomes, but also to other environments—it is

especially important in the light of discovered transmission of resist-

ance to gut from urban environment (Pehrsson et al., 2016).

MetaCherchant will contribute to the design of rational antibiotic

therapy schemes for infectious diseases treatment [including the

sequence of use of known drugs and introduction of new antimicro-

bial drugs (Imamovic and Sommer, 2013)]. This will provide both

increase of success rate for individual patients and constrain the

spread of new multidrug-resistant pathogens.
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