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Abstract

Motivation: The data generation capabilities of high throughput sequencing (HTS) instruments

have exponentially increased over the last few years, while the cost of sequencing has dramatically

decreased allowing this technology to become widely used in biomedical studies. For small labs

and individual researchers, however, storage and transfer of large amounts of HTS data present a

significant challenge. The recent trends in increased sequencing quality and genome coverage can

be used to reconsider HTS data storage strategies.

Results: We present Broom, a stand-alone application designed to select and store only high-

quality sequencing reads at extremely high compression rates. Written in Cþþ, the application

accepts single and paired-end reads in FASTQ and FASTA formats and decompresses data in

FASTA format.

Availability and implementation: Cþþ code available at https://scsb.utmb.edu/labgroups/fofanov/

broom.asp.

Contact: lealbayr@utmb.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent progress in HTS technology dramatically improved quality

and volume of the data generated by sequencing instruments. This

opens opportunities to use this technology in studies requiring high

coverage of target genomes including detection of rare-variants,

quasispecies analysis, and meta-barcoding. Such studies routinely

produced datasets containing significant numbers of repeated and/or

highly similar sequences (such as 16S rRNA produced in micro-

biome meta-barcoding studies). The presented software application

(Broom) is an attempt to employ these changes in the statistical

properties and improved quality of sequencing, to refine HTS data

storage strategy.

The basic principles utilized in the presented data storage/compres-

sion application include: (i) filtering and not storing low-quality data,

which allows exclusion of quality scores of individual nucleotides;

(ii) excluding read headers and storing only a single copy of repeated

sequences. Broom’s data compression approach includes storing only

suffix differences between consecutive reads sorted alphabetically [simi-

lar to delta encoding techniques used in various technologies such as

MPEG (Le Gall, 1992)] and transforming data into binary format using

bit-packing approaches specifically designed to take advantage of the

limited alphabet of sequencing data.

2 Implementation

Broom’s quality control step (only applicable to FASTQ files) uti-

lizes a user-defined minimum quality score threshold to replace all

low-quality bases by the unknown nucleotide symbol (‘N’).

Sequences which contain a high proportion of unknown nucleotides

can be also excluded using a user-defined threshold.
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To transform data into compressed binary format, all sequen-

ces are sorted alphabetically using the linear time complexity Most

Significant Digit Radix Sort (Knuth, 1998) algorithm which has

been customized to take advantage of the limited 5 (A/T/C/G/N)

letter alphabet. Sorting also places all repeated sequences together

and makes it possible to calculate their copy numbers in linear

time. To optimize the number of bytes required to store the copy

numbers of repeated sequences, Broom categorizes alphabetically

sorted sequences into four partitions: singletons (single copy) and

replicated sequences with copy number values that fit into 1, 2 or

4 bytes.

In each partition Broom identifies and excludes common prefixes

among consecutive sequences so that only the suffix subsequences

are stored in conjunction with copy numbers, and the length of the

prefix and (for paired-end and flexible length sequences) sequence

lengths. Unlike the copy numbers which can be stored as contiguous

blocks due to partitioning, storing other information which may

vary frequently between consecutive sequences (such as prefix

length, sequence length and read lengths of pairs) requires extra

processing. Broom uses the most significant bit of a byte to decide

whether to utilize another byte to store sequence length related in-

formation. As a result, Broom stores only 1 byte for length values

that are up to 127 bp (7-bits) and two bytes to store length values up

to 32 767 bp (15-bits). Since a de-replication step is performed prior

to calculation of prefix lengths, depending on the data, the majority

of the prefix values are expected to only use one byte per sequence

which results in a large savings in the resulting compressed file size.

To compress suffix sequences, they are concatenated into a single

string of bytes in which each nucleotide is represented as an integer

value from 0 to 5. The main advantage of using a contiguous block of

bytes, rather than individually allocated suffix sequences, is that it maxi-

mizes utilization of the CPU cache for further processing on the suffixes.

In the final step of the algorithm, the frequency and length span

of unknown nucleotides in the suffix byte string are analyzed to

choose between two alternative compression strategies. If the un-

known nucleotides appear sparsely and form islands, Broom con-

verts unknown nucleotides into ‘A’s in place and performs a base 4

transformation (for the 4 letter alphabet of A, T, C and G) of the

suffix bytes by converting 32 nucleotides at a time into 8-byte inte-

ger values while the location and span of the unknown nucleotides

are stored separately. Alternatively, it performs a base 5 transform-

ation of the suffix bytes. Base 5 transformation of the suffix bytes

allows the storage of 27 nucleotides per 8-byte integer.

Transforming sequences into base 5 in 8-byte blocks, utilizes

2.37 bits per nucleotide which is preferred over a simple 3 bit per

nucleotide transformation (21 nucleotides per 8-byte block) to rep-

resent 5 possible nucleotide values. The choice of 8-byte blocks is

due to the efficient processing of 64-bit integers by the CPU without

the need for excessive operations required for bit packing. Each

stage of computation in Broom employs linear time complexity algo-

rithms, therefore run time complexity of Broom is OðnÞ.
Even though the design principals of Broom make it effective in

compressing HTS data, it also supports compression of genome files

in FASTA format, albeit less effectively than HTS datasets. The gen-

ome module performs lossless compression of FASTA files retaining

sequence headers. The nucleotide sequences are compressed using

base 4 or base 5 transformations while none of the sorting and pre-

fix identification steps are performed as these steps only take advan-

tage of properties of HTS data.

It is important to mention that if no quality filtering is applied,

Broom’s memory footprint is roughly twice the size of the original

file. Additionally, the presented version of Broom is strictly single-

threaded and it can be run in parallel using the operating system

provided utilities. All characters in the nucleotide sequences are cap-

italized and any nucleotide character outside of the set of A, T, C, G

and N are replaced with ‘N’s.

3 Results and performance

The performance comparison between Broom and the latest versions of

Quip (Jones et al., 2012) (version 1.18) and pigz (Adler, 2007) (version

2.34) were made using 11 FASTQ files (ranging from 300 megabytes to

12 gigabytes), downloaded from the Sequence Read Archive (Leinonen

et al., 2011). Three different filtration parameters were used for Broom:

without discarding any reads containing unknown or low-quality

nucleotides, discarding reads with unknown or low-quality (minimum

quality score 15) nucleotides more than 25% of the read length, and dis-

carding reads with one or more unknown or low-quality nucleotides).

pigz was tested using fast (fastest compression method) and best (slow-

est but the best compression method) options. All calculations were per-

formed on a 1400 MHz AMD Opteron(tm) computer with 6386 SE

processor, 2048 Kb cache and 512 GB RAM running CentOS Linux.

The timing measurements were made using the Linux ‘time’ command

and CPU time was calculated by adding user and sys fields.

In all the tested cases, files generated by Broom are dramatically

(up to 150-fold) smaller, especially when filtration parameters were

set to exclude reads containing low-quality nucleotides (Fig. 1 and

Supplementary Material). It is also important to emphasize that in

all the tested cases Broom achieved significantly better compression/

decompression times.

Fig. 1. Performance comparison of Broom, pigz and Quip for SRR027520 (Illumina) data. (a) Compression time (CPU seconds), (b) decompression time, (c) file

sizes (megabytes)
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