
Genome analysis

Kmer-db: instant evolutionary distance

estimation

Sebastian Deorowicz*,†, Adam Gudy�s†, Maciej Długosz, Marek Kokot

and Agnieszka Danek

Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of

Technology, Gliwice, Poland

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Received on February 13, 2018; revised on June 13, 2018; editorial decision on July 4, 2018; accepted on July 6, 2018

Abstract

Summary: Kmer-db is a new tool for estimating evolutionary relationship on the basis of k-mers

extracted from genomes or sequencing reads. Thanks to an efficient data structure and parallel im-

plementation, our software estimates distances between 40 715 pathogens in <7 min (on a modern

workstation), 26 times faster than Mash, its main competitor.

Availability and implementation: https://github.com/refresh-bio/kmer-db and http://sun.aei.polsl.pl/

REFRESH/kmer-db.

Contact: sebastian.deorowicz@polsl.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large volumes of data generated during the course of sequencing

thousands of different organisms [100 K Pathogen Genome Project

(Weimer et al., 2017), NCBI Pathogen Detection (https://www.ncbi.

nlm.nih.gov/pathogens)], require fast analysis methods. Short sub-

strings of nucleotide sequences, called k-mers, are commonly used in

this area as they can be extracted either from genomes or sequencing

reads, allowing assembly free approach. They enable accurate ap-

proximation of evolutionary distances between organisms, thus are

used for phylogeny reconstruction (Mash; Ondov et al., 2016), bac-

teria identification (StrainSeeker; Roosaare et al., 2017) or metage-

nomic classification (MetaCache; Müller et al., 2017). Importantly,

if genomes are closely related, small subsets of k-mers are sufficient

for obtaining acceptable accuracy, significantly reducing processing

time. Nevertheless, as the number and the diversity of sequenced

genomes continuously increases, the throughput of existing algo-

rithms will soon become a bottleneck.

We introduce Kmer-db, a tool for k-mer-based analysis of large

collections of sequenced samples. Thanks to a novel compressed k-

mers representation and parallel implementation, our software is

able to process thousands of bacteria genomes in minutes on a mod-

ern workstation.

2 Materials and methods

The main analysis starts from build step, i.e. the construction of a

database for a set of samples, either from assembled genomes or

sequencing reads. At the beginning, all k-mers are extracted analo-

gously as in KMC (Kokot et al., 2017). This can be optionally fol-

lowed by minhash filtering (Broder, 1997) which saves memory and

time at the cost of accuracy. Samples are processed independently by

threads (for efficiency, disk operations are serialized, though). In

contrast to some existing solutions, instead of selecting fixed-size

subset of k-mers (referred to as a sketch), Kmer-db retains assumed

fraction of them. As values of the hash function are uniformly dis-

tributed, this can be done straightforwardly by thresholding. This

simplifies the procedure of k-mers filtering (immediate decision

whether k-mer is accepted) providing similar accuracy as fixed-sized

sketches.

A basic data representation could rely on storing for each sample

the corresponding k-mer set. Excessive time and memory require-

ments make this approach prohibitive for large sample sets, unless

k-mer filtering method is used. Presented strategy is different. It is

based on k-mer templates, i.e. lists of sample ids (sid). Such a list is

defined for each k-mer. The idea behind is that multiple k-mers may

occur in exactly same samples, thus they share a template.

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 133

Bioinformatics, 35(1), 2019, 133–136

doi: 10.1093/bioinformatics/bty610

Advance Access Publication Date: 9 July 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/1/133/5050791 by guest on 20 April 2024

https://github.com/refresh-bio/kmer-db
http://sun.aei.polsl.pl/REFRESH/kmer-db
http://sun.aei.polsl.pl/REFRESH/kmer-db
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data
https://www.ncbi.nlm.nih.gov/pathogens
https://www.ncbi.nlm.nih.gov/pathogens
https://academic.oup.com/


Moreover, templates are often similar which allows further com-

pression. As a result, Kmer-db consists of two basic structures: (i) a

hashtable K2T mapping k-mers to corresponding template ids (tid),

(ii) a table CT of compacted templates.

Samples are added to the database incrementally, with increasing

identifiers. Let S indicate analyzed sample identified by sid. For each

k-mer from S, we record corresponding template identifier, tid, from

K2T in an auxiliary array A (k-mers not present in K2T are inserted

with special value tid ¼ 0). Array A is used to determine whether all

k-mers with particular tid are present in sample S. If so, template tid

from CT is extended with sid. If not, a new template is added to CT

and corresponding entries in K2T are updated. The new template

should contain all samples from considered tid and additionally sid.

To reduce redundancy, CT is a hierarchical structure—a new tem-

plate stores only sid on its list together with an identifier pid to its

parental template. For this reason CT is referred to as compacted

templates. Since samples are added to the database with increasing

identifiers, lists of sid in CT table are also increasing, thus they can

be stored with a use of Elias gamma code (Elias, 1975), with about

an order of magnitude space reduction compared with storing plain

ids. The state of Kmer-db structures after adding five samples is pre-

sented in Figure 1. The intermediate states can be found in

Supplementary Figures S1–S5. Incremental addition of samples to

the database imposes parallelization at the level of a single sample.

In particular, following operations are distributed among CPU

threads: (i) searching k-mers in K2T dictionary, (ii) sorting A array

and (iii) extension of templates in CT.

The complete database can be further used for estimating evolu-

tionary relationship between samples by determining numbers of

common k-mers. One of the available Kmer-db modes is all2all

which determines matrix of common k-mer counts for all samples in

a database. When tens of thousands of samples are analyzed, matrix

M of common k-mers counts requires gigabytes of memory.

Therefore, maintaining cache locality when updating M elements is

of crucial importance. For each template tid from CT, the algorithm

iterates over its sid list and generates a collection of ðsid; tidÞ pairs,

stored in a cache-fitting buffer. Then, groups of pairs with same first

element are identified by generating histograms. Note, that each

group corresponds to a single M row: first element of a pair (sid) is a

row number, while second element (tid) points to a template, whose

entries indicate columns. The groups can be used to increment corre-

sponding elements of M by template cardinality. Multithreading in

all2all mode concerns: (i) decompression of Elias gamma templates,

(ii) histogram generation, (iii) update of distance matrix rows.

Additionally, when incrementing M elements, vectorization based

on AVX CPU extensions is employed.

An alternative mode is one2all which produces vector V of com-

mon k-mer counts between new sample S0 and all samples in a data-

base. For all k-mers from S0 the algorithm selects corresponding

templates, using K2T hashtable, and increments V elements accord-

ingly. Also this mode takes advantage of parallelism—threads pro-

cess independent subsets of templates and update own copies of V,

which are merged afterwards.

The output of all2all and one2all stages are textual files with

numbers of shared k-mers between pairs of samples and the total

numbers of k-mers in each sample. They can be used to calculate

various distance measures, e.g. Jaccard index, Mash distance. This is

made by the distance mode.

The Cþþ14 source code of Kmer-db is distributed under GNU

GPL 3 licence. The tool itself is available as a set of multiplatform

binaries.

3 Results

The main experiments concerned calculation of distances between

40 715 assembled genomes from NBCI Pathogen Detection on the

basis of 20-mers. Samples were sorted w.r.t. species tax id (see

Supplementary Material for other orderings). As the main competi-

tor, we selected Mash (Ondov et al., 2016), since it implements es-

sentially the same strategy as used in the NBCI Pathogen Detection

project.

As a first step, we investigated how Kmer-db fraction-based min-

hashing is related to the Mash sketch-based strategy in terms of

approximating evolutionary relationship between all pathogens. As

a criterion, we employed Mash distance, which can be calculated

straightforwardly from Jaccard index and was shown to approxi-

mate well 1� ANI (average nucleotide identity) (Ondov et al.,

2016). As a reference, distances calculated from all k-mers were

used. The analysis of the mean absolute error (MAE, see Fig. 2)

showed that taking 0.02% of k-mers by Kmer-db retained the accur-

acy of default Mash configuration (1000 sketch). Analogously,

0.2% corresponded to 10 000 sketch which was used in the NCBI

project. We were not able to run Mash with 100 000 sketch, tough

it will probably render similar accuracy to 2% Kmer-db fraction.

Same relations between Kmer-db and Mash configurations were

observed on 500 Escherichia coli genomes taken from Ondov et al.

(2016) study (Supplementary Table S2). An important observation

which comes from Figure 2, is that divergent organisms require

more k-mers to keep the error at sensible level, which is in agree-

ment with theoretical error bound analysis presented by Ondov

et al. (2016). For example, when the distance was in ½0:35; 0:40Þ
interval, default sketch of 1, 000 (0.02% fraction) rendered un-

acceptable accuracy (MAE > 0.2). Tenfold increase in the number

of k-mers reduced the error by an order of magnitude. For more di-

vergent sequences, even full k-mer set may be required to obtain reli-

able distance estimation.

In further experiments, Mash was configured to use 10 000

k-mers per sample, while Kmer-db was run in two configurations:

(i) with minhashing at 0.2% threshold and (ii) on full k-mer set. To

evaluate software scalability, the subsets of 1, 2, 5, 10 and 20k sam-

ples were randomly selected from the full dataset. Table 1 presents

the results of building a database from genomes (Mash: sketch step;

Kmer-db: build step) and determining a distance matrix from the

Fig. 1. Database state (k ¼ 5) after adding samples: ACTGGATGCAG,

GCTGGATGGAG, ACTGGATGGAG, ATGCAGTTGGT, CGCAGTTGGT. The

structures can be used for obtaining list of samples for given k-mer. For ex-

ample, k-mer GGATG is assigned with template (tid) 3, whose parent (pid) is

template 1. Thus, GGATG is present in all samples (sid) from templates {3, 1},

which are {0, 1, 2}

134 S.Deorowicz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/1/133/5050791 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data


database (Mash: dist step; Kmer-db: all2all step). Detailed results

are presented in Supplementary Material.

Kmer-db, when using 0.2% of k-mers was astonishingly fast.

Evaluated on full dataset it was 26 times faster than Mash (below 7

min versus almost 3 h) and needed less memory (3.4 GB versus 9.8

GB). Calculation of distances from already built structure contrib-

uted mostly to the superior execution times of Kmer-db: it required

85 s—hundred times less than the competitor. Analyzing all k-mers

from all samples by Kmer-db (unfeasible to Mash due to computa-

tional requirements), took same time as running Mash on �500

times smaller representation.

Importantly, our solution scaled well, especially in terms of

memory usage. For example, increasing sample set 2-fold from 20 to

�40k resulted in only 6% growth of RAM, which is thanks to the

internal representation of Kmer-db (when the database is large, a lot

of k-mers from new samples share existing templates or their parts).

We also noticed that for increasing sets of samples, execution time

of Kmer-db became dominated by matrix estimation, i.e. all2all step

(see Supplementary Tables S3 and S4).

In Figure 3 we show the relative change of Kmer-db time and

memory requirements for varying k-mer size (k ¼ 20 was selected as

a reference). The database construction time (build step) was ap-

proximately constant. The distance calculation time (all2all)

decreased slightly with increasing k, with an exceptional large

value observed for k ¼ 16. This was due to fact that short k-mers

are likely to be present in genomes by chance, thus may be common

even for unrelated samples, increasing drastically the number of

updates of the distance matrix. As for the memory requirements,

they remained unchanged for k from range [16, 26] but increased al-

most 2-fold for k ¼ 28. This was caused by the restructuring of K2T

hashtable (small increase in the number of stored k-mers pushed

load factor above the threshold and resulted in doubling the size of

the table).

The additional experimental part concerned the calculation of

similarity vector between a new k-mer set obtained directly from

sequencing reads and the already-build database (Mash dist step;

Kmer-db one2all step). The corresponding times were: 5 s (Mash),

1 s (Kmer-db 0.2%), and 1 min (Kmer-db all).

4 Conclusions

Superior running times and scalability of Kmer-db opens new oppor-

tunities in k-mer-based estimation of evolutionary distances. Our al-

gorithm analyzed resampled k-mer set of 40 715 bacterial genomes

in <7 min, 26 times faster than Mash, confirming the readiness of

Kmer-db for processing much larger datasets which are to appear in

the near feature. Presented approach was also able to compare dis-

tantly related genomes with few k-mers in common, where minhash-

ing is inaccurate. Kmer-db was able to process all k-mers of

analyzed bacteria in a time needed by the competitor for 500 times

smaller k-mer set.

Fig. 2. The error of Mash distance estimation w.r.t. actual Mash distance (cal-

culated on the basis of all k-mers). Evaluation was done on the entire set of

40 715 pathogenes (almost a billion of sequence pairs). Points on the charts

represent intervals, i.e. [0, 0.05), [0.05, 0.1), etc. Each interval contained at

least 5 million of distances. Distances � 0.4 are not shown

Table 1. Comparison of corresponding Kmer-db and Mash steps in terms of required time (h:mm:ss format) and memory (gigabytes)

No. samples Mash Kmer-db Kmer-db

sketch size 10 000 fraction 0.2% all k-mers

tsketch tdist ttotal RAM tbuild tall2all ttotal speedup RAM tbuild tall2all ttotal RAM

1000 0:12 0:06 0:18 0.9 0:07 0:01 0:08 �2.3 1.3 4:21 0:15 4:36 15.2

2000 0:24 0:24 0:48 1.1 0:14 0:01 0:15 �3.2 1.4 7:22 0:24 7:46 27.9

5000 1:03 2:25 3:28 1.7 0:37 0:02 0:39 �5.3 1.4 15:00 1:33 16:33 28.8

10 000 2:07 9:33 11:40 2.7 1:13 0:06 1:19 �8.7 1.5 30:09 3:40 33:49 55.2

20 000 4:10 37:45 41:55 4.8 2:27 0:20 2:47 �15.1 1.5 52:25 13:10 1:05:35 57.4

40 715 8:35 2:36:54 2:45:29 9.8 4:58 1:25 6:23 �26.0 3.4 1:32:05 1:27:19 2:59:24 60.7

Note: Hardware configuration: two Xeon E5-2670 v3 CPUs (2 � 12 double-threaded 2.3 GHz cores), 256 GB of RAM, and six 1 TB HDDs in RAID-5. The

speedups of Kmer-db 0.2% are related to Mash.

Fig. 3. Time and memory requirements of Kmer-db (all k-mers, all samples)

with varying k-mer length. Results are given relatively to k ¼ 20

Kmer-db: instant evolutionary distance estimation 135

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/1/133/5050791 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty610#supplementary-data


Funding

This work was supported by National Science Centre, Poland under project

[DEC-2015/17/B/ST6/01890] and Silesian University of Technology under

[BKM-509/RAU2/2017] project. The infrastructure was supported by

[POIG.02.03.01-24-099/13] grant: ‘GeCONiI—Upper Silesian Center for

Computational Science and Engineering’.

Conflict of Interest: none declared.

References

Broder,A.Z. (1997) On the resemblance and containment of documents. In:

Proceedings of the Compression and Complexity of Sequences, Carpentieri,B.

et al. (eds) IEEE Computer soc, Salerno, Italy. pp 21–29.

Elias,P. (1975) Universal codeword sets and representations of the integers.

IEEE Trans. Inf. Theory, 21, 194–203.

Kokot,M. et al. (2017) KMC 3: counting and manipulating k-mer statistics.

Bioinformatics, 33, 2759–2761.

Müller,A. et al. (2017) MetaCache: context-aware classification of metage-

nomic reads using minhashing. Bioinformatics, 33, 3740–3748.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Roosaare,M. et al. (2017) StrainSeeker: fast identification of bacterial

strains from raw sequencing reads using user-provided guide trees. PeerJ, 5,

e3353.

Weimer,B.C. (2017) 100K Pathogen Genome Project. Genome Announc., 5,

e00594-17–e00517.

136 S.Deorowicz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/1/133/5050791 by guest on 20 April 2024


	bty610-TF1

