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Abstract

Motivation: Recent high-throughput sequencing advances have expanded the breadth of available

omics datasets and the integrated analysis of multiple datasets obtained on the same samples has

allowed to gain important insights in a wide range of applications. However, the integration of vari-

ous sources of information remains a challenge for systems biology since produced datasets are

often of heterogeneous types, with the need of developing generic methods to take their different

specificities into account.

Results: We propose a multiple kernel framework that allows to integrate multiple datasets of vari-

ous types into a single exploratory analysis. Several solutions are provided to learn either a con-

sensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We

applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic

datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our

method is able to retrieve previous findings in a single kernel PCA as well as to provide a new

image of the sample structures when a larger number of datasets are included in the analysis. To

perform this analysis, a generic procedure is also proposed to improve the interpretability of the

kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, pro-

vided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both sin-

gle and multi-omics strategies. The comparison of these two approaches demonstrates the benefit

of our integration method to improve the representation of the studied biological system.

Availability and implementation: Proposed methods are available in the R package mixKernel,

released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the

approach can be found on mixOmics web site http://mixomics.org/mixkernel/.

Contact: jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent high-throughput sequencing advances have expanded the

breadth of available omics datasets from genomics to transcriptom-

ics, proteomics and methylomics. The integrated analysis of multiple

datasets obtained on the same samples has allowed to gain

important insights in a wide range of applications from microbial

communities profiling (Guidi et al., 2016) to the characterization

of molecular signatures of human breast tumours (The Cancer

Genome Atlas Network, 2012). However, multiple omics

integration analyses remain a challenging task, due to the complex-

ity of biological systems, heterogeneous types (continuous data,

counts, factors, networks. . .) between omics and additional informa-

tion related to them and the high-dimensionality of the data.

In the literature, several strategies have been proposed to analyse

multi-omics datasets. Multivariate approaches are a widely used frame-

work to deal with such problems and several such methods [including

partial least squares (PLS) and Canonical Correlation Analysis (CCA)]

are provided in the R package mixOmics Lê Cao et al. (2009).
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Similarly, the multiple co-inertia analysis (Chen et al., 2014), use the

variability both within and between variables to extract the linear rela-

tionships that best explain the correlated structure across datasets.

However, these approaches are restricted to the analysis of continuous

variables and thus are not generic in term of data types used as inputs.

Some works use a case-by-case approach to integrate non numeric

information into the analysis: Zhuang et al. (2011b) propose a joint

non-negative matrix factorization framework to integrate expression

profiles to interaction networks by adding network-regularized con-

straints with the help of graph adjacency matrices and Pavoine et al.

(2004) and Dray et al. (2014) propose extensions of the widely used

Principal component analysis (PCoA) approach to integrate informa-

tion about phylogeny and environmental variables. Finally, some

authors propose to use a transformation of all the input datasets into a

unified representation before performing an integrated analysis: Kim

et al. (2012) transforms each data types into graphs, which can be

merged before being analysed by standard graph measures and graph

algorithms. However, graph based representation are a very constrain-

ing and rough way to represent a complex and large dataset.

In this work, we take advantage of the kernel framework to pro-

pose a generic approach that can incorporate heterogeneous data

types as well as external information in a generic and very flexible

way. More precisely, any dataset is viewed through a kernel that

provides pairwise information between samples. Kernels are a

widely used and flexible method to deal with complex data of vari-

ous types: they can be obtained from b-diversity measures (Bray and

Curtis, 1957; Lozupone et al., 2007) to explore microbiome data-

sets. They can also account for datasets obtained as read counts by

the discrete Poisson kernel (Canale and Dunson, 2011) and are also

commonly adopted to quantifies genetic similarities by the state ker-

nel (Kwee et al., 2008; Wu et al., 2010). Our contribution is to pro-

pose three alternative approaches able to combine several kernels

into one meta-kernel in an unsupervised framework. If multiple ker-

nel approaches are widely developed for supervised analyses, unsu-

pervised approaches are less easy to handle, because no clear a priori

objective is available. However, they are required to use kernel in

exploratory analyses that are the first step to any data analysis.

To evaluate the benefits of the proposed approach, two datasets

have been analysed. The first one is the multiple metagenomic data-

set collected during the TARA Oceans expedition (Bork et al., 2015;

Karsenti et al., 2011) and the second one is based on a multi-omic

dataset on breast cancer (The Cancer Genome Atlas Network,

2012). A method to improve the interpretability of kernel-based

exploratory approaches is also presented and results show that not

only our approach allows to retrieve the main conclusions stated in

the different papers in a single and fast analysis, but that it can also

provide new insights on the data and the typology of the samples by

integrating a larger number of information.

2 Materials and methods

2.1 Unsupervised multiple kernel learning
2.1.1 Kernels and notations

For a given set of observations xið Þi¼1;...;N, taking values in an arbi-

trary space X , we call ‘kernel’ a function K : X � X ! R that pro-

vides pairwise similarities between the observations: Kij :¼ K xi;xj

� �
.

Moreover, this function is assumed to be symmetric (Kij¼ Kji) and positive

(8n 2 N; 8 ðaiÞi¼1;...;n � R; 8 ðxiÞi¼1;...;n � X ;
Pn

i;i0¼1 aiai0Kii0 � 0).

According to Aronszajn (1950), this ensures that K is the dot product in a

uniquely defined Hilbert space H; h:; :ið Þ of the images of xið Þi by a

uniquely defined feature map / : X ! H: Kij ¼ h/ xið Þ;/ xj

� �
i. In the

sequel, the notation K will be used to denote either the kernel itself or the

evaluation matrix Kij

� �
i;j¼1;...;N

depending on the context.

This setting allows us to deal with multiple source datasets in a

uniform way, provided that a relevant kernel can be calculated from

each dataset (examples are given in Section 3.1 for standard numeric

datasets, phylogenetic tree . . .). Suppose now that M datasets

xm
i

� �
i¼1;...;N

(for m ¼ 1; . . . ;M) are given instead of just one, all

obtained on the same samples i ¼ 1; . . . ;N. M different kernels

Kmð Þm¼1;...;M provide different views of the datasets, each related to

a specific aspect.

Multiple kernel learning (MKL) refers to the process of linearly

combining the M given kernels into a single kernel K�:

K� ¼
XM

m¼1
bmKm subject to

bm � 0; 8m ¼ 1; . . . ;MPM
m¼1 bm ¼ 1

:

(
(1)

By definition, the kernel K* is also symmetric and positive and thus

induces a feature space and a feature map (denoted by /* in the

sequel). This kernel can thus be used in subsequent analyses [support

vector machine (SVM), kernel PCA (KPCA), kernel self-organizing

map (KSOM) . . .] as it is supposed to provide an integrated sum-

mary of the samples.

A simple choice for the coefficients bm is to set them all equal to

1/M. However, this choice treats all the kernels similarly and does

not take into account the fact that some of the kernels can be redun-

dant or, on the contrary, atypical. Sounder choices aim at solving an

optimization problem so as to better integrate all informations. In a

supervised framework, this mainly consists in choosing weights that

minimize the prediction error (Gönen and Alpaydin, 2011). For

clustering, a similar strategy is used in Zhao et al. (2009), optimizing

the margin between the different clusters. However, for other unsu-

pervised analyses (such as exploratory analysis, KPCA for instance),

such criteria do not exist and other strategies have to be used to

choose relevant weights.

As explained in Zhuang et al. (2011a), propositions for unsuper-

vised MKL (UMKL) are less numerous than the ones available for the

supervised framework. Most solutions (see, e.g. Lin et al., 2010;

Zhuang et al., 2011a) seek at providing a kernel that minimizes the

distortion between all training data and/or that minimizes the approx-

imation of the original data in the kernel embedding. However, this

requires that the datasets xm
i

� �
i

(m ¼ 1; . . . ;M) are standard numeri-

cal datasets: the distortion between data and the approximation of the

original data are then directly computed in the input space (which is

R
d) using the standard Euclidean distance as a reference. Such

a method is not applicable when the input dataset is not numerical

(i.e. is a phylogenetic tree for instance) or when the different datasets

xm
i

� �
i
(m ¼ 1; . . . ;M) do not take value in a common space.

In the sequel, we propose two solutions that overcome this prob-

lem: the first one seeks at proposing a consensual kernel, which is the

best consensus of all kernels. The second one uses a different point of

view and, similarly to what is suggested in Zhuang et al. (2011a),

computes a kernel that minimizes the distortion between all training

data. However, this distortion is obtained directly from the M kernels,

and not from an Euclidean input space. Moreover, it is used to pro-

vide a kernel representation that preserves the original data topology.

Two variants are described: a sparse variant, which also selects the

most relevant kernels, and a non sparse variant, when the user does

not want to make a selection among the M kernels.

2.1.2 A consensus multiple kernel

Our first proposal, denoted by STATIS-UMKL, relies on ideas simi-

lar to STATIS (L’Hermier Des Plantes, 1976; Lavit et al., 1994).
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STATIS is an exploratory method designed to integrate multi-block

datasets when the blocks are measured on the same samples.

STATIS finds a consensus matrix, which is obtained as the matrix

that has the highest average similarity with the relative positions of

the observations as provided by the different blocks. We propose to

use a similar idea to learn a consensus kernel.

More precisely, a measure of similarity between kernels can be

obtained by computing their cosines (Cosines are usually preferred

over the Frobenius dot product itself because they allow to re-scale

the different matrices at a comparable scale. It is equivalent to using

the kernel ~K
m ¼ Km

jjKm jjF
instead of Km.) according to the Frobenius

dot product: 8m; m0 ¼ 1; . . . ; M,

Cmm0 ¼
hKm;Km0iF
jjKmjjFjjKm0jjF

¼ Trace KmKm0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trace Kmð Þ2

� �
Trace Km0ð Þ2

� �r : (2)

Cmm0 can be viewed as an extension of the RV-coefficient (Robert

and Escoufier, 1976) to the kernel framework, where the RV-

coefficient is computed between /m xm
i

� �� �
i

and /m0 xm0
i

� �� �
i

(where

/m is the feature map associated to Km).

The similarity matrix C ¼ Cmm0ð Þm;m0¼1;...;M provides information

about the resemblance between the different kernels and can be used

as such to understand how they complement each other or if some

of them provide an atypical information. It also gives a way to

obtain a summary of the different kernels by choosing a kernel K*

which maximizes the average similarity with all the other kernels:

maximizeb

XM

m¼1

�
K�v;

Km

jjKmjjF

�
F

¼ v>Cv

for K�v ¼
XM

m¼1
vmKm

and v 2 R
M such that jjvjj2 ¼ 1:

(3)

The solution of the optimization problem of Equation (3) is given by

the eigen-decomposition of C. More precisely, if v ¼ vmð Þm¼1;...;M is

the first eigenvector (with norm 1) of this decomposition, then its

entries are all positive (because the matrices Km are positive) and are

the solution of the maximization of v>Cv. Setting b ¼ vPM

m¼1
vm

thus

provides a solution satisfying the constraints of Equation (1) and

corresponding to a consensual summary of the M kernels.

Note that this method is equivalent to performing multiple CCA

between the multiple feature spaces, as suggested in Wang et al.

(2008) in a supervised framework, or in Ren et al. (2013) for multi-

ple kernel PCA. However, only the first axis of the CCA is kept and

a L2-norm constrain is used to allow the solution to be obtained by

a simple eigen-decomposition. This solution is better adapted to the

case where the number of kernels is small.

2.1.3 A sparse kernel preserving the original topology of the data

Because it focuses on consensual information, the previous proposal

tends to give more weights to kernels that are redundant in the ensem-

ble of kernels and to discard the information given by kernels that

provide complementary informations. However, it can also be desir-

able to obtain a solution which weights the different images of the

dataset provided by the different kernels more evenly. A second solu-

tion is thus proposed, which seeks at preserving the original topology

of the data. This method is denoted by sparse-UMKL in the sequel.

More precisely, weights are optimized such that the local geome-

try of the data in the feature space is the most similar to that of the

original data. Since the input datasets are not Euclidean and do not

take values in a common input space, the local geometry of the

original data cannot be measured directly as in Zhuang et al.

(2011a). It is thus approximated using only the information given by

the M kernels. To do so, a graph, the k-nearest neighbour graph (for

a given k 2 N
�), Gm, associated with each kernel Km is built. Then, a

N �Nð Þ-matrix W, representing the original topology of the dataset

is defined such that Wij is the number of times the pair (i, j) is in the

edge list of Gm over m ¼ 1; . . . ;m (i.e. the number of times, over

m ¼ 1; . . . ;M, that xm
i is one of the k nearest neighbours of xm

j or xm
j

is one of the k nearest neighbours of xm
i ).

The solution is thus obtained for weights that ensure that /� xið Þ
and /� xj

� �
are ‘similar’ (in the feature space) when Wij is large. To do

so, similarly as Lin et al. (2010), we propose to focus on some particu-

lar features of /� xið Þ which are relevant to our problem and correspond

to their similarity (in the feature space) with all the other /� xj

� �
. More

precisely for a given b 2 R
M, we introduce the N-dimensional vector

Di bð Þ ¼
�

/�b xið Þ;
/�b x1ð Þ

..

.

/�b xNð Þ

0
@

1
A� ¼ K�b xi;x1ð Þ

..

.

K�b xi; xNð Þ

0
@

1
A. But, contrary to

Lin et al. (2010), we do not rely on a distance in the original space to

measure topology preservation but we directly use the information pro-

vided by the different kernels through W. The following optimization

problem is thus solved:

minimizeb

XN

i;j¼1
WijkDi bð Þ � Dj bð Þk2

for K�b ¼
XM

m¼1
bmKm

and b 2 R
M such that bm � 0 and

XM

m¼1
bm ¼ 1:

(4)

The optimization problem of Equation (4) expands as

minimizeb

XM

m;m0¼1
bmbm0Smm0

for b 2 R
M such that bm � 0 and

XM

m¼1
bm ¼ 1;

(5)

for Smm0 ¼
PN

i;j¼1 WijhDm
i � Dm

j ;D
m0
i � Dm0

j i and Dm
i ¼

Km xi; x1ð Þ
..
.

Km xi;xNð Þ

0
@

1
A. The matrix S ¼ Smm0ð Þm;m0¼1;...;M is positive and the

problem is thus a standard Quadratic Programming (QP) problem

with linear constraints, which can be solved by using the R package

quadprog. Since the constrain
PM

m¼1 bm ¼ 1 is an L1 constrain in a

QP problem, the produced solution will be sparse: a kernel selection

is performed because only some of the obtained bmð Þm are non zero.

Although desirable when the number of kernels is large, this prop-

erty can be a drawback when the number of kernels is small and

that using all kernels in the integrated exploratory analysis is

expected. To address this issue, a modification of Equation (5) is

proposed in the next section.

2.1.4 A full kernel preserving the original topology of the data

To get rid of the sparse property of the solution of Equation (5), an

L2 constrain can be used to replace the L1 constrain, similarly to

Equation (3):

minimizev

XM

m;m0¼1
vmvm0Smm0

v 2 R
M such that vm � 0 and jjvjj2 ¼ 1;

(6)

and to finally set b ¼ vP
m

vm
. This problem is a Quadratically con-

strained quadratic programme, which is known to be hard to solve.
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For a similar problem, Lin et al. (2010) propose to relax the problem

into a semidefinite programming optimization problem. However, a

simpler solution is provided by using alterning direction method of

multipliers; Boyd et al. (2011). More precisely, the optimization

problem of Equation (6) is re-written as

minimizex and z xTSxþ Ifx�0g xð Þ þ Ifz�1g

such that x� z ¼ 0

and is solved with the method of multipliers. Final weights are then

obtained by re-scaling the solution b :¼ zP
m

zm
. The method is

denoted by full-UMKL in the sequel.

2.2 KPCA and enhanced interpretability
The combined kernel can be used in subsequent exploratory analy-

ses to provide an overview of the relations between samples through

the different integrated datasets. Any method based only on dot

product and norm computations can have a kernel version and this

includes a variety of standard methods, such as PCA (KPCA, see

below), clustering [kernel k-means, Schölkopf et al. (2004)] or more

sophisticated approaches that combine clustering and visualization

like KSOM (Mac Donald and Fyfe, 2000). In this section, we focus

on the description of KPCA because it is close to the standard

approaches that are frequently used in metagenomics (PCoA) and is

thus a good baseline analysis for investigating the advantages of our

proposals. Moreover, we have used KPCA to propose an approach

that is useful to improve the interpretability of the results. Section

4.2 illustrates that our method is not restricted to this specific analy-

sis and is straightforwardly extensible to other exploratory tools.

2.2.1 Short description of KPCA

KPCA, introduced in Schölkopf et al. (1998), is a PCA analysis per-

formed in the feature space induced by the kernel K�. It is equivalent

to standard MDS [i.e. metric MDS or PCoA; Togerson (1958)] for

Euclidean dissimilarities. Without loss of generality, the kernel K� is

supposed centered (if K� is not centered, it can be made so by com-

puting K� � 1
N K�IN þ 1

N2 I>NK�IN, with IN a vector with N entries

equal to 1.). KPCA simply consists in an eigen-decomposition of K�:

if ðakÞk¼1;...;N 2 R
N and kkð Þk¼1;...;N respectively denote the eigenvec-

tors and corresponding eigenvalues (ranked in decreasing order)

then the PC axes are, for k ¼ 1; . . . ;N; ak ¼
PN

i¼1 aki/
� xið Þ, where

ak ¼ akið Þi¼1;...;N. ak ¼ akið Þi¼1;...;N are orthonormal in the feature

space induced by the kernel: 8k;k0; hak; ak0 i ¼ a>k K�ak0 ¼ dkk0 with

dkk0 ¼
0 if k 6¼ k0

1 otherwise

(
. Finally, the coordinates of the projections of

the images of the original data, /� xið Þð Þi, onto the PC axes are given

by: hak;/
� xið Þi ¼

PN
j¼1 akjK

�
ji ¼ K�i:ak ¼ kkaki, where K�i: is the ith

row of the kernel K�.

These coordinates are useful to represent the samples in a

small dimensional space and to better understand their relations.

However, contrary to standard PCA, KPCA does not come with a

variable representation, since the samples are described by their rela-

tions (via the kernel) and not by standard numeric descriptors. PC

axes are defined by their similarity to all samples and are thus hard

to interpret.

2.2.2 Interpretation

There are few attempts, in the literature, to help understand the rela-

tions of KPCA with the original measures. When the input datasets

take values in R
d, Reverter et al. (2014) propose to add a representa-

tion of the variables to the plot, visualizing their influence over the

results from derivative computations. However, this approach

would make little sense for datasets like ours, i.e. described by dis-

crete counts.

We propose a generic approach that assesses the influence of var-

iables and is based on random permutations. More precisely, for a

given measure j, that is used to compute the kernel Km, the values

observed on this measure are randomly permuted between all sam-

ples and the kernel is re-computed: ~K
m;j

. For species abundance

datasets, the permutation can be performed at different phylogeny

levels, depending on the user interest. Then, using the weights found

with the original (non permuted) kernels, a new meta-kernel is

obtained ~K
� ¼

P
l 6¼mblK

l þ bm
~K

m;j
. The influence of the measure

j on a given PC subspace is then assessed by computing the Crone-

Crosby distance (Crone and Crosby, 1995) at the axis level:

8k ¼ 1; . . . ;N, Dcc ak; ~akð Þ ¼ 1ffiffi
2
p jjak � ~akjj, where ak and ~ak respec-

tively denote the eigenvectors of the eigen-decomposition of K� and
~K
�

(Note that a similar distance can be computed at the entire pro-

jection space level but, since axes are naturally ordered in PCA, we

chose to restrict to axis-specific importance measures).

Finally, the KPCA interpretation is done similarly as for a stand-

ard PCA: the interpretation of the axes akð Þk¼1;...;N is done with

respect to the observations xið Þi¼1;...;N which contribute the most to

their definition, when important variables are the ones leading to

the largest Crone-Crosby distances.

Methods presented in the paper are available in the R package

mixKernel, released on CRAN. Further details about implemented

functions are provided in Supplementary Section S1.

3 Case studies

3.1 TARA oceans
The TARA Oceans expedition (Bork et al., 2015; Karsenti et al.,

2011) facilitated the study of plankton communities by providing

oceans metagenomic data combined with environmental measures

to the scientific community. During the expedition, 579 samples

were collected for morphological, genetic and environmental analy-

ses, from 75 stations in epipelagic and mesopelagic waters across

eight oceanic provinces. The TARA Oceans consortium partners

analysed prokaryotic (Sunagawa et al., 2015), viral (Brum et al.,

2015) and eukaryotic-enriched (de Vargas et al., 2015) size fractions

and provided an open access to the raw datasets and processed

materials. So far, all articles related to TARA Oceans that aim at

integrating prokaryotic, eukaryotic and viral communities, took

advantage of the datasets only by using co-occurrence associations

Guidi et al. (2016), Lima-Mendez et al. (2015) and Villar et al.

(2015). The integration analysis of the whole material aims at pro-

viding a more complete overview of the relations between all col-

lected informations.

A total of 48 selected samples were collected in height different

oceans or seas: Indian Ocean, Mediterranean Sea, North Atlantic

Ocean, North Pacific Ocean, Red Sea, South Atlantic Ocean, South

Pacific Ocean (SPO) and South Ocean (SO). Using these samples,

eight (dis)similarities were computed using public preprocessed

datasets, which are all available from the TARA Oceans consortium

partner’s websites. These dissimilarities provide information about

environmental variables, phylogenetic similarities, prokaryotic func-

tional processes, different aspects of the eukaryotic dissimilarities

and virus composition. Selected datasets as well as chosen kernels

are fully described in Supplementary Section S2. The meta-kernel

was analysed using a KPCA and the most important variables were

assessed as described in Section 2.2.2.

1012 J.Mariette and N.Villa-Vialaneix

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/6/1009/4565592 by guest on 18 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx682#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx682#supplementary-data


3.2 The Cancer Genome Atlas
The Cancer Genome Atlas Network (2012) (TCGA) provides multi-

omics datasets from different tumour types, such as colon, lung and

breast cancer. In this work, we consider normalized and pre-filtered

breast cancer datasets available from the mixOmics website (http://

mixomics.org/tcga-example/). Using the 989 available samples, three

kernels were computed. The TCGA.mRNA kernel provides a gene

expression dissimilarity measure computed on the expression of

2000 mRNAs, the TCGA.miRNA describes the expression of 184

miRNAs and the methylation aspect is assessed by the TCGA.CpG

kernel, computed on 2000 CpG probes. These three kernels were

obtained using the Gaussian kernel, Kij ¼ e�rjjxi�xj jj2 with r equal to

the median of 1
jjxi�xj jj2

n o
i< j

. The combined kernel was used in

KSOM that has been implemented with the R package SOMbrero

(Boelaert et al., 2014). KSOM is an exploratory tool that combines

clustering and visualization by mapping all samples onto a 2D (gen-

erally squared) grid made of a finite number of units (also called

clusters). It has been shown relevant, e.g. to provide a relevant

taxonomy of Amazonian butterflies from DNA barcoding in

(Olteanu and Villa-Vialaneix, 2015).

The results of our analysis with the combined kernel were com-

pared with the results obtained with a simple analysis that uses only

one of the kernel. The comparison was performed using a quality

measure specific to SOM, the topographic error (TE), which is the

ratio of the second best matching unit that falls in the direct neigh-

bour, on the grid, of the chosen unit over all samples (Pölzlbauer,

2004). In addition, breast cancer subtypes, i.e. Basal, Her2, LumA

or LumB are provided for every sample and were used as an a priori

class to compute clustering quality measures (they were thus

excluded from the exploratory analysis). More precisely, (i) the aver-

age cluster purity, i.e. the mean over all clusters on the grid of the

frequency of the majority vote cancer subtype and (ii) the normal-

ized mutual information (NMI) (Danon et al., 2005) between cancer

subtype and cluster, which is a value comprised between 0 and 1

(1 indicating a perfect matching between the two classifications).

4 Results and discussion

Sections 4.1 and 4.2 provide and discuss results of exploratory analyses

performed from the two sets of datasets described in the previous sec-

tion. More precisely, Section 4.1 explores the datasets studied in

Sunagawa et al., (2015), Brum et al. (2015) and de Vargas et al. (2015)

with KPCA. This illustrates how a multiple metagenomic dataset can be

combined with external information to provide an overview of the

structure of the different samples. In addition, Section 4.2 shows that

our approach is not restricted nor to metagenomic neither to KPCA by

studying the multi-omic dataset related to breast cancer with KSOM.

All analyses presented in this section use the full-UMKL strategy.

However, for both datasets, a study of the correlation between

kernels in the line of the STATIS-UMKL approach is provided in

Supplementary Section S4 and shows how this approach helps under-

stand the relations between the multiple datasets. Moreover, a com-

parison between the different multiple kernel strategies is discussed in

Supplementary Section S5 and justifies the choice of full-UMKL for

our problems. All combined kernels have been implemented with our

package mixKernel, as well as all KPCA results.

4.1 Exploring TARA oceans datasets with a single KPCA
In a preliminary study (fully reported in Supplementary Section S3),

an exploratory analysis was performed using a KPCA with only the

three TARA Oceans datasets studied in Sunagawa et al. (2015) and

the full-UMKL strategy. The results show that the main variability

between the different samples is explained similarly as in Sunagawa

et al. (2015): the most important variables returned by our method

are those discussed in this article to state the main conclusions.

A further step is then taken by integrating all TARA Oceans

datasets described in Supplementary Section S2. Supplementary

Section S4.1 shows that pro.phylo and euk.pina are the most

correlated kernels to environmental and physical variables, unlike

large organism size fractions, i.e. euk.meso which is strongly geo-

graphically structured. Figure 1 (left) displays the projection of the

samples on the first two axes of the KPCA. Figure 1 (right) and

Supplementary Figure S16 provide the five most important variables

for each datasets, respectively for the first and the second axes of the

KPCA. To obtain these figures, abundance values were permuted at

56 prokaryotic phylum levels for the pro.phylo kernel, at 13 eukary-

otic phylum levels for euk.pina, euk.nano, euk.micro and euk.meso

and at 36 virus family levels for the vir.VCs kernel. Variables used

for phychem and pro.NOGs were the same than the one used in the

restricted analysis. Additionally, the explained variance supported

by the first 15 axes is provided in Supplementary Figure S17. Using

an R implementation of the methods on a one CPU computer with

16 GB memory, the computational cost to combine the three kernels

is only �3 s. Permutations to assess the eight kernels important vari-

ables are computationally much more demanding if performed at a

fine level as we did. In our case, they took �3 min.

Contrary to the restricted analysis, Figure 1 does not highlight

any particular pattern in terms of depth layers but it does in terms of

geography. SO samples are gathered in the bottom-center of the

KPCA projection and SPO samples are gathered on the top-left side.

Figure 1 shows that the most important variables come from the

phychem kernel (especially the longitude) and from kernels repre-

senting the eukaryotic plankton. More specifically, large size organ-

isms are the most important: rhizaria phylum for euk.meso and

alveolata phylum for euk.nano. The abundance of rhizaria organ-

isms also ranks first between important variables of the second

KPCA axis, followed by the opisthokonta phylum for euk.nano.

The display of these variables on the KPCA projection reveals a gra-

dient on the first axis for both the alveolata phylum abundance

(Supplementary Fig. S18) and the longitude (Supplementary Fig.

S19) and on the second axis for rhizaria (Supplementary Fig. S20)

and opisthokonta (Supplementary Fig. S21) abundances. This indi-

cates that SO and SPO epipelagic waters mainly differ in terms of

Rhizarians abundances and both of them differ from the other

studied waters in terms of alveolata abundances.

The integration of TARA Oceans datasets shows that the varia-

bility between epipelagic samples is mostly driven by geography

rather than environmental factors and that this result is mainly

explained by the strong geographical structure of large eukaryotic

communities. Studied samples were all collected from epipelagic

layers, where water temperature does not vary much, which explains

the poor influence of the prokaryotic dataset in this analysis.

4.2 Clustering breast cancer multi-omics datasets
KSOM was used to obtain a map from the three datasets presented

in Section 3.2: mRNAs, miRNAs and methylation datasets. The

results were compared with a single-omic analysis with the same

method (KSOM). KSOM maps were trained with a 5 � 5 grid, 5000

iterations in a stochastic learning framework and a Gaussian neigh-

bourhood controlled with the Euclidean distance between units on
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the grid. The computational cost to combine the kernels was �2 min

and �12 s were required to generate one map.

Table 1 reports KSOM performances obtained over 100 maps

(mean and SD) for the three kernels: TCGA.mRNA, TCGA.miRNA

and TCGA.CpG and the meta-kernel, denoted TCGA.all. Results

are reported in terms of average cluster purity and NMI, with

respect to the cancer subtypes. All TE were found to be equal to 0.

This indicates a good organization of the results on the grid, with

respect to the topology of the original dataset as represented in the

input kernel. Finally the map with the best NMI obtained for the

meta-kernel is given in Figure 2.

For all quality criteria, the integrated analysis gives better results

(with respect to cancer subtype) than single-omics analyses (all dif-

ferences are significant according to a student test, risk 1%). This

can be explained by the fact that the information provided especially

by mRNA and CpG are complementary, as described in the analysis

of correlations between kernels in Supplementary Section S4.2. In

addition, Figure 2 shows that the clustering produced by the KSOM

is relevant to discriminate between the different breast cancer sub-

types and to identify their relations (e.g. subtypes LumA and Basal

are closer to subtypes LumB and Her2 than they are from each

other). The organization of cancer subtypes on the map is in accord-

ance with what is reported in (Sørliea et al., 2001) (from cDNA

microarray). However, it has been obtained with additional datasets

and thus provides a finer typology of samples. It shows that some

LumA samples are mixed with LumB samples (cluster at the bottom

left of the map) and that samples classified in the middle of the map

probably have an ambiguous type. It also gives clue to define which

samples are typical from a given cancer subtype. In addition,

Supplementary Section S6 shows the results obtained by KPCA that

are consistent with those of KSOM. It also provides a list of features

(mRNA, miRNA and CpG probes) that are potentially interesting to

discriminate between breast cancer subtypes.

5 Conclusion

The contributions of this article to the analysis of multi-omics data-

sets are 2-folds: first, we have proposed three unsupervised kernel

learning approaches to integrate multiple datasets from different

types, which either allow to learn a consensual meta-kernel or a

meta-kernel preserving the original topology of the data. Second, we

have improved the interpretability of the KPCA by assessing the

influence of input variables in a generic way.

The experiments performed on TARA Oceans and breast cancer

datasets showed that presented methods allow to give a fast and accu-

rate insight over the different datasets within a single analysis and is

able to bring new insights as compared with separated single-dataset

analyses. Future work includes the addition of more kernels and post-

processing methods for the analysis into our package mixKernel.
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