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Abstract

Motivation: Accurate prediction of loop structures remains challenging. This is especially true for

long loops where the large conformational space and limited coverage of experimentally

determined structures often leads to low accuracy. Co-evolutionary contact predictors, which

provide information about the proximity of pairs of residues, have been used to improve whole-

protein models generated through de novo techniques. Here we investigate whether these evolu-

tionary constraints can enhance the prediction of long loop structures.

Results: As a first stage, we assess the accuracy of predicted contacts that involve loop regions.

We find that these are less accurate than contacts in general. We also observe that some incorrect-

ly predicted contacts can be identified as they are never satisfied in any of our generated loop con-

formations. We examined two different strategies for incorporating contacts, and on a test set of

long loops (10 residues or more), both approaches improve the accuracy of prediction. For a set of

135 loops, contacts were predicted and hence our methods were applicable in 97 cases. Both strat-

egies result in an increase in the proportion of near-native decoys in the ensemble, leading to more

accurate predictions and in some cases improving the root-mean-square deviation of the final

model by more than 3 Å.

Contact: marks@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The regions of a protein structure not in a-helices or b-sheets are

known as loops and often facilitate function. Loops are typically

found on the protein surface (Lins et al., 2003), and therefore are

involved in many interactions with other entities, from small mole-

cules to other proteins, and contribute significantly to the overall

shape, dynamics and physiochemical properties of the protein (Fiser

and Sali, 2003; Papaleo et al., 2016). Prediction of their structures is

challenging, due to a reduced level of conservation between homo-

logues compared to the secondary structure elements (Panchenko

and Madej, 2005). This means that loop regions are usually the least

accurate parts of a homology model (Moult et al., 2018).

A particular obstacle is the prediction of long loop structures. It

has been shown that for short loops, the Protein Data Bank (PDB)

(Berman et al., 2000) already contains the vast majority of possible

conformations (Bonet et al., 2014; Fernandez-Fuentes and Fiser,

2006); as such, it should be possible to model most short loops via

knowledge-based approaches. For long loops, the increased number

of potential conformations coupled with the lack of structural cover-

age in the PDB means that this approach will often fail. Ab initio or

hybrid methods are therefore required, though this typically leads to

lower quality predictions due to difficulties in efficiently exploring

the conformational space and correctly selecting near-native models

(Marks et al., 2017). Models of long loops are therefore usually less

accurate than those of short loops. For example, the average root-

mean-square deviation (RMSD) for predictions made by the

knowledge-based algorithm LoopIng was 1.01 Å for 6-residue loops

and 2.82 Å for 16-residue loops (Messih et al., 2015). For the same

set of targets, the ab initio method LEAP achieved accuracies of

0.49 and 4.90 Å for the 6- and 16-residue loops, respectively (Liang

et al., 2014). Since 20% of protein loops contain 10 or more resi-

dues, and 70% of PDB entries of unique sequence have at least one

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2585

Bioinformatics, 35(15), 2019, 2585–2592

doi: 10.1093/bioinformatics/bty996

Advance Access Publication Date: 10 December 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2585/5237561 by guest on 19 April 2024

http://orcid.org/0000-0001-5931-2437
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty996#supplementary-data
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx00C5; 
Deleted Text: &hx2009;
Deleted Text: ten
https://academic.oup.com/


long loop, it is important that this issue is addressed, and that our

ability to model these loops is improved.

The field of de novo (or template-free) structure prediction has

benefited from recent advances in the prediction of evolutionary

constraints (de Oliveira et al., 2017). Given a multiple sequence

alignment, the spatial proximity of residues can be inferred from

patterns in their observed mutations. Residue pairs that mutate in a

correlated fashion are likely to be structural neighbours, since a pair

of interacting residues must vary together to maintain the inter-

action, and hence conserve protein structure and function. The

inferred contacts have then been used as structural constraints, ei-

ther to guide the conformational search or to filter and rank decoys

post-generation (e.g. Braun et al., 2015; de Oliveira et al., 2018;

Hopf et al., 2012; Jones et al., 2015; Kamisetty et al., 2013; Kim

et al., 2014; Kosciolek and Jones, 2014; Marks et al., 2011, 2012;

Ovchinnikov et al., 2015). In this paper we consider whether pre-

dicted contacts may also be a viable source of information in a hom-

ology modelling setting, e.g. to improve regions of a protein model

where the relationship between the target and template is not

straightforward.

In this work, we report how predicted contacts can be valuable

in the context of modelling long loops (of 10 or more residues). We

have explored two protocols with which to do this. The first, for

which we use the hybrid loop prediction software Sphinx (Marks

et al., 2017), is to filter out conformations from a pre-existing decoy

ensemble based on whether they satisfy the set of contacts predicted

for the target. The second method involves applying constraints to

the decoy generation step to narrow the conformational search

space; we demonstrate this approach using the ab initio loop predic-

tion algorithm within MODELLER (Fiser et al., 2000; Fiser and

Sali, 2003). In each case we achieve a marked improvement in accu-

racy—models made by Sphinx are on average 0.53 Å closer to the

native structure, while MODELLER’s predictions are improved by

an average of 0.49Å. For several targets, improvements of over 3 Å

were observed.

2 Materials and methods

2.1 Target set selection
As a training set, we used the set of general loop targets used in

Marks et al. (2017). All preliminary investigations into the use of

predicted contact information were carried out using this set. The

results reported in this paper relate to our test set of long loops (10

residues and above), referred to as the ‘general loop’ target set.

These loops were selected as follows. Using PISCES (Wang and

Dunbrack, 2003), we extracted a set of protein structures from the

PDB with better than 2 Å resolution, a maximum R-value of 0.3,

and a maximum sequence identity of 40%. Any PDB entries that

were included in or were identical in terms of sequence to the train-

ing set were excluded. The loop regions of the remaining proteins

were then identified using DSSP (Joosten et al., 2011)—we consid-

ered loops to be residues located between helices and strands (DSSP

assignments H, G, I and E) of three residues in length or more.

Loops with missing atoms or non-standard residue types were

ignored. From these we selected a final test set of 135 loops, contain-

ing 15 of each length from 10 to 18 residues inclusive, with each tar-

get coming from a different PDB entry.

We have also tested our protocols on a set of loops from mem-

brane proteins, specifically those that connect transmembrane seg-

ments. Lists of PDB structures relating to membrane proteins were

downloaded from three online databases: the Membrane Proteins of

Known 3D Structure database (White, 2009), the Protein Data Bank

of TransMembrane proteins (Kozma et al., 2013; Tusnàdy et al.,

2004) and the Orientations of Proteins in Membranes database

(Lomize et al., 2012). The orientation of each structure within the

lipid bilayer was predicted using iMembrane (Kelm et al., 2009);

only proteins that were predicted to cross the whole membrane layer

were retained. We used PISCES to cull this selection of structures

based on resolution and sequence identity (maximum sequence iden-

tity 60%, maximum resolution 3 Å), resulting in a set of 670 pro-

teins. Loop regions were identified as described above, and the

resulting set was further filtered to include only loops that are situ-

ated in close proximity to the membrane (within five residues on

each side). Our final set of targets contained 160 loops between 10

and 20 residues in length (up to 20 per length, depending on how

many were available). Full lists of targets are given in the

Supplementary Material, and are labelled with the following nota-

tion: PDB code þ chain ID_start residue_end residue.

2.2 Contact prediction with MetaPSICOV
Residue–residue contacts were predicted using MetaPSICOV version

1.04 (Jones et al., 2015). MetaPSICOV makes use of a number of

other algorithms. PSIPRED (version 4.01) (Jones, 1999) and

SOLVPRED are used to predict secondary structure and solvent ex-

posure, respectively; for this we used the ‘uniref90’ database from

UniProt (Chen et al., 2017), as recommended by the authors.

Multiple sequence alignments were generated by MetaPSICOV

using HHblits version 3.0.0 (Remmert et al., 2012) and the ‘uni-

prot20_2016_02’ database. MetaPSICOV computes its results from

a consensus of three other predictors—our implementation used

PSICOV version 2.1 (Jones et al., 2012), FreeContact version 1.0.21

(Kajàn et al., 2014) and CCMpred version 1.0.0 (Seemayer et al.,

2014). Sequence databases were downloaded in October 2017.

For each protein in the target sets, we extracted the contacts

from the MetaPSICOV output (stage 2 results) that involve at least

one target loop residue and have a score of over 0.5 (referred to

henceforth as ‘loop contacts’). Trivial contacts (those between resi-

dues fewer than five residues apart in the protein sequence) are not

given by MetaPSICOV and were therefore not considered (these

contacts appear not to affect results—see Supplementary Material).

In accordance with the definition used to train and test

MetaPSICOV (Jones et al., 2015), we considered a contact to be sat-

isfied if the Cb atoms of the two residues (or Ca for glycine) were

<8 Å apart.

If no contacts were predicted for a target, we did not consider it

further. Additionally, we found during our preliminary work that

for cases with only a single predicted loop contact, the incorporation

of this information into the loop modelling protocol either had no

significant impact on accuracy (if the predicted contact was correct),

or was detrimental (if it was incorrect). Therefore we also excluded

targets for which only one loop contact was predicted.

2.3 Loop structure prediction with Sphinx—filtering the

decoy ensemble based on predicted contacts
Decoy ensembles were generated using the hybrid loop prediction al-

gorithm Sphinx, as described by Marks et al. (2017). For the predic-

tion of loops in the general target set, we used default parameters,

and a database of loop fragments. This contained the loop structures

of all PDB entries with non-identical sequences (according to

PISCES, using the structure with the best resolution for each se-

quence), plus three residues on each side, split into all possible frag-

ments of 3–30 residues in length [the same database as previously
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described in Marks et al. (2017)]. The minimization step used in the

original Sphinx paper was omitted to reduce computation time. In

all cases, fragments from structures with identical sequences to the

target protein were ignored. We produced models in two ways: by

using the standard Sphinx implementation, and by integrating the

results of contact prediction into the ranking procedure.

Predicted contact information was incorporated into the initial

ranking (or filtering) step, where the complete decoy ensemble pro-

duced by Sphinx is narrowed down to the top 500 conformations

using a statistical potential. For each decoy in the complete ensem-

ble, in addition to the statistical potential score, we calculated a

‘contact score’, S, based on that used by FRAGFOLD (Kosciolek

and Jones, 2014):

S ¼
XN
i¼1

Ci (1)

Ci ¼
�Pi if di � d0;

�Pie
�ðdi�d0Þ2 þ Pi

di � d0

di
if di > d0:

8<
: (2)

where N is the number of predicted loop contacts, Pi is the score (or

probability) for contact i given by MetaPSICOV, di is the distance

observed for the contact in the decoy structure and d0 is 8 Å. If a

contact was never satisfied in any member of the decoy ensemble,

we assumed it was incorrect and excluded it from the calculations. If

this procedure led to a target only having a single predicted contact,

it was omitted from our study (see Section 2.2).

The decoys were then ranked by the statistical potential and con-

tact scores separately, after which a consensus ranking was pro-

duced by summing the ranks achieved for each decoy by each

scoring method. This ranking was used to select the top 500 decoys;

these were then scored as normal using SOAP-Loop (Dong et al.,

2013; Marks et al., 2017).

When using Sphinx to predict the structures of loops from mem-

brane proteins, we used a specific version of Sphinx

(SphinxMembrane), analogous to the antibody H3-specific version

of Sphinx described by Marks et al. (2017). In this version, the in-

ternal dihedral angle data were calculated from a set of membrane

protein loops, the number of fragments Sphinx uses to build decoys

is doubled, and the fragment database only consists of membrane

protein loop structures. Both the dihedral data and database were

generated from the set of loops connecting transmembrane segments

described in Section 2.1, however the dihedral distributions were

made less sparse using the resampling methodology described by

Marks et al. (2017).

2.4 Loop structure prediction in a non-native

environment
To investigate the effect of incorporating predicted contacts when

modelling loops in a non-exact environment, we generated models

for the proteins of the general target set using MODELLER (Sali

and Blundell, 1993). Templates were selected using BLAST

(Altschul et al., 1990) and the ‘pdbaa’ database; we used the tem-

plate with the highest BLAST score, excluding structures that have

the same sequence as the target. The sequences of the target and

template were aligned with Clustal Omega (Sievers et al., 2011). To

ensure that the models had at least the correct fold, and the loop an-

chor residues were approximately in the correct place, models with

a template modelling (TM)-score of below 0.5 [as calculated with

TM-align (Zhang and Skolnick, 2005)] or an anchor RMSD of over

3 Å were excluded from the study. Anchor residues were defined as

two residues on each side of the loop. Sphinx was executed as

described in Section 2.3 to remodel the target loops.

2.5 Loop structure prediction with MODELLER—

applying constraints to decoy generation
The ab initio loop prediction algorithm within the MODELLER

package allows the user to apply constraints during the generation

of possible conformations. By using the loop contacts predicted by

MetaPSICOV as constraints, exploration of the conformational

space should be directed towards more native-like structures, lead-

ing to a better quality decoy ensemble and hence more accurate

predictions.

To account for the possibility of incorrect contacts, for each

decoy generated we selected a random subset of the MetaPSICOV

predictions of size 1–N (the total number of contacts), and used

these as constraints. Constraints were applied in the form of an

‘upper bound’ function, where distances above a cutoff value have a

detrimental effect on the decoy’s score. Consistent with the

MetaPSICOV definition we specified a distance cutoff of 8 Å, and

we used a r value of 0.1. As with the Sphinx tests described above,

we compared this constrained version to the standard MODELLER

algorithm (i.e. no constraints). In each case, we generated 1000

decoys for each target (built onto the crystal structure), used the

‘loopmodel’ class with the ‘slow’ refinement level, and produced a

final ranking with the SOAP-Loop scoring function.

2.6 RMSD calculations
All RMSD values for the loop models were obtained after superpos-

ition of the model and native structures ignoring the loop region,

and were calculated using the coordinates for the backbone atoms

of the loop (i.e. N, Ca, C and O). This is a global RMSD (Deane and

Blundell, 2001).

3 Results

3.1 Results of contact prediction for loop regions
The contact prediction accuracy achieved by MetaPSICOV for the

test set, considering only contacts that involve at least one residue of

the target loop, is reported in Table 1. Of the 135 target loops, two

or more loop contacts were predicted for 101 (75%—see

Supplementary Material for full details). The average number of

contacts predicted for a loop was 16.9; the maximum predicted was

84 (for a 16-residue loop). On average, 58.7% of loop contacts were

accurate. This is lower than the accuracy achieved for contacts pre-

dicted within the rest of the protein (average accuracy ¼67.2%), po-

tentially reflecting the increased variability in loop sequences

compared to regions with more conserved structure. No clear trends

were observed across different loop lengths. Most of the predicted

contacts (90%) were between one target loop residue and one resi-

due located elsewhere in the protein.

Other studies have shown that the accuracy of predicted contacts

across the entire protein is related to the number of effective sequen-

ces (Neff) in the multiple sequence alignment used to infer them

(Jones et al., 2015; Ovchinnikov et al., 2015). Using the values for

Neff reported by MetaPSICOV, we investigated this relationship for

predicted loop contacts, but found no clear relationship between

Neff and the accuracy of our predicted loop contacts. The accuracy

of prediction is also independent of the presence of gaps in the align-

ment (see Supplementary Material).
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3.2 Sphinx results—filtering the decoy ensemble based

on predicted contacts
In this section, we report the results of our investigation into using

predicted contacts to filter out inaccurate conformations from the

decoy ensemble, by incorporating a ‘contact score’ into the first

ranking stage of the Sphinx algorithm (see Section 2.3).

3.2.1 Identification of incorrect contacts

Our strategy of ignoring contacts that are never satisfied in the

decoy ensemble (Section 2.3) was highly successful in removing in-

correct contacts. Four targets were removed from the study since

they only had one predicted contact left after this was carried out.

For the remaining 97 loops of the general target set, 105 contacts

were ignored across 49 targets—all of these were incorrect predic-

tions, suggesting that this could be a standard strategy for identify-

ing false positives. For our targets, this increased the average

accuracy of the contacts from 58.7 to 64.2%.

3.2.2 Relationship between number of contacts satisfied and decoy

RMSD

If the predicted contacts are to be useful in loop prediction, decoys

satisfying the largest number should tend to be the most accurate,

and conversely, those that satisfy the least should be the furthest

from the native structure. In Figure 1, we show the relationship be-

tween the number of contacts satisfied and decoy RMSD for two ex-

ample targets. For the loop 4B4HA_526_543, there are seven

predicted contacts that are satisfied at least once by decoys in the en-

semble. MetaPSICOV predicted one further contact, however this

was never satisfied by any decoy and was therefore, as discussed pre-

viously, assumed to be incorrect and omitted from the analysis (the

actual distance between the relevant atoms in the native structure is

20 Å). Decoys that satisfied more of the predicted loop contacts did

indeed tend to have lower RMSDs; the average RMSD of decoys sat-

isfying all seven was 1.50 Å, while those satisfying none had an aver-

age RMSD of 11.70 Å (Fig. 1A).

A more complicated picture emerges for targets where not all

predicted contacts are accurate. For example, MetaPSICOV pre-

dicted 13 contacts for the loop 5CDKA_105_121, but only 9 were

correct. Therefore, the most accurate decoys were those that satis-

fied nine contacts (average RMSD ¼2.73 Å). As shown in Figure 1B,

up to this point the distribution of RMSDs improves with increasing

numbers of satisfied contacts; beyond this the average decoy accur-

acy decreases. However, even though some contacts are wrong in

the latter case, for both targets the contact score described in Section

2.3 correlates well with RMSD (Fig. 1C and D). Hence, by

combining this with Sphinx’s knowledge-based potential, we should

be able to select more of the accurate decoys in the ensemble to be in

the top 500.

3.2.3 Quality of the decoy ensemble and accuracy of predictions

Figure 2 shows the effect of using contact information on the quality

of the top 500 decoys. It shows the change in the number of ‘good’

decoys (RMSD below 2 Å) when using contact information com-

pared to a standard Sphinx run. For the majority of targets (51), fil-

tering the decoy ensemble using predicted contacts increased the

number of good conformations. There were only 8 targets out of the

set of 97 whose decoy ensembles were made worse. The average ac-

curacy of contact prediction for these 8 targets was 56.5%. For the

targets whose decoy ensembles were improved, the average accuracy

Table 1. Details of MetaPSICOV predictions for the test set

Loop length Number of targets No. with >1 predicted loop contacts Average no. of loop contacts Average accuracy (%)

10 15 14 16.8 65.6

11 15 13 16.2 53.5

12 15 13 15.5 59.3

13 15 8 15.6 45.3

14 15 11 20.3 36.4

15 15 12 11.1 62.8

16 15 8 30.0 68.6

17 15 12 17.8 68.2

18 15 10 12.1 65.7

ALL 135 101 16.9 58.7

Note: The numbers refer to predicted contacts where at least one of the residues is part of the target loop. Only targets for which more than one loop contact

was predicted are considered. The final row (highlighted in bold text) shows data calculated for the entire target set across all loop lengths.

Fig. 1. Decoy RMSD versus number of satisfied predicted contacts satisfied

(top panels) and contact score (bottom panels) for two examples from the

general target set. (A, C) 4BH4A_526_543; an 18-residue loop, with 7 contacts

predicted. All of these contacts were correct; the distributions of RMSDs

therefore improve as the number of contacts satisfied increases. (B, D)

5CDKA_105_121; a 17-residue loop with 13 predicted contacts, of which 9

were correct. The best distribution of RMSDs is achieved for decoys satisfy-

ing nine contacts; decoys which satisfy more than this tend to have higher

RMSDs since they are satisfying contacts that are incorrect. In both cases, the

contact score correlates with decoy RMSD
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of contact prediction was higher at 67.2%. In addition, of the eight

targets whose results were not improved, seven had predicted con-

tacts where the true Cb–Cb distance was over 10 Å.

The improved quality of the filtered decoy ensemble leads to

higher accuracy predictions after the final ranking stage (Table 2).

The average RMSD of the best decoy in the filtered set of 500

decreased from 1.76 to 1.55 Å. After ranking with the SOAP-Loop

potential, the top-ranked decoy had an RMSD of 3.11 Å, which was

0.60 Å lower than could be achieved without predicted contacts

(3.71 Å). The average RMSD of the best decoy in the top 5 was also

improved, decreasing from 2.79 to 2.37 Å.

Figure 3 shows a target for which the inclusion of predicted con-

tact information into the ranking scheme produced a significant im-

provement in accuracy, 2GGSA_111_128 (an 18-residue loop).

MetaPSICOV predicted four contacts for this loop; three of these

were correct (Fig. 3A). Without using contact information, predic-

tion of this loop’s conformation was challenging and the top 5

decoys (Fig. 3B) were not native-like; the best in this set had an

RMSD of 5.35 Å and the top-ranked decoy had an RMSD of

16.17 Å. Conversely, when filtering the decoy ensemble using con-

tacts, the top 5 conformations were all close to the native

structure—all had an RMSD of below 2 Å, and the best (which is

also the top-ranked) had an RMSD of 1.38 Å. When Sphinx was run

normally, i.e. without the contact score, all these five decoys were

filtered out at the first ranking stage since they were placed outside

the top 500.

3.2.4 Loop prediction in a non-native environment

It is more common when modelling loops to be refining or filling

gaps in a protein model, than predicting missing loops in an

experimentally determined structure. Therefore, to achieve a more

realistic assessment of the protocols, we ran Sphinx in the same

manner, but using protein models as input instead of crystal struc-

tures. Since the residues of the protein are not in their native confor-

mations, predicting loop structures in this setting is more

challenging. On average, the protein models had a TM-score of 0.94

and an anchor RMSD of 0.77 Å to the native structure (full details

are given in the Supplementary Material). Again, we found that the

inclusion of predicted contact information improved the accuracy of

the resulting loop models (Table 3).

As before, omitting contacts that are never satisfied was of bene-

fit; 98 contacts were ignored, of which all but 3 were incorrect. For

our targets, this increased the average accuracy of predicted contacts

from 58.6 to 63.7%.

3.3 MODELLER results—constraining decoy generation

based on predicted contacts
The second strategy we tested for the incorporation of contact pre-

diction into loop modelling was to constrain the generation of

decoys such that the resulting conformations are more likely to sat-

isfy the predicted contacts. For this we used MODELLER (see

Section 2.5).

Similar to the Sphinx results described above, the incorporation

of contact information into the loop modelling protocol improved

the accuracy of prediction. Applying constraints based on predicted

contacts generally produced decoys that are closer to the native loop

conformation than those produced using the standard MODELLER

algorithm (see Supplementary Material). On average, the best decoy

of the 1000 generated for each target was 0.36 Å closer to the native

Fig. 2. The change in the number of ‘good’ decoys in the top 500 when incorporating predicted contacts into the filtering step, compared to the normal Sphinx

protocol. ‘Good’ decoys are defined as those having an RMSD of below 2 Å. The 8 of the 97 targets for which the predicted contacts had a negative effect are indi-

cated with a ‘*’. For the majority of targets, the contact information improved the quality of the decoys in the top 500

Table 2. Prediction accuracies achieved by Sphinx on crystal struc-

tures, both with (C) and without (�) using contact information

Target

length

No.

targets

Best Best top 500 Top-ranked Best top 5

(�) (C) (�) (C) (�) (C)

10 14 0.69 0.79 0.78 2.34 1.22 2.05 1.15

11 13 0.84 0.97 1.24 2.05 2.55 1.66 1.77

12 12 0.93 1.40 1.15 3.64 2.61 2.38 1.69

13 8 0.95 1.49 1.35 3.13 2.39 2.00 1.97

14 9 1.49 2.19 2.01 5.23 4.21 3.56 3.22

15 11 1.87 2.79 2.10 4.48 3.98 3.82 3.19

16 8 1.96 2.06 2.17 4.09 4.14 3.24 3.07

17 12 1.16 1.78 1.60 3.51 3.51 2.85 2.43

18 10 1.71 3.02 2.15 6.08 4.38 4.13 3.66

ALL 97 1.24 1.76 1.55 3.71 3.11 2.79 2.37

Note: Figures reported are backbone RMSDs, averaged across the targets

of the relevant length. ‘Best’ refers to the lowest RMSD in the complete decoy

ensemble (i.e. before filtering), ‘Best Top 500’ refers to the best decoy in the

filtered set of 500, ‘Top Ranked’ is the decoy predicted by SOAP-Loop to be

the best and ‘Best Top 5’ refers to the lowest-RMSD decoy in the top 5, again

as ranked by SOAP-Loop. Bold values indicate which of the two approaches

produced the best result. Predicted contact information improved the accur-

acy of loop models.
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structure than when using no constraints. This improvement in the

quality of the decoy ensemble led to more accurate final predictions.

With no contact information, after scoring with SOAP-Loop, the

average RMSD of the top-ranked decoy and best of top 5 were 4.75

and 3.28 Å, respectively, whereas these values were 4.26 and 2.76 Å

when constraints were applied during decoy generation. Full results

are given in the Supplementary Material.

3.4 Modelling membrane protein loops
A group of proteins that are of particular interest, especially in a

structure prediction context, are membrane proteins. A large pro-

portion of current drug targets—an estimated 60%—are membrane

proteins (Yin and Flynn, 2016), however due to challenges in the ex-

perimental determination of their structures there are

disproportionately few entries in the PDB. Unfortunately, this lack

of structural data also makes modelling difficult, particularly for

loop regions due to their variable nature. Any advances made in the

prediction of membrane protein structures would therefore aid in

narrowing the sequence-structure gap, and would be hugely benefi-

cial in the development of new drugs.

Following the procedure used previously for general protein

loops (see Section 2), we predicted residue–residue contacts for a set

of loops from membrane proteins using MetaPSICOV. Two or more

contacts were predicted for 92 of the 160 targets (58%), with an

average accuracy across targets of 65.1% (see Supplementary

Material for details). This is higher than the accuracy achieved for

the general loop target set. The average number of contacts was

lower at 9.5, compared to 16.9.

Omitting contacts that were never satisfied by any decoy was

again successful—49 predicted contacts were ignored from 21 tar-

gets (2 of these targets were removed from the study at this point as

they had one or no contacts remaining). As with the prediction of

general loop targets in the native crystal environment, all of these

contacts were predicted incorrectly, and therefore removing them

from consideration improved the average accuracy of contacts from

65.1 to 68.2%.

Using our membrane protein-specific version of Sphinx, called

SphinxMembrane (see Section 2), as well as MODELLER, we inves-

tigated whether the extra information offered by contact prediction

would improve the accuracy of membrane protein loop prediction,

as it did for our general loop set. Results achieved by Sphinx are

reported in Table 4 and those of MODELLER are given in the

Supplementary Material.

For both algorithms, while accuracies tended to be lower than

achieved for the general loop targets, the inclusion of predicted con-

tact information improved results at all stages. Using

SphinxMembrane, the best of the top 500, top-ranked and best of

the top 5 decoys had average RMSDs of 1.73, 4.15 and 3.17 Å with

contacts, respectively, compared to 1.84, 4.98 and 3.27 Å when run-

ning the software conventionally.

With MODELLER, we achieved average accuracies of 2.58,

5.35 and 3.88 Å for the best, top and best of top 5 decoys, respect-

ively, when using predicted contacts. Again, this is better than the

standard algorithm (which produced values of 2.90, 6.54 and

Fig. 3. Sphinx predictions for an 18-residue loop target (2GGSA_111_128). Four contacts were predicted for this loop, of which three were correct—panel A shows

the native structure with these contacts labelled. When running Sphinx normally, the top 5 decoys (shown in panel B) do not resemble the native structure. The

top-ranked decoy has an RMSD of 16.17 Å (coloured black); the best of the top 5 has an RMSD of 5.35 Å. In contrast, by incorporating contact information into the

first ranking stage, the top 5 decoys are all native-like, with RMSDs below 2 Å (these decoys are displayed in panel C). The top-ranked decoy in this case, which is

also the best in the top 5 (again shown in black), has an RMSD of 1.38 Å

Table 3. Prediction accuracies achieved by Sphinx, both with (C)

and without (�) using contact information, when using model input

structures

Target

length

No.

targets

Best Best top 500 Top-ranked Best top 5

(�) (C) (�) (C) (�) (C)

10 12 0.91 1.12 0.99 2.54 1.98 2.07 1.51

11 11 0.96 1.09 1.29 2.42 3.00 1.94 2.20

12 12 1.31 2.41 1.51 4.32 3.35 2.99 2.53

13 8 1.13 1.63 1.58 3.29 2.74 2.81 2.20

14 8 1.57 2.75 2.88 5.45 5.62 4.68 4.46

15 9 1.66 2.12 1.74 5.02 4.17 3.71 2.43

16 4 1.66 2.06 2.00 5.04 6.31 3.94 3.68

17 10 1.09 1.72 1.40 3.66 4.00 2.60 1.75

18 6 0.61 1.45 0.72 5.37 0.87 3.21 0.80

ALL 80 1.19 1.78 1.52 3.91 3.40 2.96 2.31

Note: Figures reported are backbone RMSDs, averaged across the targets

of the relevant length. ‘Best’ refers to the lowest RMSD in the complete decoy

ensemble (i.e. before filtering), ‘Best Top 500’ refers to the best decoy in the

filtered set of 500, ‘Top Ranked’ is the decoy predicted by SOAP-Loop to be

the best and ‘Best Top 5’ refers to the lowest-RMSD decoy in the top 5, again

as ranked by SOAP-Loop. Predicted contact information improved the accur-

acy of loop models even when the anchors and other surrounding residues are

not in their native conformation. Bold values indicate which of the two

approaches produced the best result.
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4.62 Å for the same three measures). This means that we observed

an average improvement in accuracy of over an Ångström when

considering the top-ranked predictions.

4 Conclusion

The results we report here show that predicted residue–residue con-

tacts, inferred from coevolution, can be used to improve the accur-

acy of loop structure prediction algorithms. This is true even for

typically challenging scenarios, such as modelling in a non-native en-

vironment, or the prediction of membrane protein loops.

We have demonstrated that contact prediction can be incorpo-

rated in two ways: by scoring and thereby filtering decoys based on

whether they satisfy the predicted contacts or not, and by constrain-

ing the conformational search step such that the resulting decoys are

more likely to satisfy the contacts. Since decoys that satisfy more of

the predicted contacts tend to be more native-like, incorporating

predicted contacts in these ways leads to improved decoy ensembles

and hence better loop models, both in terms of the top-ranked and

best of top 5 conformations. It should be possible to apply these con-

cepts to any loop prediction software.

A current limitation is the accuracy of the contact prediction

method. On average, we found that contacts predicted for loop

regions are less accurate than for more regular secondary structure

elements—this means that an appreciable number of the contacts

being used to influence the loop prediction procedure are incorrect.

Even so, we see an overall improvement after their inclusion, and as

methods continue to improve, and more sequences are obtained, it is

likely that even better results could be achieved (Ovchinnikov et al.,

2017; Wang et al., 2017).

When filtering a pre-generated decoy ensemble, we have found

that the accuracy of the contacts being considered can be increased by

discarding those that are never satisfied by any decoy in the set. In a

non-native environment, 97% of the contacts removed using this

approach were incorrectly predicted; when modelling onto the crystal

structure we found that all of the ignored contacts were inaccurate.

An advantage of using contact prediction to aid loop modelling

is that it allows us to exploit sequence information in addition to

structural data. Protein sequences are more numerous than experi-

mental structures, but are normally disregarded when modelling

loops. Our methods offer a way of utilizing this relative wealth of in-

formation. Moreover, using sequence data may prove to be more

beneficial in a homology modelling context than when predicting

structures de novo, because more sequences tend to be available for

targets for which templates can be found (Kamisetty et al., 2013).

Our results show that the incorporation of sequence data is benefi-

cial for challenging situations such as long loop prediction, mem-

brane protein loop prediction and modelling in a non-native

environment. Advances could be made for other difficult tasks in the

same way, e.g. the prediction of multiple conformations—the set of

predicted contacts may reflect the different structures in the ensem-

ble. As the number of sequences continues to increase and algo-

rithms providing structural insights improve, using the variety of

information they offer to guide structure prediction will allow us to

obtain more accurate and useful protein models.
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