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Abstract

Summary: pyTFA and matTFA are the first published implementations of the original TFA paper.

Specifically, they include explicit formulation of Gibbs energies and metabolite concentrations,

which enables straightforward integration of metabolite concentration measurements.

Motivation: High-throughput analytic technologies provide a wealth of omics data that can be used

to perform thorough analyses for a multitude of studies in the areas of Systems Biology and

Biotechnology. Nevertheless, most studies are still limited to constraint-based Flux Balance Analyses

(FBA), neglecting an important physicochemical constraint: thermodynamics. Thermodynamics-

based Flux Analysis (TFA) in metabolic models enables the integration of quantitative metabolomics

data to study their effects on the net-flux directionality of reactions in the network. In addition, it

allows us to estimate how far each reaction operates from thermodynamic equilibrium, which

provides critical information for guiding metabolic engineering decisions.

Results: We present a Python package (pyTFA) and a Matlab toolbox (matTFA) that implement

TFA. We show an example of application on both a reduced and a genome-scale model of E. coli.,

and demonstrate TFA and data integration through TFA reduce the feasible flux space with respect

to FBA.

Availability and implementation: Documented implementation of TFA framework both in Python

(pyTFA) and Matlab (matTFA) are available on www.github.com/EPFL-LCSB/.

Contact: vassily.hatzimanikatis@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constraint-based analysis on genome-scale metabolic models

(GEMs) is a popular method to study metabolism and cellular physi-

ology. Flux Balance Analysis (FBA), in particular, has been used to

predict network-level behaviors, such as specific growth rate,

gene essentiality, etc. The MATLAB-based COBRA toolbox

(Schellenberger et al., 2011) and its Python counterpart COBRApy

(Ebrahim et al., 2013) are today the most popular tools to perform

such studies, and offer an intuitive interface to model GEMs using a

linear programming formulation.

However, FBA-derived approaches often lead to flux distributions

that are contradicting with physiology and bioenergetics due to the

lack of thermodynamic constraints in their formulation (Ataman

and Hatzimanikatis, 2015; Soh and Hatzimanikatis, 2010). We

present here an implementation of Thermodynamics-based Flux

Analysis (TFA; Henry et al., 2007; Soh and Hatzimanikatis, 2014), a
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framework to constrain GEMs or any metabolic network with

thermodynamics. This framework allows to reduce the feasible flux

solution space and eliminate thermodynamically-infeasible flux distri-

butions, thus increasing the predictive accuracy of these models.

Previous works have been based on (Henry et al., 2007) to embed

thermodynamic information in GEMs. However, they either require

additional assumptions (Fleming and Thiele, 2011; Fleming et al.,

2009), or calculate the thermodynamics feasibility decoupled from the

FBA problem (Zamboni et al., 2008). TFA integrates the thermody-

namics feasibility in the same MILP problem as FBA, and can unbias-

edly account for all allowed thermodynamic profiles.

Our framework is provided under the form of a MATLAB tool-

box as well as a Python package. It supported the publication of sev-

eral studies integrating metabolomics in genome-scale models

(Andreozzi et al., 2016; Chakrabarti et al., 2013; Chiappino-Pepe

et al., 2017; Kiparissides and Hatzimanikatis, 2017; Miskovic et al.,

2017; Savoglidis et al., 2016).

2 Materials and methods

2.1 Embedding thermodynamics constraints
The first step towards building constraint-based models utilizing

thermodynamics with TFA is to ensure a proper thermodynamic

curation of the model. In particular, TFA requires the information

on (i) Compartment-specific pH, ionic strength and membrane

potentials; (ii) Elemental and charge balance of every reaction; (iii)

Df G
0o, the Gibbs free energy of formation of metabolic compounds

in aqueous phase, pH 7 and 0 M ionic strength, all concentrations

held at 1 M, at 25�C. (i) Is obtained from literature data. If this is

missing, data on phylogenetically close species can be assumed, if

available. (ii) Is dependent on the quality of the genome scale model

used as an input. TFA will however take care of adjusting the dom-

inant protonation state of metabolites depending on their pKa and

the pH of their compartment. We then perform a correction accord-

ing to the Debye–Huckel equation (Debye and Huckel, 1923) to ad-

just the energies to the relevant ionic strength in the compartment.

For (3), Df G
ocan be obtained using literature data, or estimation

methods like group contribution method (Jankowski et al., 2008). If

a metabolite does not have Df G
o, the reactions that include this me-

tabolite in their stoichiometry will not be constrained with thermo-

dynamics. It is not possible to solely add a reaction DrG
o, as the

Gibbs energy needs to be linked to metabolite concentrations in

order to propagate the thermodynamic constraints throughout the

network. The pKa of a compound can be calculated with

ChemAxon (Szegezdi and Csizmadia, 2007).

The Gibbs free energy of reactions are then transformed with respect

to cellular physiology by applying the transformation as proposed in

(Alberty, 2005), as well as in this context by (Soh and Hatzimanikatis,

2014), using the given compartment-specific parameters: pH and ionic

strength. Concentrations are used directly to integrate quantitative

metabolomics data into the model. Upon thermodynamic curation of

the model, we can formulate it as an MILP problem as explained in the

Supplementary Material and (Soh and Hatzimanikatis, 2014).

The different types of analysis that can be performed are detailed

in the Supplementary Material, and both packages include tutorials

on how to perform them.

2.2 Implementation
The Python package pyTFA is built to integrate with COBRApy

(Ebrahim et al., 2013), and takes advantage of Optlang (Jensen

et al., 2017) for solver agnosticism and model operations.

The MATLAB implementation matTFA is built on top of The

COBRA Toolbox (Schellenberger et al., 2011):

In the current implementation, the code uses SEED IDs

(Overbeek et al., 2005) to match metabolites with a table of thermo-

dynamic information taken from (Jankowski et al., 2008). It is also

possible to input additional Df G
o manually.

3 Usage

The software packages come with a tutorial that demonstrates the

effects of integrating thermodynamic information as well as concen-

tration data. A reduced Escherichia coli (Ataman et al., 2017), as

well as the genome-scale model [iJO1366, (Orth et al., 2011)] used

for its generation are provided. Figure 1 shows the output for a typ-

ical use case: A FBA model is constrained with thermodynamics,

and then additional concentration data is added. Supplementary

Figure S1 illustrates that the more constrained the model is, the

more reduced the allowed ranges of fluxes are. Both packages detail

how to reproduce this figure.

4 Conclusion

We propose the software package to add thermodynamic informa-

tion to constraint-based metabolic models. The resulting formula-

tion is amenable to different types of analysis with high value for the

Metabolic Engineering and Systems Biology communities. We dem-

onstrated it with a case study of a reduced system for E. coli focus-

ing on glycolysis, as well as the original GEM. Our package is

available for MATLAB, and Python 3, on GitHub: respectively,

https://github.com/EPFL-LCSB/matTFA and https://github.com/

EPFL-LCSB/pytfa.
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Bi-directional reactions become unidirectional upon imposing thermodynamic constraints and data
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TFA & default conc. ranges
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Fig. 1. Variability analysis for reactions whose directions are not constrained

by FBA. By subsequently adding thermodynamics constraints and concentra-

tion data, all the reaction directionalities are determined
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