
Systems biology

Graph-guided multi-task sparse learning model:

a method for identifying antigenic variants of

influenza A(H3N2) virus

Lei Han1,2, Lei Li1, Feng Wen1, Lei Zhong1, Tong Zhang2 and

Xiu-Feng Wan1,*

1Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State,

MS 39759, USA and 2Tencent AI Lab, Tencent, Shenzhen 518052, China

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on November 7, 2017; revised on March 30, 2018; editorial decision on June 1, 2018; accepted on June 6, 2018

Abstract

Motivation: Influenza virus antigenic variants continue to emerge and cause disease outbreaks.

Time-consuming, costly and middle-throughput serologic methods using virus isolates are routine-

ly used to identify influenza antigenic variants for vaccine strain selection. However, the resulting

data are notoriously noisy and difficult to interpret and integrate because of variations in reagents,

supplies and protocol implementation. A novel method without such limitations is needed for anti-

genic variant identification.

Results: We developed a Graph-Guided Multi-Task Sparse Learning (GG-MTSL) model that uses

multi-sourced serologic data to learn antigenicity-associated mutations and infer antigenic var-

iants. By applying GG-MTSL to influenza H3N2 hemagglutinin sequences, we showed the method

enables rapid characterization of antigenic profiles and identification of antigenic variants in real

time and on a large scale. Furthermore, sequences can be generated directly by using clinical sam-

ples, thus minimizing biases due to culture-adapted mutation during virus isolation.

Availability and implementation: MATLAB source codes developed for GG-MTSL are available

through http://sysbio.cvm.msstate.edu/files/GG-MTSL/.

Contact: wan@cvm.msstate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Each year in the United States, influenza causes >200 000 hospital-

izations and �23 000 deaths, and many more hospitalizations and

deaths occur globally (Thompson et al., 2010, 2004). Vaccination is

the primary strategy for reducing the impact of influenza outbreaks

(Harper et al., 1984). However, antigenic changes caused by anti-

genic drift or shift at virus surface glycoproteins, especially hem-

agglutinin (HA), allow influenza viruses to evade the herd immunity

acquired by a population from prior infections or vaccination. The

key to a successful influenza vaccination program is to select a

vaccine candidate that antigenically matches the viruses that will be

circulating during the coming influenza season.

Serologic assays, such as hemagglutination inhibition (HI) and

neutralization inhibition assays, are routinely used during the influ-

enza vaccine strain selection process to identify influenza antigenic

variants. However, these serologic assays are labor intensive, costly

and middle-throughput, and they require the isolation of virus.

Thus, a genomic sequence-based strategy for antigenic variant iden-

tification would be ideal because the genomic sequences can be

obtained directly from clinical samples, which is efficient and eco-

nomic. Such a method must be able to quantify antigenicity directly

using genomic sequences. That is, a quantitative function between

the virus genetic information (i.e. mutations in protein sequences) to

the virus antigenic properties (i.e. changes in antigenicity) should be
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developed. In the past decade, there have been a few attempts on

these efforts. For instance, a simple statistical analysis of the correl-

ation between the HI titer and the count of mutations was used by

(Lee and Chen, 2004); Regression and Bayesian models were intro-

duced by treating the mutations as features and the HI values or

antigenic similarities between sequences as responses (Harvey et al.,

2016; Liao et al., 2008; Mansfield, 2007; Ren et al., 2015); more re-

cently, sparse learning techniques (Cai et al., 2012; Neher et al.,

2016; Sun et al., 2013; Yang et al., 2014) have been proposed to re-

duce the affine relationship to sparse structure with concentration

on a few key mutated residues. Nevertheless, these prior studies

have demonstrated that only a small number of residues on influ-

enza surface glycoproteins, especially antibody binding sites at HA,

are associated with antigenic drift of influenza viruses (Smith et al.,

2004; Sun et al., 2013), providing rationales for applying sparse

learning based methods in developing an effective sequence-based

antigenic variant predictor using serologic data.

One necessary condition for developing a robust sequence-based

antigenicity inference methods is the availability of large scale of

both genomic and serologic data, which must be derived from influ-

enza viruses with much diversity on both genetic mutations and anti-

genic characteristics. Fortunately, a large set of serologic data for

H3N2 influenza viruses have been generated during past decades,

providing an opportunity to develop, validate and apply machine

learning in antigenic analyses. However, such serologic data are

notoriously noisy and difficult to interpret because of inherent varia-

tions in reagents, supplies and protocol implementation by labora-

tory personnel (Yuan et al., 2013) and because of human error

(Ampofo et al., 2012). In addition, over time, the protocols have

been updated to minimize the effects of changing biologic attributes

during virus evolution. For example, erythrocytes from various hosts

were used to improve hemagglutination (Ampofo et al., 2012), and

neuraminidase inhibitor was used to pretreat influenza viruses

before HI assays to minimize the effects of neuraminidase-mediated

hemagglutination (Lin et al., 2010). Thus, integrating such data for

machine learning is not a trivial task (Yuan et al., 2013). To the best

of our knowledge, none of the existing methods can perform

sequence-based antigenicity inference effectively with direct usage of

these large amount of diverse data. In this study, we developed a

novel a Graph-Guided Multi-Task Sparse Learning (GG-MTSL)

model to learn antigenicity-associated residues from multi-sourced

serologic data. A quantitative model was developed to determine

antigenic distances between any two viruses given their HA protein

sequences, and this model was further applied to illustrate the anti-

genic drift patterns of these human A(H3N2) influenza viruses.

2 Materials and methods

2.1 GG-MTSL model
2.1.1 Problem formulation

The overall goal of this study was to develop a genomic sequence-

based antigenicity inference method. Our serologic datasets were

composed of data generated by using three different protocols: tur-

key erythrocytes with untreated viruses, guinea pig erythrocytes

with untreated viruses, and guinea pig erythrocytes with neuramin-

idase inhibitor-pretreated viruses. Viruses involved in these datasets

span a long time period and may not react with each other; the data-

sets included a large quantity of low reactors, had missing HI titers,

and had a unique distribution of data (Cai et al., 2010), presenting a

challenge in matrix completion and determination of accurate dis-

tances for the low reactors. We formulated the problem of dealing

with different protocols and with viruses spanning a long time

period into a multi-task problem by separating the data into mul-

tiple temporal tasks (Fig. 1); within each task, the HI data was gen-

erated by using the same protocol and with a minimal number of

A B

Fig. 1. Graph structure of the multi-task sparse learning model. (A) The tasks are first divided into three groups according to different data sources (i.e. HI datasets

generated using turkey erythrocytes without neuraminidase inhibitor, guinea pig erythrocytes without neuraminidase inhibitor or guinea pig erythrocytes with

neuraminidase inhibitor). Then, in each group, the tasks are formulated by sliding windows, denoted by circles. The edges indicate the information sharing

among tasks with task similarity weight xi;j . (B) A general graph structure of the multi-task learning concept
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low reactors (Supplementary Fig. S1). Of note, the problem formula-

tion can be conveniently generalized to any multi-sourced dataset by

splitting tasks according to protocols or specific settings, and then

within each source the tasks can be further decentralized along the

temporal (Fig. 1A) or other dimensions (Fig. 1B). The key is that as

long as the connections inter- or intra-sources can be clearly repre-

sented as a general graph as the one shown in Figure 1, and then our

learning framework can adopt any general graph structure to learn

multiple tasks simultaneously. Following the protocol in the literature

(Cai et al., 2010), we sorted the viruses and serum samples by time

and then, after evaluating the results of temporal task generation

obtained by using window sizes of 4, 6, 8, 12, 14 and 16 years, we

chose 12years as the window size to generate temporal tasks. This

window size is the same as that used in other studies, suggesting that

a window size of 12 years achieved the best performance in minimiz-

ing the effects of low-reactor viruses (Cai et al., 2010; Sun et al.,

2013). A GG-MTSL method was then developed to identify key fea-

tures associated with viral antigenicity, and a quantitative function

was developed to measure antigenic distances between influenza A

viruses on the basis of their HA protein sequences. As shown in
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Fig. 2. Workflow of the multi-task learning system. (A) The data processing integrates two types of data: sequence data (e.g. HA1 sequences shown in the left

panel) and serologic data (e.g. HI data in the right panel). (B) Multiple tasks are formulated and integrated via a graph (Fig. 1). Specifically, in this study, the sero-

logic data from multiple sources (e.g. data generated in a different time or using different protocols [i.e. HI datasets generated using turkey erythrocytes without

neuraminidase inhibitor, guinea pig erythrocytes without neuraminidase inhibitor or guinea pig erythrocytes with neuraminidase inhibitor]) were separated into

>50 individual tasks and processed by the multi-task matrix completion model. (C) Graph-based multi-task feature learning is conducted to identify and integrate

influenza virus antigenicity-associated sites and their weights for each individual task. The finalized residues and associated weights are used to develop an en-

semble prediction model to quantify antigenic distances given protein sequences. (D) Large-scale, sequence-based antigenic maps are constructed, and antigenic

evolution of influenza viruses is studied by using data mining and machine learning (e.g. spectral clustering to antigenic drift events and Bayesian modeling to

identify temporal and spatial origins for influenza antigenic variants)
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Figure 2, multi-task learning consisted of three integrated steps: multi-

task matrix completion; dynamic multi-source multi-task feature

learning; and proposal of an ensemble antigenicity prediction model.

2.1.2 Multi-task matrix completion

Serologic data can typically be classified into three types of informa-

tion: high-reactor data, low-reactor data or data with missing val-

ues. The assessment of these three types of data can be naturally

formulated as a low-rank matrix completion problem (Cai et al.,

2010). In this study, we proposed a multi-task matrix completion

method by separating matrix completion into multiple tasks. To

minimize the effects of the protocols on HI data for data integration,

we ensured that the HI data in each individual task were generated

by the same protocol. One major challenge in the multi-task matrix

completion method is that the optimal rank for each individual task

may not be the same; it is not practical to optimize a universal rank

for all tasks. To overcome this challenge, we adopted the nuclear

norm-based regularization technique to optimize ranks for each in-

dividual tasks by penalizing the small eigenvalues in the matrix to be

zeros (Han and Zhang, 2016; Jaggi et al., 2010). By solving the nu-

clear norm regularized problem, the optimal rank for each individ-

ual matrix completion task can be automatically identified.

Formally, given a m�n sub-matrix A and the set of regular

entries and low reactors in A (denoted as a set X), the considered

matrix completion problem is to infer the missing values condition-

ing on the regular entries and low reactors while completing these

low reactors with a more confident value, by solving the optimiza-

tion problem:

min
H

1

2

Xm
i¼1

Xn

j¼1

ðHX
i;j � AX

i;jÞ
2
IðHX

i;j � hÞ þ kjjHjj�; (1)

where the matrix H is the estimated completed matrix of A; Hi;j denotes

the (i, j)-th element of H; HX
i;j denotes the projection of Hi;j on the set X

(i.e. i; jð Þ 2 X); I is the indicator function; h is a predefined threshold for

identifying the low-reactor value, where we set h ¼ log 220 and 20 is

the signal of the low-reactor value in the HI titers; jjHjj� ¼
Pmin m;nð Þ

i¼1 ri

is the nuclear norm, which is the sum of all the singular values ri’s of H;

and k is a regularization parameter to trade off between data fitting and

the regularization of the matrix rank. In formulation (1), the first term

is the least square loss defined on the regular values that are larger than

h (by noting the indicator function), because these entries have true val-

ues in A; the second term is the nuclear norm of H that forcing the small

eigenvalues of the estimated matrix H to be zeros and thus H will have

low rank with the rank detected automatically via this penalization.

The algorithm for solving the nuclear norm-regularized matrix comple-

tion problem in (1) is straightforward by following the existing

approaches (Jaggi et al., 2010; Yuan et al., 2013). The final HI matrix

is calculated by averaging the overlapped entries from multiple sub-

matrices from each learning task.

2.1.3 GG-MTSL

In this study, we assume the variations in serologic data with similar

temporal information would be determined with similar variations

(i.e. genetic features, such as residues) in genetic data, regardless of

the sources of the serologic data. Thus, we can logically represent

the relationships among individual tasks by using graphs based on

temporal orders (Fig. 1). Next, we explain how to apply the graph

structure to establish the multi-task learning framework.

Formally, let T be the number of tasks and d be the number of

residues (the feature dimensionality). d can either be the sum of the

number of residues and the number of co-mutations if we consider

the synergetic effects among multiple residues. The input data ma-

trix Xi 2 RNi�d for the i-th task contains the pairwise genetic distan-

ces for all the viruses in the corresponding window, where Ni is the

number of pairs. The response yi 2 RNi�1 indicates the pairwise

antigenic distance calculated from the HI matrix. Let G ¼ V; Eð Þ de-

note the graph, where V is the set of nodes and E indicates the edge

set. If we encode each node as a task, then an edge in the graph

implies that the connected tasks are close to each other, and the

weight on the edge indicates the strength of their similarity. Now,

the graph-based multi-task model aims to make the tasks connected

by edges share similar parameters and it can be formulated as an op-

timization problem:

min
W2Rd�T

XT

i¼1

1

TNi
jjyi �Xiwijj22þ

/ a
X
i;jð Þ2E

xi;jjjwi �wjjj2 þ 1� að ÞjjWjj1

24 35; (2)

where (i, j) denotes an edge between the i-th task and j-th task;

wi 2 Rd�1 is the model parameter of the i-th task; jj � jj2 and jj � jj1
indicate the ‘2 and ‘1 norms of vector and matrix, respectively; /
and a (0 � a � 1) are regularization parameters that control the

overall sparseness and the trade-off between the task similarity and

sparsity, respectively. In problem (2), the first term is the averaged

square loss defined on the linear function mapping the genetic varia-

tions to the antigenic variations; the second term penalizes the ‘2
norm of the difference between the parameters of any pair of con-

nected tasks, and the effect of this ‘2 norm is to make the parameters

from two tasks to be similar and hence share common patterns in

the affine relationship; the ‘1 term is employed to make the solution

sparse and force the solution to select the important residues for

each task, and this term is regardless of the graph structure.

Solving problem (2) is not trivial because the second term in (2)

is non-smooth and general sub-gradient based optimization

algorithms are inefficient. We proposed to employ the smoothing

proximal gradient (SPG) method (Chen et al., 2012) to solve it. The

problem considered by the SPG method takes the form

minZ f Wð Þ þ r Zð Þ, where f �ð Þ is convex and Lipschitz continuous

and r �ð Þ is convex but non-smooth. In order to employ the SPG

method, we used f �ð Þ to represent the first term and r �ð Þ to represent

the second term in (2). We could then rewrite r �ð Þ as

Algorithm 1 SPG algorithm for solving the GG-MTSL models.

Require: X, Y, l, x, k and cW ð0Þ
.

Ensure: W.

Initialize t¼0 and s0 ¼ 1;

repeat

Compute rW
~f ðcW ðtÞ

Þ as in (6);

Solve the proximal step:

Wðtþ1Þ ¼ arg min
W

~f ðcW ðtÞ
Þ þ hW � cW ðtÞ

;rW
~f ðcW ðtÞ

Þi

þL

2
jjW � cW ðtÞ

jj2F þ kjjWjj1: (3)

stþ1 ¼ 2
tþ3;cW ðtþ1Þ
¼Wðtþ1Þ þ 1�st

st
stþ1ðWðtþ1Þ � cW ðtÞ

Þ;
t ¼ t þ 1;

until some convergence criterion is satisfied.
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r Wð Þ ¼ jjCW>jj1;2 þ kjjWjj1;

where k ¼ /ð1–aÞ and C 2 RE�m (E ¼ jEj is the number of edges) is

a sparse matrix with each row containing only two non-zero entries,

1 and –1, in two corresponding positions, denoting an edge in the

graph G. For example, when the graph is a chain, the matrix C is

C ¼ /a

xi;j �xi;j 0 � � � � � �

0 xi;j �xi;j � � � � � �

0 � � � � � � � � � 0

0 � � � � � � xi;j �xi;j

2666664

3777775:

Based on the definition of the dual norm, r(W) can be

reformulated as

r Wð Þ ¼ max
A2Q

hCW>;Ai þ kjjWjj1; (4)

where ai is a vector of auxiliary variables corresponding to the i-th

row of CW>; A ¼ a1; . . . ; aEð Þ> is the auxiliary matrix variable, and

Q ¼ fAjjjaijj2 � 1;8ig is the domain of A. Then the smooth ap-

proximation of the first term in (4) is given by

gl Wð Þ ¼ max
A2Q

hCW>;Ai � ld Að Þ; (5)

where hCW>;Ai is the inner product of the two matrices,

d Að Þ ¼ 1
2 jjAjj

2
F, and jj � jjF is the matrix Frobenius norm. (5) is

convex and smooth with gradient rgl Wð Þ ¼ A�>C, where A� is

the optimal solution to (5) (Han and Zhang, 2015). The computa-

tion of A� is depicted as follows (Chen et al., 2012; Han and Zhang,

2015):

Proposition 1. By denoting by A� ¼ a1; . . . ; a�E
� �>

the optimal

solution to (5), for any i, we have

a�i ¼ S
CW>½ 	i

l

 !
;

where CW>½ 	i denotes the i-th row of the matrix CW>, and S(x) is

the projection operator to project vector x on the ‘2 ball as

S ¼
x

jjxjj2
; jjxjj2 > 1;

x; jjxjj2 � 1:

8<:
Then, instead of directly solving (2), we solve its approximation

as

min
W

~f Wð Þ þ kjjWjj1 ¼ f Wð Þ þ gl Wð Þ þ kjjWjj1:

The gradient of ~f Wð Þ with respect to W can be computed as

rW
~f Wð Þ ¼ rWf Wð Þ þ A�>C: (6)

By using the square loss, the i-th column of rWf Wð Þ can be easily

obtained as

2

TNi
X>i Xiwi � yið Þ:

Moreover, it is easy to prove that ~f Wð Þ is L-Lipschitz continuous

where L can be determined by numerical approaches (Chen et al.,

2012). The SPG algorithm is depicted in Algorithm 1, where (3) has

a closed-form solution as

W tþ1ð Þ ¼ Hk W tð Þ � 1

L
rW

~f cW tð Þ
� �� �

;

where Hk xð Þ ¼ sign xð Þmax x� k;0ð Þ is the soft-thresholding oper-

ator used in solving the Lasso problem (Beck and Teboulle, 2009).

2.1.4 Ensemble prediction model proposal

After solving (2), we can obtain the coefficient vector wi for each

task i, indicating the importance of each residue in task i. Now,

given the sequences of a pair of viruses, i and j, we need a scoring

function to predict the antigenic distance between them. Suppose

virus i is from year ai, then, we define our prediction model as

by ¼ x l �wglobal þ 1� l
2
ð �wlocal

i þ �wlocal
j Þ

� �
(7)

where x is the genetic distance vector based on the sequences; by
is the predicted antigenic distance between the two viruses;

�wglobal ¼
PT

t¼1
wt

T and �wlocal
i ¼

P
t2A aið Þ

wt

jA aið Þj ; A aið Þ denotes the set of

tasks that the year ai is covered by any task in A aið Þ; jA aið Þj denotes

the cardinality of A aið Þ; and l is a parameter trading off between

the global coefficient and the local coefficient. Note that the pro-

posed prediction model in (7) is an ensemble of two parts, the global

coefficient and the local coefficient, under a trade-off parameter

0 � l � 1. Because our GG-MTSL model in (7) captures the dis-

tinct antigenically associated residues with respect to each task, the

local coefficient, �wlocal
i , reveals the important residues in a certain

local time period, while the global coefficient, �wglobal
i , captures the

information of the important residues in the entire H3N2 influenza

virus history.

2.1.5 Parameter tuning and performance evaluation

In the problem of (1), a regularization parameter k needs to be tuned

to obtain the best performance of the matrix completion. We chose

k from a candidate set 0:1;0:2; . . . ; 1:0½ 	, which was found to be a

reasonable range to effectively achieve low rank estimations. The

performance of different choices of k was evaluated under 10-fold

cross-validation, in which, during each fold, we randomly chose

90% of the known values (i.e. the high reactors) for training and use

the remaining 10% of values as the testing set. We used the relative

mean square error (ReMSE) for performance assessment

ReMSE ¼
P

i;jð Þ2S Hi;j � Ai;j

� �2P
i;jð Þ2S A2

i;j

;

where S denotes the testing set of elements.

In the problem of (2), for simplicity, we set xi;j ¼ 1 if task i and

task j are from the neighbored windows; otherwise xi;j ¼ 0. Since

different HI sources have overlapped time windows, the tasks from

different data sources can also be connected in the graph. In addition

to xi;j, there are two regularization parameters, / and a, that need

to be tuned to obtain the best performance of the multi-task feature

learning. / controls the overall sparseness of the solution, and a
trades off between the task similarity and the element-wise sparsity.

We proposed to choose / from a candidate set 104; 103; . . . ; 10�2
� �

which are common practice used by sparse learning methods (Han

and Zhang, 2015, 2016; Han et al., 2016), and a from

0:1; 0:2; . . . ;0:9½ 	 (because a is a value in the interval 0; 1½ 	) via 10-

fold cross-validation. A larger / will induce a sparser solution, and a
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larger a will lead to more similar tasks in the solution. We used the

average rooted mean square error (RMSE) for performance assess-

ment, which is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

byi � yið Þ2
s

:

2.2 Antigenic cartography and identification of

antigenic clusters
The antigenic maps were constructed by using AntigenMap (Barnett

et al., 2012; Cai et al., 2010), which is based on the antigenic dis-

tance matrix derived from serologic data or the GG-MTSL model

described above. To identify the antigenic clusters in antigenic car-

tography, we used a spectral cluster method (Ng et al., 2002). Our

spectral clustering method does not require prior knowledge of the

number of clusters because the number can be determined through a

nuclear norm regularization algorithm.

2.3 Genetic and antigenic distance generation
The sequence-based antigenic inference in our machine learning sys-

tem explores genetic features that determine the connections be-

tween genetic and antigenic variations. The pairwise genetic

distances were measured by using a binary coding function or a

pattern-induced multi-sequence alignment (PIMA) scoring function

(Smith and Smmith, 1992). When considering the synergetic effects

among multiple residues, the co-mutation features were represented

by the product among the according single genetic features. After we

thoroughly compared the learning performances derived from these

two scoring systems, we adopted the PIMA scoring system for con-

ducting all analyses in this study.

The pairwise antigenic distances between viruses and antigens

were derived from antigenic cartography (Cai et al., 2010). Each

unit in the antigenic map corresponds to a 2 log 2 HIð Þ; in antigenic

maps, 2 units of antigenic distance represent a 4-fold change in HI

titers, which, as described elsewhere (Smith et al., 1999), defines

whether one virus is an antigenic variant of the other.

2.4 Sequence and serologic data
The HI data used in antigenic cartography and machine learning

were collected from the literature (Smith et al., 2004; Sun et al.,

2013) and from the annual reports for vaccine strain selection by the

World Health Organization influenza collaborative centers, includ-

ing data for 1528 viruses and 303 serum samples. HI data were

obtained by using assays based on turkey erythrocytes (samples from

1968 to 2009), guinea pig erythrocytes (samples from 2006 to 2013)

or guinea pig erythrocytes with neuraminidase inhibitor-pretreated

viruses (samples from 2012 to 2016) (Supplementary Fig. S1).

Because of the multiple variations in the way these multi-sourced sero-

logic data were collected, they presented a challenge to data integra-

tion (Yuan et al., 2013) and, thus, provided a rationale for applying

multi-task learning methods.

The full length of the HA protein sequences for 39 370 human

influenza A(H3N2) viruses collected during 1968–2016 were

obtained from public databases (Supplementary Fig. S1). The se-

quence data are downloaded from public databases, including

Influenza Virus Resource (Bao et al., 2008), Influenza Research

Database (Squires et al., 2012) and GISAID (a global initiative on

sharing all influenza data) (Shu and McCauley, 2017). Sequence and

serologic data are available for download through http://sysbio.cvm.

msstate.edu/files/GG-MTSL/.

2.5 Reverse genetics and serologic assays
The full-length cDNA for HA and neuraminidase genes of influenza

A/Texas/50/2012(H3N2) virus were amplified by using SuperScript

One-Step RT-PCR (Invitrogen, Grand Island, NY), and the 6: 2 re-

combinant viruses with six internal genes of influenza A/PR/8/

1934(H1N1) virus were generated by using reverse genetics. Site

mutagenesis was performed using a QuikChange II Site-Directed

Mutagenesis Kit (Stratagene, La Jolla, CA). Serologic assays were

performed using 0.5% turkey erythrocytes.

3 Results

3.1 Graph-guided multi-task sparse learning model can

predict the antigenic variant using sequence data
The aim of this study was to develop a genomic sequence-based anti-

genicity inference method and then to understand antigenic evolu-

tion of subtype H3N2 influenza A viruses by using large-scale

antigenic profiles derived from this method. To achieve these goals,

we proposed a novel GG-MTSL method and multi-source serologic

data to identify key features associated with viral antigenicity. A

quantitative function was then developed to measure antigenic dis-

tances between influenza A viruses on the basis of their HA protein

sequences. We formulated the problem (i.e. dealing with different

protocols and viruses spanning a long time period) into a multi-task

problem by separating the data into multiple temporal tasks (Fig. 1).

As shown in Figure 2, multi-task learning consisted of three inte-

grated steps: multi-task matrix completion; dynamic multi-source,

multi-task feature learning; and proposal of an ensemble antigenic-

ity prediction model.

During multi-task matrix completion, we optimized k ¼ 0:3 by

selecting the best average performance for each individual task

(Supplementary Fig. S2A). To evaluate the overall performance of

multi-task matrix completion, we used cross validation by randomly

blinding 10% of the high reactors in the matrices for testing because

there is no ground truth for the missing values and low reactors.

Results showed that multi-task matrix achieved the best ReMSE

(0.0413), which indicates only a 4.14% error rate of the true values

in the original HI matrices. The training time of completing the

matrices associated with all tasks was 1.2 min.

During multi-task feature learning, we optimized various param-

eters in the model by selecting the average performance for each in-

dividual task (Supplementary Fig. S2B–E). Results showed that

/ ¼ 102 serves as a cutoff for the best trading-off between the num-

ber of selected residues and model performance. For a, we observed

that larger a always achieved lower average RMSE, implying that

the multi-task sharing is important for boosting model performance.

Hence, we set a ¼ 0:9. With these parameter settings, we finally

achieved an average training RMSE of 0.78 (units) with around 24

selected residues per task. To evaluate the overall prediction per-

formance of the GG-MTSL system procedure and benchmark

single-task learning method (Lasso model), we numerically validated

our method by using historical HI data for training to predict future

virus antigenicity given their sequences. Following a published

protocol (Sun et al., 2013), we used the HI data from 1996; k½ 	 for

training and predicted the antigenic distance between any pair of

viruses in the consequent years k; kþ 1½ 	, where k 2 2009; 2016½ 	.
We reported the performance in terms of antigenic distance predic-

tion errors on the antigenic drift identification accuracy. Here anti-

genic distances >4-fold (2 units of antigenic distance) were treated

as antigenic drift, and we used this value as the threshold to

partition each pair of antigens into either non-variant or variant.
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Then, we could define classification tasks to measure the prediction

accuracy.

We compared the GG-MTSL method with two other multi-task

learning methods, the ‘1;2 norm regularized MTL and ‘1;1 norm

regularized MTL (Liu et al., 2009), and two single task learning

methods, the Lasso and Ridge regressions. Results showed that the

average RMSE of the GG-MTSL system was 0.9154 (units) and its

average accuracy for identifying antigenic variants was 85.55% for

k 2 2009;2016½ 	. Such results outperformed all the other four meth-

ods which we compared with (Supplementary Table S1). Moreover,

the training time of the GG-MTSL on the entire feature learning

task was 2.5 min, which were much faster compared with the other

multi-task learning methods and slightly slower compared with the

single-task methods, indicating that our optimization algorithm for

solving the GG-MTSL model is efficient (Supplementary Table S1).

These results demonstrated the effectiveness of the GG-MTSL model

for inferring antigenicity.

For the ensemble prediction model, we need to optimize l, which

leverages the ratio of the component of local coefficients

(Supplementary Table S2) and global coefficients (Table 1).

However, optimizing l over the available HI data will lead to l! 0

because we barely have the ground truth value of the antigenic

distance between two viruses lying outside a window (due to the

band-matrix shaped structure that off-diagonal values are generally

missing or due to low reactors). That is, the available testing data

generally lie within the same task and will tend to emphasize the

local weights, making them dominant. However, by evaluating l
over a candidate set 0:1; 0:2; . . . ;0:9½ 	, we clearly identified the one

re-emerged event (i.e. some H3N2 variant (H3N2v)-like viruses

were predicted to be antigenically similar to the A/Beijing/32/

92(H3N2) (BE92) cluster, when l ¼ 0:2). Hence, we set l ¼ 0:2 in

our study.

In summary, study results suggested that GG-MTSL could not

only predict the antigenic variants, but could also achieve much bet-

ter prediction performance than a single-task learning system by

overcoming difficulties associated with integrating serologic data

derived by using different protocols and obtained from multiple

time periods and sources.

3.2 Mutations on HA protein drive antigenic drifts for

H3N2 viruses in human
When we used optimized settings, each of 50 learning tasks in

the model selected an average of 24 residues to be associated with

antigenicity of H3N2 viruses, and a total of 66 unique residues

were obtained from all 50 learning tasks (Table 1). These residues

were mapped onto a 3D structure of the HA protein (Supplementary

Fig. S3). Among these 66 residues, 59 were located in reported anti-

body binding sites A-E. To test the synergetic effects of multiple resi-

dues in the learning, by following (Yang et al., 2014), we also

incorporated all the pairwise co-mutations among the resides locat-

ing on the surface of the protein structure into the GG-MTSL

procedure. After training, the GG-MTSL system identified 186 co-

mutation pairs and the top-10 pairwise co-mutations were h193; 196i;
h142;196i; h50;196i; h196; 225i; h193;225i; h157; 189i; h140;196i;
h145; 173i; h188; 196i and h189; 196i. Interestingly, four co-mutation

pairs with non-zero weights: h158;189i; h145; 225i; h144;225i and

h145;159i were shown to have caused antigenic drifts of H3N2

viruses (Tables 1 and 2). Overall, the multi-task learning identified

that mutations N145S-N225D-A138S-F159S and N145S-N225D-

N144S-F159Y-Q311H drove the emergence of influenza viruses

A/Switzerland/9715293/2013 (SWZ13) and A/Hong Kong/5738/2014

(HK14) from influenza virus A/Texas/50/2012 (TX12) (Table 2).

These mutations are located in antibody binding sites A or B. It

was probable that viruses with mutation N145S-N225D served as

intermediate precursor viruses for SWZ13 and HK14, a suggestion

supported by phylogenic analyses and antigenic cartography (Fig. 3A

and B).

To confirm this hypothesis, we used the HA and neuraminidase

genes of TX12 as template to generate six mutant viruses (bold

letters indicate mutations against TX12-like viruses): 145N-225N-

138A-144N-159F-311Q (TX12-like), 145S-225D-138A-144N-

159F-311Q (intermediate-like), 145S-225D-138S-144N-159S-311Q

(SWZ13-like), 145S-225D-138A-144S-159Y-311H (HK14-like),

145N-225N-138S-144N-159S-311Q (TX12-like) and 145N-225N-

138A-144N-159Y-311H (TX12-like). Serologic testing showed that

these reassortants antigenically matched our predicted results

(Table 3 and Fig. 3D). Specifically, results showed that mutant

Table 1. Residue sites identified to be associated with influenza A(H3N2) virus antigenicity

Site ABS† �w‡ Site ABS �w Site ABS �w Site ABS �w Co-mutation ABS �w

25 – 0.0476 131 A 0.0126 174 D 0.0104 219 D 0.0075 h193; 196i hB, Bi 0.0042

31 – 0.0366 133 A 0.0206 186 B 0.0325 223 — 0.0494 h142; 196i hA, Bi 0.0025

45 C 0.0369 135 A 0.0209 188 B 0.023 225 — 0.0151 h50; 196i hC, Bi 0.0025

50 C 0.0278 137 A 0.0163 189 B 0.0511 226 D 0.0468 h196; 225i hB,-i 0.0020

53 C 0.0878 138 A 0.0791 190 B 0.0097 230 D 0.0176 h193; 225i hB,–i 0.0018

57 E 0.0529 140 A 0.0457 192 B 0.0262 242 D 0.0329 h157; 189i h–, Bi 0.0017

62 E 0.0431 142 A 0.0306 193 B 0.073 260 E 0.0332 h140; 196i hA, Bi 0.0016

67 E 0.0354 144 A 0.071 196 B 0.1357 262 E 0.0214 h145; 173i hA, Di 0.0015

75 E 0.0057 145 A 0.0625 198 B 0.0294 275 C 0.0083 h188; 196i hB, Bi 0.0015

78 E 0.0123 155 B 0.0092 199 — 0.0576 276 C 0.0252 h189; 196i hB, Bi 0.0015

82 E 0.0159 156 B 0.0741 201 D 0.006 278 C 0.0635 h158; 189i hB, Bi 0.0009

83 E 0.0347 158 B 0.1373 202 — 0.026 280 C 0.0152 h145; 225i hA,–i 0.0007

88 E 0.053 159 B 0.0335 207 D 0.0193 299 C 0.0098 h144; 225i hA,–i 0.0006

112 — 0.0169 160 B 0.0211 212 D 0.0063 311 C 0.0085 h145; 159i hA, Bi 0.0006

121 D 0.018 163 B 0.0301 213 D 0.0148 312 C 0.0122 — — —

122 A 0.0275 172 D 0.0045 214 D 0.0382 — — — — — —

124 A 0.032 173 D 0.102 217 D 0.0105 — — — — — —

Note: †ABS, antibody binding site; ‘�’, residue that is not in ABS; ‡66 selected residues with global coefficient, �wglobal , are included in the table, and the local

coefficients, �wlocal , for different tasks are provided in Supplementary Table S2.
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145S-225D-138A-144N-159F-311Q is located among the center

position of TX12, SWZ13 and HK14 viruses; that 145S-225D-

138S-144N-159S-311Q is close to SWZ13 virus; and that 145S-

225D-138A-144S-159Y-311H is close to HK14-like virus. Such

results indicated that mutations N145S-N225D-A138S-F159S

caused antigenic drift from TX12 to SWZ13 and that mutations

N145S-N225D-N144S-F159Y-Q311H caused antigenic drift from

TX12 to HK14 (Table 2). Furthermore, the antigenic variants of

SWZ13 and HK14 were derived from the same intermediate variant

bearing residues 145S-225D-138A-144N-159F-311Q in their HA

protein sequences.

In addition, we used our scoring function from the GG-MTSL

ensemble model to predict the pairwise antigenic distance of the mu-

tant viruses. The predicted antigenic distances had a correlation co-

efficient of 0.75 compared with the HI assay-based antigenic

distances, which suggested a high correspondence between real anti-

genic distances (HI-based) and predicted antigenic distances (se-

quence-based). Machine learning results suggested that 1–5

mutations led to the antigenic changes in the four antigenic drift

events since 2007.

3.3 Large-scale sequence-based prediction infers anti-

genic profile of H3N2 seasonal influenza viruses
The quantitative function using these features described in Table 1

was developed and then applied to quantify antigenic distances

among 39 370 H3N2 viruses recovered from influenza virus-

infected humans during 1968–2016 (Fig. 4). Antigenic cartography

was constructed, and by using a spectral clustering algorithm (which

does not require a predetermined cluster number) 16 antigenic clus-

ters (HK68, EN72, VI75, TX77, SI87, BE89, BE92, WU95, SY97,

FU02, CA04, BR07, PE09, TX12, SWZ13 and HK14) were identi-

fied with an average Silhouette index of 0.7486; the Silhouette index

is a value ranging from �1 to 1, with higher values indicating better

clustering performance. A total of 15 antigenic drift events were

identified as leading to 16 antigenic variants; the most recent

drift from TX12 during the 2013–2014 influenza season led to two

Table 2. Antigenic drift events for seasonal influenza A(H3N2)

viruses, in order of occurrence (2007–2016), and the residues deter-

mining the drift events

Antigenic drift event† Predominant mutations

BR07! PE09 K158N-N189K

PE09! TX12 N278K-S45N

TX12! SWZ13 N145S-N225D-A138S-F159S

TX12!HK14 N145S-N225D-N144S-F159Y-Q311H

Note: †BR07, A/Brisbane/59/2007; HK14, A/Hong Kong/4801/2014;

PE09, A/Perth/16/2009; SWZ13, A/Switzerland/9715293/2013; TX12,

A/Texas/50/2012.

Fig. 3. Co-circulation of two influenza A H3N2 virus antigenic variants, SWZ13-like and HK14-like viruses. (A) Phylogenic analyses demonstrating genetic diversity

of H3N2 viruses during the 2015–2016 influenza season. Shaded samples represent viruses that emerged in 2015–2016, implying that the two clades were still co-

circulating as of 2016. (B) Antigenic map demonstrating that SWZ13-like and HK14-like viruses are co-circulating along two different directions. Some of the

viruses that emerged in 2015–2016 are labeled. Markers with white face and black edge indicate the estimated centers for each antigenic cluster. (C) Estimated

mutations leading to antigenic drift events TX12 !SWZ13 and TX12 !HK14. An intermediate mutation (i.e. a double-mutation from TX12 vaccine strain) was

identified. (D) Bench hemagglutination inhibition value-based antigenic cartography. The three key mutants illustrated in panel C, are demonstrated in this bench

validation. Markers with white face and black edge indicate the estimated centers for each antigenic cluster

84 L.Han et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/1/77/5034430 by guest on 11 April 2024

Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: -


co-circulating antigenic variants, SWZ13-like and HK14-like viruses

(Fig. 3).

Prediction performance of the GG-MTSL system procedure

could also be validated by comparing the correlations between anti-

genic maps generated from sequence data (prediction) and serologic

data (real data). Antigenic cartography shown in Figure 4 and

Supplementary Figure S4 were generated from HA sequences and

serologic data (HI), respectively. In sequence-based prediction car-

tography, all serologically tested antigenic clusters showing a clear

evaluation pattern of those clusters could be observed, and the pat-

tern matched well with the patterns for serologically tested sequen-

ces from each major antigenic cluster.

3.4 Large-scale, sequence-based prediction infers

re-emerging H3N2v antigenic variant
Based on key mutations identified from GG-MTSL, a sequence-

based prediction could not only predict/infer the antigenic distances

and the relationships among all historical H3N2 human viruses, but

also could identify re-emergence events in history. Specifically,

H3N2v-like viruses were predicted to be antigenically similar to the

BE92 cluster, and such results had been confirmed in previous stud-

ies (Sun et al., 2013). In addition, antigenic cartography identified

an H3N2v-like variant that was antigenically similar to viruses in

clusters BE92-SY97 (Fig. 4). The H3N2v-like variant was identified

in the summer of 2011 at agricultural fairs and caused 2055 infec-

tions among humans in the United States during August 2011–April

2012 (Biggerstaff et al., 2013). This H3N2v virus was possibly

transmitted from humans to swine in the mid-1990s and then re-

emerged in humans in 2011 (Feng et al., 2013).

4 Discussion

This study presents a robust genomic sequence-based method for

quantifying antigenic distances. This method enables the rapid char-

acterization of antigenic profiles and identification of antigenic var-

iants for influenza viruses in real time and on a large scale. In

addition, since sequences can be generated directly by using clinical

samples, this method can help minimize biases due to culture-

adapted mutation during virus isolation (Stevens et al., 2010). This

method also allows for the inclusion of uncultivable virus samples

into the analyses. Furthermore, multi-task learning allows for the in-

dependent characterization of serologic datasets from multiple sour-

ces, which are usually difficult to integrate due to various factors,

such as types and batches of biologic materials (e.g. reference anti-

serum and erythrocytes) and supplies (e.g. plates) and variations in

the protocol implementation by personnel (Yuan et al., 2013).

Another advantage to using multi-task learning is that it makes it

possible to use all available data and could help avoid local opti-

mization (referred to as ‘overfitting’) and false positive results.

In the past years, a few attempts at influenza antigenic variant

prediction based on HI data were reported. For example, Lee and

Chen (2004) developed a simple correlation method between HA

titer and the number of mutations between test viral HA and refer-

ence viral HA. Liao et al. (2008) applied multiple regression and lo-

gistic regression between mutations and HI values; Huang et al.

(2009) developed a decision tree algorithm in drift variant predic-

tion by deriving association rules from HI data based on informa-

tion theory. In our previous work, we developed a sparse learning

method to identify antigenicity-associated residues by using sero-

logic data and formulated this sparse learning problem as an

Table 3. Bench serologic results based on ferret serum for validating the predicted antigenically associated residues

Virus† Ferret Serum

Br/07 Perth/09 Vic/11 TX/12 SWZ/13 Utah/13 CR/13 HK/14 Palau/14 FJ/15 Vic/15 Br/15

TX-A138S-F159Y <10 40 160 160 160 80 <10 40 160 160 <10 <10

TX-N145S-N225D <10 640 640 640 160 640 160 320 320 640 80 160

TX-F159Y-Q311H 40 160 320 320 80 320 80 640 80 640 160 320

TX-N145S-N225D-A138S <10 320 640 640 160 320 160 160 160 640 80 160

TX-N145S-N225D-A138S-F159Y <10 <10 160 160 160 160 <10 80 160 160 <10 80

TX-N145S-N225D-F159Y-Q311H <10 320 640 640 320 640 80 640 640 1280 160 640

TX-N144S-N145S-N225D-Q311H-F159Y 10 320 640 640 320 640 160 1280 160 2560 320 1280

TX WT <10 640 10 1280 160 320 320 160 160 640 640 160

TX-N128A <10 1280 10 1280 320 640 320 640 320 1280 1280 320

TX-A138S <10 640 10 640 80 320 160 160 160 640 640 80

TX-R142G <10 1280 10 1280 320 640 320 320 160 640 1280 160

TX-N145S <10 640 10 1280 320 640 160 320 320 640 640 320

TX-F159S <10 10 10 320 160 10 10 80 160 320 160 40

TX-N225D <10 1280 10 2560 320 640 320 320 320 640 1280 320

TX-N144S-N145S <10 640 10 1280 320 640 320 640 320 1280 1280 320

Br/07 1280 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10

CR/13 <10 160 160 80 20 40 160 320 <10 320 80 80

FJ/15 <10 80 160 160 <10 <10 80 640 <10 640 20 160

HK/14 <10 160 320 160 <10 <10 160 1280 <10 1280 40 320

Palau/14 <10 <10 <10 160 320 320 80 80 1280 320 80 80

Perth/09 <10 640 <10 160 <10 80 80 80 <10 320 80 40

SWZ/13 <10 160 320 320 640 640 40 320 640 1280 <10 160

TX/12 <10 640 <10 1280 160 320 160 160 80 640 640 640

Utah/13 <10 320 <10 640 160 1280 80 320 160 640 1280 160

Vic/11 <10 320 640 640 80 160 80 160 80 320 <10 80

Vic/15 20 160 40 80 <10 <10 160 1280 <10 640 640 320

Note: †Viruses propagated in Madin–Darby canine kidney cells. The results confirmed the antigenic difference among viruses in TX12, SWZ13 and HK14 clus-

ters and the intermediate virus, TX-N145S-N225D (shown in bold).
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optimization problem that measures the correlation between the

antigenic distance changes in serologic data and antigenic profiling

by using a scoring function that characterizes the magnitude of

mutations in protein sequences (Cai et al., 2012; Han et al., 2016;

Sun et al., 2013; Yang et al., 2014). Instead of predicting antigenic

distances among viruses, Neher et al. developed a sparse learning

method to predict the HI titers for pairs of antigen and sera (Neher

et al., 2016). Nevertheless, these methods treat the data analyses or

learning as a single task and require data integration; therefore,

these methods face the associated challenges previously described.

Thus, the GG-MTSL method presented in this study is unique

from other available methods, and our findings show that GG-

MTSL performed superiorly over a single task-sparse learning

method, indicating the effectiveness of the multi-task strategy

(Supplementary Table S1).

By using the antigenic characterization results of 39 370 H3N2

viruses recovered from patients during 1968–2016, we showed that

the GG-MTSL system proposed in this study identified 16 antigenic

clusters of subtype H3N2 influenza virus (Fig. 4 and Supplementary

Fig. S4) and showed the dynamics of antigenic evolution of these

viruses. The results of our large-scale and sequence-based antigenic

cartography suggest that antigenic evolution of H3N2 viruses is

much less punctuated than it used to be (Shih et al., 2007), as

confirmed by antigenic maps derived from serologic assays

(Russell et al., 2008). The continuity of antigenic variations presents

great challenges for identifying and defining a virus as an antigenic

variant. Although the large set of serologic and genetic data reflects

the complete picture of viral evolution, it also complicates identifica-

tion of antigenic variants during the vaccine strain selection process.

Of interest, this study suggested that two variants (genetic clade

C3.2a and clade C3.3a; antigenic clusters HK14 and SWZ13)

emerged in 2013 and then co-circulated during the subsequent three

influenza seasons, with one variant predominating in some regions

and the other predominating in other regions. These two genetic var-

iants are antigenically distinct (Fig. 3), and the extent to which an

SWZ13-like vaccine would be effective against a HK14-like viruses,

and vice-versa, is not known. It is also not known how long these

two antigenic variants will continue to co-circulate among humans.

Co-circulation of multiple antigenic variants presents great chal-

lenges in vaccine strain selection (Ampofo et al., 2012).

In this study, we detected one re-emerging H3N2 variant; this

finding creates another challenge in influenza surveillance by adding

another layer of complexity in antigenic variant detection. For ex-

ample, among the swine population in North America, the current

predominant influenza A(H3N2) virus is associated with a spillover

of human seasonal H3N2 viruses to pigs in the 1990s (Zhou et al.,

1999). In the past 2 decades, genomic analyses suggested at least 22

introductions of influenza A viruses from humans to swine, eight of

Fig. 4. Genetic and antigenic drift of seasonal influenza A(H3N2) viruses (1968–2016). (A) Phylogenetic tree of HA genes for H3N2 viruses showed a continuous

natural selection leading to a major truck structure. (B) Antigenic map of 39 370 viruses demonstrating zig-zag ‘S’ shape for antigenic relationship among H3N2

viruses. A total of 16 antigenic clusters were identified by using a spectrometry clustering program. (C) Detection of one potential antigenic variant H3N2v-like

viruses. H3N2v-like viruses, which emerged in 2011, were antigenically similar to WU95
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which were human seasonal subtype H3N2 viruses (Shu et al.,

2012). Uncertainty surrounding the emergence of such variants at

the human-swine interface increases the need for surveillance cover-

age beyond urban areas with dense human populations.
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