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Abstract

Motivation: Bacterial infections are a major cause of illness worldwide. However, most bacterial

strains pose no threat to human health and may even be beneficial. Thus, developing powerful

diagnostic bioinformatic tools that differentiate pathogenic from commensal bacteria are critical

for effective treatment of bacterial infections.

Results: We propose a machine-learning approach for classifying human-hosted bacteria as patho-

genic or non-pathogenic based on their genome-derived proteomes. Our approach is based on

sparse Support Vector Machines (SVM), which autonomously selects a small set of genes that are

related to bacterial pathogenicity. We implement our approach as a tool—‘Bacterial Pathogenicity

Classification via sparse-SVM’ (BacPaCS)—which is fully automated and handles datasets signifi-

cantly larger than those previously used. BacPaCS shows high accuracy in distinguishing patho-

genic from non-pathogenic bacteria, in a clinically relevant dataset, comprising only human-hosted

bacteria. Among the genes that received the highest positive weight in the resulting classifier, we

found genes that are known to be related to bacterial pathogenicity, in addition to novel candidates,

whose involvement in bacterial virulence was never reported.

Availability and implementation: The code and the resulting model are available at: https://github.

com/barashe/bacpacs.

Contact: sabatos@cs.bgu.ac.il or michaluz@cs.bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

According to the World Health Organization, infectious diseases

are still one of the top causes of death globally. This is despite the

advance of modern medicine in the post-antibiotic era. Recently, it

became clear that humans are heavily colonized by thousands of

different microbial species, overall called microbiota, which are

either innocuous or beneficial to human health. For example, gut

microbiota are important for nutrition, development and regulation

of the immune response (Hooper and Gordon, 2001; Qin et al.,

2010).

As the core microbiota of humans is largely diverse, the deter-

mination of whether a specific bacterial strain is commensal or

pathogenic to humans is extremely challenging. In addition, com-

mensal human bacteria can evolve into pathogenic bacteria by ac-

quisition of novel genes via the horizontal gene transfer (HGT)

mechanism (Kelly et al., 2009; Soucy et al., 2015). This complicates

clinical diagnosis, which uses traditional methods, and encourages

using complete genome sequencing to reveal new genetic traits.

It also motivates the need to identify human-pathogenic (HP)

strains, and to understand their virulence mechanisms; such studies

could facilitate the identification of contaminated food, increase the
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accuracy of infection diagnosis, provide better patient treatment and

lead to a better development of targeted drugs and vaccines.

In current clinical practices, the determination of an infection

agent is based on Koch’s postulates, established in the 19th century.

These require animal models and methods to isolate bacterial strains

and culture them (Sassetti et al., 2003; Young et al., 1985).

However, many pathogens are human-specific and therefore cannot

infect animals, making the identification of infection agents highly

challenging.

Due to recent advances in next-generation sequencing (NGS)

technologies, many new databases that contain the available bacter-

ial sequences have been created and their data are accumulating rap-

idly (Benson et al., 2015; Kulikova et al., 2007; Mashima et al.,

2016; O’Leary et al., 2016). To date, complete genome sequences of

almost all major bacterial pathogens have been determined, provid-

ing significant insights into microbial pathogenesis. In addition, sev-

eral repositories that collect virulence factors and annotate their

structures, functions and mechanisms, are available (Chen et al.,

2005; Zhou et al., 2007). Furthermore, sequences of non-human

pathogenic (NHP) bacteria, such as microbiome species, are also

collected and deposited in sequence databases (Chen et al., 2010,

2017; Gevers et al., 2012). Altogether, the number of available

sequenced bacterial genomes is at the range of hundreds of thou-

sands and is growing rapidly (Mashima et al., 2016; O’Leary et al.,

2016).

The theme of this paper is a new machine-learning approach for

classifying human-hosted bacteria as HP or NHP, based on their

proteomes. A tool, developed based on this approach, could be used

for future surveillance of food- and water-borne pathogens, as

whole-genome sequencing of food products and water sources is

gradually becoming a standard (Carleton and Gerner-Smidt, 2016).

Currently-available tools for pathogenicity prediction can broadly

be divided into two classes: protein-content based (Andreatta et al.,

2010; Cosentino et al., 2013; Garg and Gupta, 2008; Iraola et al.,

2012) and read based (Byrd et al., 2014; Deneke et al., 2017;

Naccache et al., 2014). The approach we propose in this paper

belongs to the former category. The existing tools for each category

are reviewed below. Comparative analysis of Bacterial Pathogenicity

Classification via sparse-SVM (BacPaCS) versus the most recent tool

in each category is given in Section 3.4.

Protein-content based approaches require the availability of

assembled genomes and characterize the phenotype of a microbe by

the presence/absence of members of protein families (PFs) in its

genomes. Such methods have great potential not only for prediction

but also for qualitative analyses [e.g. identifying clade-specific pro-

teins that are either positively or negatively correlated with a patho-

genic phenotype (Cosentino et al., 2013)]. Furthermore, some of the

methods in this category utilize the complete coding information

and are thus able to discover novel unannotated proteins that con-

tribute to bacterial virulence (exemplified in Section 3.3). Their

drawbacks are in the dependence on genome assembly and annota-

tion, and in neglecting the signal potentially found outside of the

protein-coding sequences.

The first tool in this category was developed by Garg et al. (Garg

and Gupta, 2008) and used a cascade Support Vector Machines

(SVM) classifier (Graf et al., 2004) to predict whether a given bac-

terial protein is associated with bacterial virulence. Another method,

developed later by Iraola et al. (Iraola et al., 2012), proposed an

SVM model to predict bacterial virulence, using known families of

orthologous genes. Both of these methods (Garg and Gupta, 2008;

Iraola et al., 2012) relied on pre-established databases of virulence

factors, that annotate virulence at the gene level, and were therefore

limited to specific proteins that are known to be involved in viru-

lence. In contrast, many unannotated genes, whose sequences are

available and potentially associated with virulence (or anti-

virulence) function, were overlooked by these tools.

Other protein-content based tools for pathogenicity prediction

were developed without using pre-established PFs, but rather by cre-

ating PFs and annotating them, based on their appearance frequency

in pathogenic or non-pathogenic organisms (Andreatta et al., 2010;

Cosentino et al., 2013). These studies required an initial step, where

proteins of all organisms in the training set were clustered to form

PFs. PFs significantly enriched in either HP or NHP were assigned a

weight value, depending on the degree of the enrichment, while fam-

ilies that were not significantly enriched were discarded. To deter-

mine the pathogenicity of a new bacterial strain (not found in the

training set) its protein sequences were aligned against the PFs, and

a score was computed according to the presence or the absence of

PFs that are known to be enriched in HP or NHP.

While these methods were novel in not relying on previously

known PFs, they required manual selection of PFs that are signifi-

cantly enriched in HP, therefore these PFs were specific to the

chosen dataset. In addition, both methods were trained on datasets

that included bacterial species that were never detected in human

samples, therefore their biological relevance to human diseases was

questionable. Finally, all methods were designed based on the gen-

omic data available at the time, but unfortunately cannot be scaled

up to the increasing volume of genomic data that are quickly becom-

ing available. This is due to the computational bottleneck of the first

step: clustering proteins into PFs.

Here, we propose a novel approach that overcomes the above

limitations by being fully automated, trained only on clinically rele-

vant data (containing human commensal and pathogenic bacteria),

and implements a clustering method that considerably shortens the

computation time, making it practically more relevant. This is dis-

cussed in detail in Section 2.2.

Read-based classification approaches use short genomic reads as

raw input. Several tools were proposed for metagenomic read classi-

fication based on their sequence-composition homology and/or

mapping proximity to a taxonomy of reference genomes (Miller

et al., 2013). Some of these tools can be harnessed for the detection

of pathogens in clinical samples (Byrd et al., 2014; Naccache et al.,

2014). However, these metagenomic read-based classification tools

make taxonomic rather than phenotypical predictions and are heav-

ily influenced by the taxonomic coverage of the underlying datasets.

Furthermore, they were not designed to make predictions per se, but

rather identify already known organisms. Recently, a read-based

classification tool that is focused on bacterial pathogenicity predic-

tion, denoted PaPrBaG (Deneke et al., 2017), was published. This

tool uses two types of features (DNA features and amino acid fea-

tures) and assigns to each read in the sample a probabilistic score

assessing its pathogenicity potential. The scores obtained for all

reads in the sample are then combined to compile the prediction for

the whole sample.

In general, the advantages of read-based classification

approaches are in their lack of dependence on assembly and annota-

tion. Thus, they can lead to faster analysis that is more applicable to

metagenomic sampling. Their main drawbacks are their lack of abil-

ity to discover novel unannotated proteins that contribute (either

positively or negatively) to bacterial virulence, and their disadvan-

tage in providing an intuitive interpretation of the results (full-length

proteins are more informative for the understanding of bacterial in-

fection). A specific caveat of the PaPrBaG method is that the

feature-selection step utilizes the whole dataset, therefore its
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reported cross-validation results may not truly represent the model’s

success on an independent unseen dataset. In our study, each model

of our 10-fold cross-validation is generated solely based on the

bacterial proteomes in the specific training set, including the feature-

selection step, while the accuracy of the model is measured on a

completely separate test set of that fold. This makes our evaluation

of the classifier’s success much more realistic.

The data imbalance, which measures the ratio between the num-

ber of HP proteomes and the number of NHP proteomes, is one of

the main issues in developing accurate genomics-based tools for

clinical-related predictions. This is due to the fact that most bacterial

samples are collected from clinical samples of sick individuals. Thus,

most sequenced bacteria in many databases, including ours, are of

HP bacteria. In our dataset we have a ratio of 1:5.45 of NHP:HP

bacteria. Our training method and analysis corrects for this imbal-

ance by using re-balanced scores and oversampling. This is discussed

in more detail in Section 2.2.3.

Recent microbiological studies for bacterial outbreaks studied

the transition of a microbial genome from ‘friend’ (NHP) to ‘foe’

(HP) as a process involving either the acquisition (mainly via HGT),

or the mutation of a small set of genes that are known to be involved

in pathogenicity and antimicrobial resistance pathways (Schmidt

and Hensel, 2004), allowing the evolution of novel bacterial HP

from NHP by small genetic alterations and the creation of closely

related HP and NHP strains. This stresses the importance of a tool

that detects relatively small changes between bacterial genomes.

Our tool obtains this goal by training on a wide range of human-

colonizing bacterial species.

As our proposed classifier is genome-based, all genes encoded by

microbial genomes can potentially be included in the classification

model. Therefore, the number of potential features (6 million genes),

greatly exceeds our available training set size (tens of thousands of

genomes). In such circumstances, there is a risk of overfitting the

model to the training data, which would cause the model to perform

poorly on other, yet unseen, genomes. To tackle this challenge, we

employ a ‘sparse Support Vector Machine (SVM)’ learning method,

which generates a genomic model of pathogenicity that uses a rela-

tively small set of genes. This method exploits the fact that a linear

SVM with L1-norm regularization inherently performs feature selec-

tion, by assigning weights equal to zero to all but a small set of fea-

tures (Bi et al., 2003). In addition, the use of sparse-SVM allows

better understanding of the model’s key features (i.e. the genes that

differentiate between NHP and HP). For instance, a feature can be

merely weakly associated with one of the classes, yet in combination

with other features it allows for a strongly predictive model. This is

accounted for in the sparse-SVM algorithm (see Supplementary

Section l1 in the Appendix). This information will likely reveal novel

genes that are linked to bacterial virulence. We discuss a few poten-

tial examples in Section 3.3.

Another benefit of our proposed approach is that the model does

not require manual selection of meaningful features, as done in

some of the previously published pathogenicity classifiers

(Andreatta et al., 2010; Cosentino et al., 2013), making our method

fully automatic and reproducible, as well as readily applicable to

other datasets. Our approach significantly reduces the computation

time required for training, compared to previous methods which do

not rely on previously known PFs. This is essential for our model

since our training data are more than 20 times larger than the train-

ing data used in the previous work that employed gene clustering

(Cosentino et al., 2013). The classification process requires each or-

ganism to be represented by a set of features which is comparable to

those of other organisms. Since each organism has its unique set of

genes, using the genes directly as features would have generated a

representation in which organisms rarely share features, and thus

cannot be compared.

Similarly to other protein-content based studies (Andreatta et al.,

2010; Cosentino et al., 2013) we cluster similar genes into PFs

which then serve as comparable features. However, while in previ-

ous studies this step required significant computation time for model

training [4 weeks to cluster genes from 885 organisms (Cosentino

et al., 2013)], thereby limiting the ability to use a significantly larger

training set, our approach uses a scalable model that reduces the

clustering time substantially. This allows us to reduce the time of

clustering for our dataset, which includes 21 155 organisms, from

an estimated training time of 8 months to an actual training time of

12 days. This is explained thoroughly in Section 2.2.

To summarize, in this study we describe the principles of a novel

machine-learning approach for classifying unidentified bacterial

genomes as human pathogens or not. Our method is fully auto-

mated. It is significantly faster than previous approaches that do not

rely on known PFs, and it does not require any manual hand-tuning

of parameters. It can thus be easily used to train a pathogenicity pre-

diction model using an updated dataset or a completely different

one. This is a very meaningful advantage in light of the rapid growth

in the availability of sequenced bacterial strains. Here, we describe

the biological results obtained by applying our approach to a large

genomic dataset of human-colonizing bacterial strains.

Our approach is implemented in a tool which we term ‘BacPaCS’.

The full code for BacPaCS is included in the Supplementary

Material.

2 Materials and methods

We describe the dataset that we used in Section 2.1., and our classifi-

cation approach in Section 2.2.

2.1 Dataset
We extracted our data from one of the main publicly available data-

bases for microbial genomes, the Pathosystems Resource Integration

Center (PATRIC) (http://www.patricbrc.org). This database pro-

vides researchers with an online resource that stores and integrates

a variety of data types [e.g. genomics, transcriptomics, protein–

protein interactions (PPIs), three-dimensional protein structures and

sequence typing data] and their associated meta-data. As of July 27,

2017, PATRIC contained 106 260 sequenced bacterial genomes

(Wattam et al., 2017). We used only genomes that were marked as

whole-genome sequences (WGS).

We further filtered the data for human-colonizing bacterial

genomes. We identified 40 297 human-colonizing bacteria in the

PATRIC database (Wattam et al., 2017) by finding ‘Homo sapiens’,

‘Humans sapiens’ or ‘Homo sapiens’ in the host name column.

We created an annotation-based pathogenicity classification

method, based on meta-data available in the PATRIC database (see

Supplementary Section I2 in the Appendix). The annotation method

was used to associate a pathogenicity label with each organism in

our dataset. We labeled 17 881 organisms as human pathogens

(HP), 3274 as non-human pathogens (NHP) and 19 412 as inconclu-

sive. Only bacteria that were labeled either HP or NHP were

included in our dataset. Our new annotation method was validated

by comparing its annotations on organisms which have already been

annotated in a previous dataset (Cosentino et al., 2013). The com-

plete labeled data, including its phyla and genera annotations, is

available in Supplementary Table S3 in the Appendix.

BacPaCS 2003
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2.2 Training the model
The workflow of our classification approach is illustrated in

Figure 1.

2.2.1 Extracting features

We used CD-HIT (Li and Godzik, 2006) to construct protein clus-

ters for use as possible classification features. CD-HIT was used for

this purpose also in previous work (Cosentino et al., 2013). CD-HIT

is a greedy incremental sequence clustering algorithm. Its basic algo-

rithm sorts the input sequences according to their length and proc-

esses them sequentially from the longest to the shortest. Each

protein is classified by CD-HIT either as redundant (i.e. similar to

an existing representative) or as a new representative, which defines

a new cluster. The sequence-similarity threshold was set to 40%, as

in a previous paper (Cosentino et al., 2013).

The clustering stage is the most computationally intensive stage

of training. If the CD-HIT algorithm was applied as-is to our train-

ing dataset, we estimate that it would take 22 months to finish,

based on a linear extrapolation from a smaller dataset. Therefore,

unlike the previous work (Cosentino et al., 2013), in our implemen-

tation we use only the longest 10% of all gene sequences in the train-

ing set as input for CD-HIT. We observe that this 10% threshold

allows a reduction of the clustering time by a factor of 20 that does

not reduce accuracy based on tests that we performed on a smaller

dataset (discussed in detail in Section 3.1).

To further improve the running time of our clustering step, we

use CD-HIT’s ‘fast mode’. In this mode, a sequence is attached to

the first representative to which it is similar, without comparing it to

other representatives. This is contrasted with ‘accurate mode’, in

which a sequence is compared to all representatives, and cluster

with the most similar one. Choosing ‘fast mode’ over ‘accurate

mode’ affects only the redundant proteins, which do not define their

own cluster, but has no effect on the identity of clusters or their rep-

resentatives. Since our method only uses PF representatives [unlike

Cosentino et al. (2013), where PF members are used as well], we run

CD-HIT using the ‘fast mode’ setting. This saves many sequence

comparisons, without affecting the resulting features, which are the

PF representatives. This yields an additional improvement of 20% in

the clustering time, as detailed in Section 3.1.

To extract an individual feature vector for each organism,

we use CD-HIT-2D (Li and Godzik, 2006), which is a variant of

CD-HIT that compares the protein sequences of each organism to

the PFs generated from the database sequences. The output indicates

which PF representatives have matches in each organism. Again, we

set the threshold to 40% sequence similarity. Here we use CD-HIT’s

‘accurate mode’, which selects the most similar representative for

each of the organism’s proteins. This takes longer than ‘fast mode’,

however this stage can easily be distributed between different com-

puters or CPU cores, since each organism can be compared to the

PFs independently of others. Using the matching made by CD-HIT,

a binary feature vector is created for each organism. The feature vec-

tor includes a coordinate for each PF. The i’th coordinate is set to

1 if the organism has a protein matching the PF representative

indexed by i, and 0 otherwise.

2.2.2 Generating a classification model

We train an SVM classifier with an L1-norm penalty, using the

vectors representing the organisms in the training set as input.

Each such training vector is provided to the training procedure

with a binary label which indicates whether it is NHP or HP. See

Section 2.1 for details on how we obtained these labels. We use the

L1 penalty to encourage the construction of a sparse model (i.e. a

model which uses fewer features). It has been shown that the L1

penalty is a good surrogate for directly minimizing the number of

features in the model, a task which is computationally infeasible

(Zhu et al., 2004). We implemented the training procedure using the

python package Scikit-learn (Pedregosa et al., 2012).

2.2.3 Cross-validation and scoring

We tune the model’s ‘C’ parameter (see Supplementary Section I1 in

the Appendix) using standard 10-fold cross-validation (Kohavi,

1995). Due to the imbalance of the data, where HP-annotated pro-

teomes appear �5 times more than NHP proteomes in the dataset,

measuring regular accuracy (the proportion of correct predictions

out of the validation set) would result in misleading scores which

might be overly optimistic for worse models. Thus, we use instead a

balanced version of the F1-score. The F1-score is the harmonic

mean of precision (TP= TPþ FPð Þ) and recall (TP= TPþ FNð Þ).
By definition, both of these values are measured for the positive

label of the dataset; in our case, HP. A symmetric F1-score for

the negative label is the harmonic mean of the negative

predictive value (NPV) (TN= TN þ FNð Þ) and the true negative rate

(TN= TN þ FPð Þ). We used the unweighted mean of both of the F1-

scores described above to select the ‘C’ parameter during the cross-

validation. This overcomes possible biases due to the imbalance of

the labels in the training set.

3 Results

We split the dataset into 10 stratified parts, each having the same

HP/NHP ratio. In every model, a different part was designated the

test set, and the other nine parts were designated the training set.

The proteins of the training set were then clustered to create PFs as

described in Section 2.2.1. Using the resulting PF features, a strati-

fied 10-fold cross-validation was performed within the training set,

to optimize the classifier’s ‘C’ parameter (see Section 2.2.3). A classi-

fier was then fitted on the training set, using sparse-SVM with the

selected ‘C’. Lastly, the classifier was evaluated on the test set, which

did not participate in the training, the cross-validation or the cre-

ation of the PFs (see Supplementary Section l3 in the Appendix).

Fig. 1. Classification workflow. Training steps are outlined in dashes, and pre-

diction steps are outlined continuous lines. Input and output cells are colored

white. Dark gray cells represent learning processes
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Thus, performance measures on the test set are representative of the

expected performance on new proteomes never seen during the

training procedure.

3.1 Quantitative results
The accuracy statistics over the 10 splits into training set and test set

are given in Table 1. Full results for each split are detailed in

Supplementary Table S1 in the Appendix. The shortest protein used

for clustering was 527 residues long, and the shortest protein used

as a cluster representative was 539 residues long.

Our average Matthews correlation coefficient (MCC) is 0.795.

In comparison, a lower MCC value of 0.758 was previously

reported for Pathogenfinder, a classifier that was developed and

trained on a smaller dataset (Cosentino et al., 2013). Although

Pathogenfinder’s dataset also contained both HP and NHP bacteria,

it was not limited to human-colonizing bacteria like our dataset.

Instead, it included also animal-colonizing and plant-colonizing

bacteria. Proteomes of such bacteria are likely less similar,

proteome-wise, to HP organisms, than non-pathogenic human-

colonizing bacteria. Therefore, it would be easier for a classifier to

identify them as NHP, using animal-specific or plant-specific genes.

Thus, our MCC score, and our accuracy results in general, are likely

more relevant to the task of distinguishing HP from NHP among

human-colonizing bacteria.

The dataset that we used has a ratio of 5.45 of HP and NHPs,

and so the performance of our model as reported in Table 1 pertains

to this ratio. In practice the data might be skewed to have

more pathogens than non-pathogens or vice versa, depending on the

setting. To address this issue, we also report (see Supplementary

Table S1 in the Appendix) the accuracy of our model separately for

pathogens and non-pathogens, using the measures of sensitivity and

specificity respectively. Since the sensitivity of our model is higher

than the specificity on the test data, we conclude that our model

would likely be the most accurate when the ratio tends strongly to-

wards pathogens.

To examine how many features are necessary for our model to

be accurate, we plotted F1-macro scores against the number of fea-

tures that are used by the model (Fig. 2). Models with less features

were generated by taking the classification model that was trained

for each fold, and setting to zero the weights of all the features in

this model, except for the n features with the largest absolute weight

in the model ! w. The plot in Figure 2 shows the mean F1-macro

score of all 10 models, and its standard deviation. There are large

differences between the maximal number of features used by trained

models of different folds, from as low as 1724 for fold 3 to as high

as 8649 for fold 4. Indeed, the SVM ‘C’ parameter, selected by the

cross-validation process, was 0.1 for fold 2 and 100 for fold 3.

These differences likely result from random differences in the con-

tent of the training set of each fold. However, the overall perform-

ance of each model on their respective test set for a similar number

of features is similar. It is likely that features that are present only in

a small number of models, out of the 10 models generated for the 10

different folds, are not statistically significant for pathogenicity pre-

diction, for the type of organisms in this dataset.

We trained an additional model on the entire dataset (provided

in our Github directory). This model uses 9469 features. Its ‘C’ par-

ameter was set by the cross-validation procedure to 300. This larger

number of features (corresponding to this high ‘C’ value) might be

due to the larger training set, which reduces the risk for overfitting,

thus allowing the model to safely use more features.

3.2 Clustering using only long proteins
As described in Section 2.2.1, our training procedure rests on the hy-

pothesis that clustering only the 10% longest genes speeds up the

model training substantially, without having a significant effect on

the model’s accuracy. To validate this hypothesis, we used the

smaller dataset provided by Cosentino et al. (2013), on which it was

feasible to compare the approaches.

In Table 2, we show the results of this comparative analysis. We

compare both the model training times and their accuracy, as meas-

ured by the F1-score and by the prediction accuracy on the valid-

ation set. Here we used regular accuracy and F1-positive measures,

since the validation set is relatively balanced. Our measurements

Table 1. Summary of ML accuracy results with different measures

Scoring Mean Std

F1-macro 0.897 0.0045

PR-AUC 0.992 0.0014

ROC-AUC 0.968 0.0044

Sensitivity 0.966 0.0072

Specificity 0.835 0.0287

MCC 0.795 0.0091

Note: F1-macro, sensitivity and specificity are defined in Section 2.2.3. PR-

AUC is the area under the precision-recall curve, unweighted and averaged

over both labels. Note that this curve for the negative label is actually the

NPV (see Section 2.2.3) versus specificity curve. ROC-AUC is the area under

the ROC curve. Matthews correlation coefficient (Matthews, 1975) (MCC) is

a measure of the quality of a binary confusion matrix, ranging from �1 (com-

plete disagreement between predictions and observations) and 1 (perfect

prediction).

Fig. 2. Mean F1-macro score versus number features, of each of the 10 cross-

validation folds. The gray area represents the standard deviation

Table 2. Comparison of computation time and accuracy of classifier

when changing the threshold X for clustering the X% longest

proteins

% genes used Computation time (days) Accuracy F1-score

100 395 87.44 0.83

20 53 86.55 0.82

15 35 87.67 0.83

10 20 86.77 0.83

5 7 87.00 0.82

2.5 2 84.98 0.80
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show that the training time is more than 20 times faster when clus-

tering only the 10% longest proteins of the dataset, and that this

speedup does not come at the expense of accuracy or F1-score on

this dataset. We observe a decline in performance only when the

threshold is set to select only 2.5% of the longest genes for cluster-

ing. Moreover, we observe that the accuracy measures for different

thresholds between 5 and 100% are not monotonic in the threshold,

thus we propose that the differences result from statistical variation,

and not from inherent deficiency of using a threshold in the range 5–

100%. We selected a threshold of 10% for clustering our dataset,

since this value was computationally feasible, and according to

Table 2, was sufficient to preserve accuracy. Assuming a speedup of

20� holds also for our larger dataset, this means that clustering the

entire set of proteins on our dataset would have taken 8 months in-

stead of 12 days.

3.3 Biological results
In our final classification model, which was trained on the entire

dataset, 4885 PF representatives received positive weights, linking

them to an HP life-style, and 4584 representatives received negative

weights, indicating that their presence in the bacterial proteomes is

an indication of non-pathogenicity in humans. To gain biological in-

sight of our results, we analyzed the 25 PF representatives that

received the highest positive weights in our classification model.

These PFs are expected to have a strong positive correlation between

their presence in the proteomes of a bacterial strain and the involve-

ment of this specific strain in human diseases. Supplementary

Table S2 in the Appendix summarizes the characteristics of these

PFs. Since we made no a priori assumptions regarding the genes that

are expected to receive high positive weight, we found genes that

were never reported to be related to bacterial virulence, alongside

genes that are known virulence factors.

Supplementary Table S2 includes the number of HP bacteria and

NHP bacteria that have each PF in their proteomes, as well as the

normalized HP/NHP ratios, which corrects for the NP/NHP imbal-

ance in the dataset. The bacterial spectrum is also presented, via the

number of genera that contain the PF within their proteome. This

value indicates if the PF feature is widely spread among the bacterial

population, or mostly limited to a specific genus. The full list of the

different genera and phyla of the organisms used in this work is

available in the Supplementary Material.

Among the 25 top-scoring pathogenicity-related genes, we found

genes that encode antitoxin proteins (genes 1, 9–10, 14 in the table),

phage tail fiber proteins (genes 2 and 3), mobile elements (genes 8

and 20), secretion/transporter systems (genes 4 and 18) and biofilm

associated proteins (genes 13 and 25). Since many virulence factors

are suspected to spread by HGT, our finding that genes encoding

mobile elements and phage proteins have high positive weights is

not surprising. In addition, many secretion systems were previously

reported to be involved in antibiotic resistance, immune system

modulation and virulence mechanisms that allow pathogenic bac-

teria to survive within the host environment. Biofilm production

allows pathogens to protect the bacterial community by forming

multi-cellular structure. Antitoxin production is related to the ability

of a bacterial strain to produce a potent toxin against the host cell or

the commensal microflora without affecting itself.

We found several metabolic genes that received high scores

(genes 6, 7, 16, 19, 21). These were involved in diverse metabolic

pathways such as amino acid, nitrate and iron metabolism. While

iron metabolism was previously suggested to be important for bac-

terial virulence, since it allows acquisition of the limited iron

elements, the other metabolic pathways were not previously

reported to be directly related to bacterial pathogenesis. This finding

demonstrates the advantage of analyzing a combination of multiple

genes that collectively can predict the nature of bacterial strains

according to their proteome.

Many of the top genes on the list are uncharacterized and their

function is unknown (genes 5, 10–12, 15, 17, 22–24). These genes

might reveal novel virulence mechanisms that could be of great im-

portance to understanding infectious diseases. To acquire initial in-

formation on the role of these uncharacterized genes, we examined

whether any of the proteins assigned to the PF of the representative

protein contain a known function. However, all proteins within the

PFs of genes 10, 11, 17 and 23 were reported as hypothetical pro-

teins with unknown functions. To examine whether they contain

conserved domains of characterized proteins we analyzed them thor-

ough NCBI Conserved Domain Search (Marchler-Bauer et al.,

2017). Gene 10 in Supplementary Table S2 was found to have a con-

served region, at amino acid positions 44–603, that appeared in

many bacterial genes. This region was found to be 100% identical

to a putative conjugal transfer protein, called TraI. This might sug-

gest that gene 10 encodes a protein that can be translocated to other

bacterial strains or is involved in the bacterial conjugation process,

which allows bacteria to transfer DNA horizontally. These abilities

are likely related to the pathogenicity of bacterial strains.

Gene 23 in Supplementary Table S2 was found to include a pro-

tein domain termed LXG, at positions 432–570. This protein do-

main is found in a group of polymorphic bacterial toxins. Such

toxins are predicted to use the Type VII secretion pathway to medi-

ate their export. We found that Gene 11 in Supplementary Table S2

contains cell-surface protein domains, suggesting it localizes on the

bacterial membrane, where many virulence factors are found.

An interesting example of our model’s success is nicely demon-

strated in the Acinetobacter genus. Our dataset included a relatively

balanced bacterial population of this genus, with 689 HP and 627

NHP organisms. Out of these bacterial strains, 92.3% of the HP

proteomes were correctly classified as HP (sensitivity) and 93.0% of

the NHP proteomes were correctly classified as NHP (specificity).

At this point, we could not fully comprehend the biological cor-

relation between the functions of the PFs that obtained the highest

negative weights and the non-pathogenic bacterial life-style. It is

possible that the genes required for NHP life-style are operating as

multi-factorial components, and are therefore harder to correlate

with specific function/activity.

3.4 Comparative results
To compare BacPaCS to the existing bacterial pathogenicity classi-

fiers, we created an independent test set, which includes only data

obtained after our model was generated. On April 27, 2018, we

downloaded from the PATRIC database (Wattam et al., 2017)

organisms that were added to the database after March 15, 2017

(the date in which we originally downloaded the data that was used

to develop our method and to train our model). This ensured that

none of these organisms was used to train our model, or the models

of previous studies to which we compare. Only organisms with

‘complete’ sequencing status were downloaded, for the sake of com-

patibility with the PaPrBaG engine, whose training and testing for-

mat is limited to such data. This download procedure resulted in a

set of 1079 organisms.

Our labeling method was then used to label these organisms.

Since only 46 organisms out of the 1079 were labeled NHP by our

method, we manually examined the list of organisms labeled by our
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method as ‘inconclusive’, and identified 10 more NHPs, using a

slight modification of our labeling method (the modification is

described in Section l2 in the Appendix). At this point, the list of

1079 organisms was labeled as follows: 56 NHPs, 721 HPs and 312

‘inconclusive’. We manually validated the pathogenicity status of

the 56 NHP-labeled organisms, and found that 14 of them actually

had inconclusive pathogenicity status and 3 were actually pathogen-

ic. This left us with 39 confirmed NHP organisms for our test set.

To obtain confirmed HP organisms for our test set, we started with

the three HPs that were found in the NHP list. We then added con-

firmed HP organisms to the test set by randomly selecting HP-

labeled organisms from the original list of 721 organisms, and vali-

dating that they are indeed HPs. One of the randomly selected

organisms was found in the manual validation to be non-

pathogenic, and so it was relabeled as NHP, thus the final number

of confirmed NHPs in our test set was 40. Another one of the ran-

domly selected HP-labeled organisms was found to have an incon-

clusive pathogenicity status, and was removed from the test set. We

stopped selecting and validating organisms from the HP list after

reaching 60 confirmed HPs. This provided us with 100 bacterial

genomes, out of which 40 were confirmed NHPs and 60 were con-

firmed HPs.

Pathogenicity labels for the organisms in the resulting set were

predicted by the models of Pathogenfinder (Cosentino et al., 2013),

PaPrBaG (Deneke et al., 2017) and BacPaCS. Since PaPrBaG uses

raw NGS reads, WGS were downloaded, and reads were simulated

using DWGSIM (https://github.com/nh13/DWGSIM), using the

same definitions described in the PaPrBaG paper. For PaPrBaG pre-

dictions, we used the five models created in the 5-fold CV in the

PaPrBaG paper and averaged their results. The results are given in

Table 3. The list of organisms with additional details regarding the

predictions by each method is given in the Supplementary Table S3

in the Appendix.

BacPaCS obtained better sensitivity and specificity than

Pathogenfinder, and better overall performance than PaPrBaG. The

latter had very low specificity. PaPrBaG’s average running time was

far shorter than BacPaCS’s. The longer running time of our model is

due to the time of assigning each of the organism’s proteins to its cor-

rect cluster using CD-HIT. This could easily be distributed on several

machines, as explained in Section 2.2.1. Pathogenfinder’s predictions

were computed on the tool’s server, since a package is not available

for download. Thus, its runtime is incomparable to the rest of the

tools. It should be noted that we did not test any of the models on

organisms labeled as ‘inconclusive’ by our labeling method, since we

do not have a reliable means of finding the true pathogenicity status

of most of these organisms. Therefore, it is possible that our method

would have a smaller advantage on these organisms.

4 Discussion

In this work we developed a machine-learning tool, ‘BacPaCS’, for classi-

fying new bacterial proteomes as pathogenic to human or not. Our pro-

posed classifier uses a large number of PFs as features, and this number

greatly exceeds our available training set size, posing a risk of overfitting.

To tackle this challenge, BacPaCS trains an L1-penalty SVM classifier,

which naturally performs feature selection during classification.

Strikingly, this results in a high-accuracy prediction tool, which is com-

pletely automated, and requires no manual configurations.

Pathogenicity classification training is highly dependent on avail-

able pathogenicity annotations. For that purpose, we created a

protocol for pathogenicity annotation inference, based on pheno-

types which are readily available. In the future, this protocol can be

further extended and tuned for a larger database. Aside from being a

prediction tool, our proposed approach can be used to reveal un-

known virulence genes, as will be demonstrated in Section 3.3. In

the future, we hope to determine, based on our tool, a minimal set

of genes, specific for a known pathogenic genus, that can differenti-

ate quickly and effectively between pathogenic and non-pathogenic

bacterial strains. This will assist medical researchers and future clin-

ic practitioners to develop high quality kits based on these genes.

Considering the growing size of available bacterial genome

sequences, scalability is of key importance. Clustering proteins into

PFs is the most computationally intensive procedure during training,

making it the computational bottleneck of the training stage. Since

our dataset is much larger than any previous datasets used in previ-

ous pathogenicity studies, it was crucial to speed up this process in

order to make the training stage feasible. We achieved a speed up in

the clustering process using two methods. First, following the ap-

proach of CD-HIT (Li and Godzik, 2006), we hypothesized that the

longer protein sequences contain more sequential features (i.e.

domains) than shorter protein sequences. Also, we observed that

during the clustering computation, CD-HIT processes protein

sequences sorted by length (longest to shortest). Therefore, it was

natural to select a subset of clusters generated from the longest input

sequences, and to stop the CD-HIT process once these sequences are

clustered. This resulted in a significant reduction in the time needed

for model training. We demonstrated in Section 3.1 that, when

employing our classification approach, this does not have a signifi-

cant effect on the resulting model’s accuracy. The model’s high ac-

curacy, shown in Section 3.1, supports the validity of our hypothesis

regarding the sufficiency of longer protein sequences for clustering.

Overall, the novel approach proposed in this paper yields a ro-

bust and accurate classifier to quickly differentiate HP from HNP.

Although this work focused on genomics, additional data types

offered by bacterial resource databases (such as transcriptomics,

PPIs, three-dimensional protein structures and sequence typing data)

could be considered for integration in future works.

We are confident that with the growing genetic and medical

knowledge of bacterial proteomes, the accuracy of the models gener-

ated by this tool will increase.

BacPaCs requires assembled proteomes. Therefore, it currently

cannot be applied to metagenomics data. However, in the future, as

read lengths continue to increase, and as metagenomic binning and

assembly technologies improve, the application of approaches based

on protein content to metagenomics data could perhaps be

reconsidered.

Although our approach was designed with pathogenicity classifi-

cation in mind, it can be easily adjusted to predict phenotypes other

than pathogenicity, such as antibiotic resistance.
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