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Abstract

Motivation: Multi-task learning (MTL) is a machine learning technique for simultaneous learning of

multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms

are currently not available in the widely used software environment R, creating a bottleneck for

their application in biomedical research.

Results: We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising

10 algorithms applicable for regression, classification, joint predictor selection, task clustering,

low-rank learning and incorporation of biological networks. We demonstrate the utility of the algo-

rithms using simulated data.

Availability and implementation: The RMTL package is an open source R package and is freely

available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org.

Contact: emanuel.schwarz@zi-mannheim.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multi-task learning (MTL) is a machine learning technique that

explores and exploits the relatedness across a set of different learn-

ing tasks. Since its inception (Caruana, 1998), MTL has been used

in numerous data-intensive research areas, including biomedical in-

formatics (Feriante, 2015; Li et al., 2016; Widmer and Ratsch,

2012; Xu et al., 2011; Yuan et al., 2016; Zhou et al., 2013), speech

and natural language processing [i.e. (Wu et al., 2015)], image proc-

essing and computer vision [i.e. (Wang et al., 2009)], as well as web

based applications [i.e. (Chapelle et al., 2010)].

A strong motivation to develop biomedical MTL applications

stems from the necessity to integrate diverse data sources to explore

the biological underpinning of complex illnesses, such as schizophre-

nia. Previous research has already shown that for such illnesses, inte-

grative multi-omics open a new avenue for identification of

etiological mechanisms, for example by taking into account genetic,

expression and methylation data simultaneously [i.e. (Lin et al.,

2014)]. For such applications, multi-task learning offers the possibil-

ity to directly explore illness-related biological profiles that are

linked across data modalities and therefore a new route toward the

identification of biomarker signatures.

Previous implementations of MTL have focused on knowledge

transfer via regularization (Zhou et al., 2011), Bayesian methods

(Greenlaw et al., 2017) or deep architectures (Yang and Hospedales,

2016). Here, we developed the first R library for MTL, offering a

comprehensive machine learning pipeline that covers several types of

MLT algorithms and can be easily applied to high-dimensional data.

In the following section, we briefly describe the RMTL package,

including the implemented MTL methods (for detailed information

see Supplementary Methods). The results section describes the appli-

cation of the algorithms on a simulation study, to demonstrate the

performance and interpretability of the respective models.

2 Materials and methods

This package provides an automated, simple-to-use implementation

of MTL, comprising five classification and five regression algorithms,

which share knowledge across tasks according to different priors via

regularization. All algorithms aim to minimize the same objective:

min
W

Xt

i

1

ni
L WijXi; Yið Þ þ X Wð Þ

where L 8ð Þ is the loss function (logistic loss for classification or least
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square loss for regression). X ¼ fXig; Y ¼ fYig are sets of predict-

or matrices and the corresponding responses for all t tasks where

Xi 2 Rni�p and Yi 2 Rni�1 is the predictor matrix and the response

vector of task i 2 f1; 2; . . . ; tg. Accordingly, ni and p refer to the

number of subjects and predictors (all tasks share the same predictor

space) of task i, respectively. Moreover, W ¼ Rp�t is the coefficient

matrix for all tasks, where Wi, the ith column of W, is the coefficient

vector for task i.

Knowledge transfer among tasks is achieved via a convex term

X Wð Þ that jointly modulates models according to specific functional-

ities. In this package, five common regularization techniques are imple-

mented to suit different applications, i.e. sparse structure, joint

predictor selection, low-rank structure, network constraint for task re-

latedness and task clustering. Here, we refer to the above regularization

strategies as MTL_Lasso, MTL_L21, MTL_Trace, MTL_Graph and

MTL_CMTL, in the same sequence. These strategies can be broadly

categorized into two classes: strategies for predictor selection

(MTL_Lasso and MTL_L21) and strategies for task relatedness explor-

ation (MTL_Graph, MTL_Trace and MTL_CMTL). While the former

class explores sparse patterns are explored over the predictor space, the

latter class exploits task relatedness based on additional assumptions.

For all algorithms, we implemented a solver based on the accelerated

gradient descent method (Nesterov, 2013). To solve the non-smooth

and convex regularization, the proximal operator (Parikh and Boyd,

2014) was applied. Overall, the solver achieves a complexity of O(1/k2),

which is optimal among first-order gradient methods. Further meth-

odological details are shown in the Supplementary Methods.

3 Results

Predictive performance and model interpretability of the implemented

algorithms were explored using simulated data. The simulated data-

sets were constructed by the ground truth model W, which is speci-

fied for a given prior (Supplementary Fig. S1). We compared the

ground truth and the learnt model as an indicator of model interpret-

ability. For predictive comparison, the primary baseline method was

the conventional lasso, which reflects single task learning perform-

ance. We further applied MTL with lasso (MTL_Lasso), to explore

the effect of inappropriate prior choice as a second baseline method.

3.1 Model interpretability
Supplementary Figure S1a shows the coefficient matrix of MTL_Lasso

and MTL_L21 and demonstrates that the number of predictors identi-

fied by MTL_Lasso was approximately half the number of ground

truth predictors. This may be due to the fact that highly correlated pre-

dictors exist in the high-dimensional space (Zou and Hastie, 2005). As

a consequence and similar to conventional Lasso, MTL_Lasso tended

to select one among several correlated predictors. Despite this, 75%

(precision) of selected predictors were ground truth predictors. For

MTC_L21, the ground truth was highly sparse: only 40 out of 400 pre-

dictors were active predictors for all tasks. The simulation demon-

strates that 39 of the predictors were successfully identified (sensitivity:

97.5%), with a precision of 72%. These results indicate that MTL

algorithms could successfully identify ground truth predictors.

The relatedness of tasks was represented by pairwise correlation

between models. Supplementary Figure S1b shows that all methods

were able to capture correctly the pairwise relatedness compared to

the ground truths. Particularly, MTL_Graph incorporated a strong

network prior such that the “in-group” differences became zero.

This may be because the network prior provided the most complete

information about task relatedness among all priors.

3.2 Predictive performance
Supplementary Figure S2 indicates that conventional Lasso failed to

yield accurate predictions on all simulated datasets except when

using the l21 prior. Compared to this baseline, the MTL models

improved the accuracy by 18.7% on average. The MTL_Lasso

incorporating an inappropriate prior achieved an average accuracy

of 67% and was substantially inferior to MTL models with appro-

priate priors (average accuracy: 79.2%).

4 Conclusion

In this study, we developed an R library for multi-task learning com-

prising 10 algorithms incorporating five different priors. MTL models

outperformed two baseline methods when applied on simulated data.

High model-interpretability was observed in terms of predictor selec-

tion and task-relatedness compared to the respective ground truths.
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