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Abstract

Motivation: Visualizing and reconstructing cell developmental trajectories intrinsically embedded

in high-dimensional expression profiles of single-cell RNA sequencing (scRNA-seq) snapshot data

are computationally intriguing, but challenging.

Results: We propose DensityPath, an algorithm allowing (i) visualization of the intrinsic structure of

scRNA-seq data on an embedded 2-d space and (ii) reconstruction of an optimal cell state-

transition path on the density landscape. DensityPath powerfully handles high dimensionality and

heterogeneity of scRNA-seq data by (i) revealing the intrinsic structures of data, while adopting a

non-linear dimension reduction algorithm, termed elastic embedding, which can preserve both

local and global structures of the data; and (ii) extracting the topological features of high-density,

level-set clusters from a single-cell multimodal density landscape of transcriptional heterogeneity,

as the representative cell states. DensityPath reconstructs the optimal cell state-transition path by

finding the geodesic minimum spanning tree of representative cell states on the density landscape,

establishing a least action path with the minimum-transition-energy of cell fate decisions. We dem-

onstrate that DensityPath can ably reconstruct complex trajectories of cell development, e.g. those

with multiple bifurcating and trifurcating branches, while maintaining computational efficiency.

Moreover, DensityPath has high accuracy for pseudotime calculation and branch assignment on

real scRNA-seq, as well as simulated datasets. DensityPath is robust to parameter choices, as well

as permutations of data.

Availability and implementation: DensityPath software is available at https://github.com/ucasdp/

DensityPath.

Contact: lwan@amss.ac.cn or mal@big.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell fate is determined by transition states which occur during com-

plex biological processes, such as proliferation and differentiation.

The recent advent of massively parallel single-cell RNA sequencing

(scRNA-seq) provides snapshots of single-cell transcriptomes, thus

offering an essential opportunity to unveil the molecular mechanism
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of cell fate decisions (Tanay and Regev, 2017; Trapnell et al., 2014).

The high-dimensional cellular profiles by scRNA-seq are heteroge-

neous populations of cells at diverse stages of cell proliferation and

differentiation, making it a computational challenge to infer the pro-

gression of cell fate decisions based on scRNA-seq data.

Researchers have dedicated extensive efforts to computationally

reconstruct pseudo-trajectories of cellular development from single-

cell data (Chen et al., 2018; Kumar et al., 2017). Monocle, which

relied on building the minimum spanning tree (MST) on cells, pio-

neered the study of reconstruction of complex pseudo-trajectory for

scRNA-seq data (Trapnell et al., 2014). However, Monocle is com-

putationally intractable for large-scale data. Wanderlust, another pi-

oneer study, attempted to construct a linear trajectory based on the

k-nearest neighbor (k-NN) graph for single-cell mass cytometry data

(Bendall et al., 2014). To further reveal the hierarchical structure of

cell lineage, Wishbone extended the Wanderlust algorithm to con-

struct a developmental bifurcating trajectory with two branches

(Setty et al., 2016). Diffusion pseudotime (DPT) developed a diffu-

sion distance to calculate the pseudotime, leading to reconstruction

of the branched trajectory (Haghverdi et al., 2016). Although it is

possible to identify lineage bifurcating event(s) for large-scale single-

cell data, Wishbone and DPT only construct simple branched trajec-

tories, restricted to two branches, or requiring the number of

branches as a priori.

In order to reconstruct complex cell trajectories of cell develop-

ment at affordable computational cost, methods based on embed-

ding curve/graph techniques have been developed (Ji and Ji, 2016;

Marco et al., 2014; Qiu et al., 2017; Rizvi et al., 2017). These meth-

ods fitted/mapped d-dimensional single-cell data points onto a one-

dimensional curve or graph and then ordered the cells along the

curve/graph to approximate the trajectory of cell development.

SCUBA (Marco et al., 2014) fitted single-cell data points with the

principal curve, a smooth one-dimensional curve that passes through

the ‘middle’ of data points (Hastie et al., 2009). However, based on

the necessity of infinite differentiation, the principal curve cannot

handle self-intersecting data structure, e.g. branched trajectory

(Mao et al., 2017). Thus, SCUBA had to require additional temporal

information and perform the K-means algorithm on temporal win-

dows to extract cellular lineage relationships. Tools for Single Cell

Analysis (TSCAN) (Ji and Ji, 2016) used an approach that grouped

cells into clusters by a hierarchical clustering algorithm, constructed

an MST by connecting cluster centers, and then projected each cell

onto the tree to obtain the pseudotime of cells. Single cell

Topological Data Analysis (Rizvi et al., 2017) applied a topological

data analysis tool called Mapper (Singh et al., 2007) to the single-

cell data, intending to unveil the intrinsic topological structures of

cell developmental processes. The Reeb graph constructed by single

cell Topological Data Analysis included not only tree-like structures,

but also loops or holes. However, these topological data analysis

methods may be sensitive to data noise (Mao et al., 2017).

Monocle2 (Qiu et al., 2017), a descendant of Monocle, adopted a

recently developed principal graph method, termed reversed graph

embedding (RGE) (Mao et al., 2017), to find the complex trajecto-

ries of single-cell data. The principal graph method handles the self-

intersecting data structure by a collection of piecewise smooth

curves, allowing these curves to intersect each other (Mao et al.,

2017). To implement it, RGE utilized a K-means algorithm to ob-

tain K centroids of clusters and then found the spanning tree be-

tween the centroids to construct the principal graph. However,

clustering methods, such as hierarchical clustering and K-means al-

gorithm, as applied by the methods noted above, to seek an optimal

partition of the data may be unstable when the data are heteroge-

neous and noisy or exhibit complex multimodal structure.

Single-cell gene expression profiles by scRNA-seq are character-

ized by their high dimensionality. Therefore, in most algorithms that

construct cell developmental trajectories, the very first, indeed, the

key, step is to embed single-cell expression data onto a lower-

dimensional space. Dimension reduction and visualization methods,

such as principal component analysis (PCA), diffusion map (DM)

and t-distributed Stochastic Neighbor Embedding (tSNE), are com-

monly used for scRNA-seq (Chen et al., 2018; Kumar et al., 2017).

However, as pointed out by Moon et al. (2017), these methods are

limited in their ability to recover the complex structures of scRNA-

seq data. For example, PCA is a linear method which cannot handle

non-linear structures; DM, which can learn non-linear transition

paths, tends to place different branches into different diffusion

dimensions, making it difficult to visualize complex trajectories with

multiple branches; tSNE can reveal and emphasize the cluster struc-

tures in data, while tending to shatter trajectories and failing to pre-

serve the global structures.

In this study, we present a novel algorithm, DensityPath (Fig. 1),

allowing visualization of the intrinsic structure of scRNA-seq data

on an embedded 2-d space and reconstruction of optimal cell state-

transition paths of complex trajectories on the density landscape.

DensityPath requires no a priori knowledge of trajectory structure

(e.g. number of cell states and number of branches), while still main-

taining computational efficiency and accuracy. DensityPath consists

of the three major steps. First, it allows the visualization of high-

dimensional gene expression profiles of scRNA-seq data by adopting

the non-linear dimension reduction algorithm elastic embedding

(EE) (Carreira-Perpi~nán, 2010). As an extension of tSNE, EE can

preserve both local and global structures of the data (Section 3.1,

also see Wasserman, 2018). DensityPath constructs the density land-

scape of cells to visualize the intrinsic structure in a 2-d space by EE.

Second, to explore and reveal the heterogeneous subpopulation

structure of single-cell data, DensityPath develops a density-based

method of level-set clustering (LSC) (Wasserman, 2018). The LSC

scans the multi-mode density landscape and extracts the separate

high-density clusters of cells, as representative cell states (RCSs), in

an unsupervised manner. These identified RCSs are then used as the

landmarks of the density landscape. Third, DensityPath reconstructs

the cell state-transition path by finding the MST of the peak points

based on their calculated geodesics on the surface of density land-

scape. Since the potential energy function can be defined as the nega-

tive logarithm of the probability distribution (Moon et al., 2017;

Wang et al., 2011), the RCSs can be regarded as the attraction

basins and their peak points can be regarded as the saddle points of

the underlying interaction potential energy as in equilibrium sys-

tems. The cell state-transition path based on geodesic distance com-

puted by DensityPath is equivalent to the optimal transition state

path on the energy landscape going through the saddle points, estab-

lishing a least action path with minimum-transition-energy similar

to the dominant minimum energy kinetic path in equilibrium sys-

tems (Section 3.1, also see Wang, 2015).

We demonstrate that power of DensityPath in allowing the visu-

alization and reconstruction of complex cell developmental trajecto-

ries, in particular, those with multiple bifurcating and trifurcating

branches, on both real and simulated scRNA-seq datasets.

Meanwhile, DensityPath presents high accuracy and efficiency in

pseudotime calculation and branch assignment. DensityPath is ro-

bust in terms of parameter choices, number of informative genes,

subsampling cells and dropout events.

2594 Z.Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2593/5233001 by guest on 20 April 2024



2 Materials and methods

2.1 EE
For a collection of data points y1; . . . ; yn 2 R

D in high dimensional-

ity, the non-linear dimension reduction algorithm EE (Carreira-

Perpi~nán, 2010) learns the latent d-dimensional (d < D) coordinates

Xd�n ¼ ðx1; . . . ; xnÞ by minimizing the pseudo potential energy func-

tion as

EðX; kÞ ¼
Xn

i;j¼1

wþi;jkxi � xjk2 þ k
Xn

i;j¼1

w�i;j exp ð�kxi � xjk2Þ; (1)

where wþi;j ¼ exp � 1
2 kyi � yjk2=r2

� �
is the attractive weight be-

tween the data points, w�i;j ¼ kyi � yjk2 is the repulsive weight, and

k � 0 is the regularization parameter. In the implementation of

DensityPath, EE learns the latent coordinates Xd�n by computing

exact gradients as in Vladymyrov and Carreira-Perpi~nán (2012); the

r of wþi;j is determined by the entropic affinities method, as also pro-

posed in Vladymyrov and Carreira-Perpi~nán (2013). EE is robust

for the choice of k (Supplementary Note S9) and thus we set k ¼10

as default.

2.2 LSC
The LSC algorithm is a density-based clustering method [see

Wasserman (2018) and KIM et al. (2016) for details]. Given a col-

lection of samples x1; . . . ;xn 2 R
d that are independently drawn

from the probability distribution F with density function f, the

t-upper level-set is defined as Lt ¼ fx : f ðxÞ > tg ð8t > 0Þ. The con-

nected components of Lt, denoted as Ct, are called the density clus-

ters at level t. As shown in Supplementary Figure S1a, as t increases,

the size of Lt will decrease. After t rises and crosses the valley of ad-

jacent peaks, a connected component of Lt will be broken into two

separate connected components. Then, after t rises and crosses a

peak, one connected component will vanish. Finally, after t rises and

crosses the highest density peak, Lt will be empty. By increasing the

threshold t, LSC scans the heterogeneous multimodal density land-

scape, examines how density cluster Ct breaks or vanishes at differ-

ent level t on the density function, as shown in Supplementary

Figure S1. Therefore, LSC represents the topological structure of the

density function as a rooted hierarchical tree structure (density tree)

of density clusters Ct. Each branch therein represents a connected

density cluster, and the ancestor branch splits into descendent

branches at the ‘height’ where the corresponding density cluster

breaks into two or more separate density clusters on the density

function. Meanwhile, the external branch terminates at the ‘height’

where the corresponding density cluster vanishes (Supplementary

Fig. S1b). LSC finally extracts the representative separate high-

density clusters as level-set clusters of the data, which are repre-

sented by the external branches of the constructed density tree

shown in Supplementary Figure S1b.

2.3 DensityPath algorithm
The flowchart of DensityPath is shown in Figure 1. The main steps

for DensityPath are as follows:

A1. Reduce the dimensionality of scRNA-seq data. The DensityPath

algorithm first performs PCA to map data in original space into

the top principal components which preserve the most variance.

The choice of dimension embedded in PCA is achieved by

cutting off the ordered eigenvalues of PCA at the first i-th larg-

est eigenvalue ki, the difference of adjacent eigenvalues of which

is less than a given threshold e, i.e. the i satisfying

argmini�1ðjkiþ2 � kij < eÞ. We choose e ¼ 10�3 in this study.

Following dimension reduction through PCA, DensityPath then

applies the EE algorithm (Carreira-Perpi~nán, 2010;

Fig. 1. Overview of DensityPath algorithm. DensityPath offers a method to visualize and reconstruct complex cell developmental trajectories intrinsically

embedded in the high-dimensional expression profiles of scRNA-seq snapshot data by a series of steps. First (step A1), using PCA and EE, it reduces the high-

dimensional scRNA-seq data into a d-dimensional embedded space (d¼2). Second (step A2), it estimates the density function (landscape) of single cells on the

embedded space of EE1 and EE2. Third (step A3), it selects the high-density clusters of RCSs by LSC. Fourth (step A4), it constructs the cell state-transition path

on the surface of density landscape by finding the MST of the peaks of RCSs based on the geodesics. Fifth (step A5), it maps the single cells onto the cell state-

transition path using the geodesics on the density surface. Sixth, (step A6), it calculates the pseudotime when a start cell (root) is determined. The dot points in

each plot are the single cells. See Sections 2.3 and 3.1 for details
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Vladymyrov and Carreira-Perpi~nán, 2013; Vladymyrov and

Carreira-Perpi~nán, 2012) to the top i-th largest components of

PCA, embedding them into the d-dimensional latent space. We

show that d ¼ 2 is sufficient to preserve the intrinsic structures

of scRNA-seq data, even for data with complex trajectory with

branches both from bifurcations and trifurcations (Section 3.3).

We denote the two coordinates from EE algorithm as ‘EE1’ and

‘EE2’ throughout this study.

A2. Estimate the density function landscape. DensityPath estimates

the density function (landscape) of the reduced-dimension space

of single-cell expression profiles using the standard non-para-

metric kernel density estimator as

f̂ nðxÞ ¼
1

n
kHk�d

Xn

i¼1

K
�

H�1ðx� xiÞ
�
;

where f̂ nðxÞ is the estimated density function, H is the full band-

width matrices for multivariate kernel density estimation, K is

the Gaussian kernel (Wassermann, 2006) and n is the sample

size. The choice of bandwidth H is calculated based on the

‘plug-in’ method (Sheather and Jones, 1991; Woodroofe,

1970).

A3. Select high-density clusters of RCSs by LSC. DensityPath

applies the LSC method (KIM et al., 2016; Wasserman, 2018)

to the density landscape estimated as f̂ nðxÞ to extract high-

density clusters as RCSs (see details in Section 2.2). The esti-

mated L̂t and Ĉ t are utilized instead. For any t > 0, the esti-

mated t-upper level-set is calculated as L̂t ¼ fx : f̂ nðxÞ > tg. To

identify the connected components of L̂t, DensityPath first con-

structs a k-NN graph of fx1; . . . ;xng on the reduced-dimension

space and then finds the connected components of the subgraph

with the nodes restricted to the index set It ¼ fi : f̂ nðxiÞ > tg.
A4. Construct the cell state-transition path. DensityPath uses the

peak points of RCSs as landmarks and calculates the shortest

distance path (geodesic) of the peak points on the surface of the

density landscape using Dijkstra’s algorithm (see

Supplementary Note S1). The embedded cell state-transition

path is then constructed by finding the MST of the peak points

based on their calculated geodesics on the surface of density

landscape.

A5. Map the single cells onto the cell state-transition path. Each cell

is projected onto the cell state-transition path constructed in A4

such that the projected point has the smallest geodesic distance

to the cell. The projection may be considered in the sense of or-

thogonality when the mapping is constrained on the surface of

density landscape. All cells are placed in order according to the

projected positions along the cell state-transition path.

A6. Calculate the pseudotime of each cell. For a fixed start cell

(root) and any given cell, the pseudotime of the given cell is

defined as the geodesic distance between projected positions of

two cells (the start cell and the given cell) on the cell state-

transition path.

The overview of DensityPath is found in Section 3.1; the

pseudocode of DensityPath is given in Supplementary Table S2.

DensityPath has two tunable parameters. First, the regularization

parameter k of the EE algorithm in Equation (1) trades off two

terms, one preserving local distance and the other preserving global

distance, or separate latent points. DensityPath sets the default of k
as 10. The second involves the number of k neighbors for the k-NN

graphs in LSC. The choice of k generally relies on the sample size n.

Here we propose an empirical formulation to compute k as

k ¼ round(n/100), i.e. the nearest integer value of n/100. We demon-

strate the robustness for the choices of k and k in Supplementary

Note S9.

2.4 Data
We test DensityPath on three real scRNA-seq datasets of mouse

bone marrow cells (Paul et al., 2015) (hereinafter denoted as Paul

data), mouse hematopoietic stem and progenitor cells bifurcating to

myeloid and erythroid precursors (Setty et al., 2016) (hereinafter

denoted as HSPCs data) and human pre-implantation embryos

(Petropoulos et al., 2016) (hereinafter denoted as HPE data), as well

as two simulated datasets: the simulated complex trajectory

embedded data from Moon et al. (2017) (hereinafter denoted as

PHATE data) and the simulated bifurcating trajectory embedded

data from Zwiessele and Lawrence (2017) (hereinafter denoted as

SLS3279 data). See Supplementary Note S2 for details of data avail-

ability and data pre-processing.

2.5 Method evaluations
To evaluate pseudotime calculation and branch assignment perform-

ance, we adopt Pearson’s correlation coefficient (PCC) and adjusted

rand index (ARI) (Qiu et al., 2017; Rand, 1971) (see Supplementary

Note S3).

3 Results

3.1 Overview of DensityPath
In this study, we present a novel algorithm, DensityPath, which

allows visualization of the intrinsic structures and reconstruction of

optimal cell state-transition path for large-scale scRNA-seq data (see

Section 1, Fig. 1 and Section 2.3). The power of DensityPath is real-

ized by the nature of the following procedures.

Through DensityPath, the intrinsic structure of high-dimensional

gene expression profile of scRNA-seq data on an embedded intrinsic

2-d space can be visualized by applying both PCA and EE (Carreira-

Perpi~nán, 2010). Both tSNE and EE embed the high-dimensional

data points into the stable low-dimensional latent space by modeling

the data points interactively with two terms. One term attracts pairs

of points toward each other, while the other term of the simultan-

eously repulsive force separates all pairs of points. A similar embed-

ding idea has been adopted by force atlas embedding (Jacomy et al.,

2014), which has also been recently adopted in the visualization of

scRNA-seq data (Weinreb et al., 2018b). Force atlas embedding lays

out the k-nearest-neighbor graphs in a manner mentioned above

that preserves high-dimensional relationships and represents the

graphical data on a 2-d space (Jacomy et al., 2014; Weinreb et al.,

2018b). As an extension of tSNE, EE penalizes placing close to-

gether latent points from dissimilar data points in the original space

(Carreira-Perpi~nán, 2010) instead of the latent space, as is done by

tSNE. With this improvement, as we illustrate in Section 3.3, EE

preserves both local and global intrinsic data structures in the 2-d

plane quite well (Wasserman, 2018). Meanwhile, since the weight of

the repulsive force is defined on the original space, this improvement

by EE also prevents intersecting lines between clusters that are sepa-

rated in high-dimensional space, in the 2-d space.

DensityPath develops the LSC method (Wasserman, 2018) to

analyze the heterogeneous multimodal behavior of the density land-

scape and extract high-density separate clusters as RCSs (Section

2.2). The level-set method is a mathematical tool for the numerical

analysis of surfaces and shapes, and it has been successfully applied
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in unsupervised clustering, image processing and computational

fluid dynamics, among others (Hartigan, 1975; KIM et al., 2016;

Osher and Fedkiw, 2002; Wasserman, 2018). The idea behind it

involves the reduction of overall data complexity by breaking com-

plex datasets into a series of separate high-density clusters, each of

which is then regarded as a representative class of data (Cadre,

2006). A comparison of LSC with other clustering methods is given

in Section 4.

DensityPath takes the RCSs identified by LSC as the landmarks

of the density landscape. In order to construct the transition path of

the RCSs, we find that existing metrics on LSC mainly consider the

‘height’ at which two points, or two clusters, merge on the density

function (KIM et al., 2016), but which is insufficient to measure the

transition distance between the points, or clusters, on the density

function. Therefore, in DensityPath, we propose a metric of differen-

tial geometry for RCSs. In detail, instead of using the Euclidean dis-

tance or density tree metric, DensityPath calculates the geodesic, or

shortest distance path, of the single-cell points, and then finds the

MST of the peak points based on their calculated geodesics on

the surface of density landscape. As pointed out in the Section 1, the

peaks of RCSs can be regarded as the saddle points of the underlying

interaction potential energy, as in equilibrium systems. Since the op-

timal cell state-transition path should go along the gradient descent

direction of the potential landscape passing through the saddle

points when the system is in equilibrium (Wang, 2015), DensityPath

therefore calculates geodesics between the peak points of RCSs and

reconstructs the cell state-transition path by connecting the peak

points with the MST on the surface of density landscape, aiming to

approximate the least action path (dominant minimum energy kinet-

ic path) (Wang, 2015). Each edge of the MST is connected by two

peak points, passing through the intermediate low-density point of

their valley in between. It will be intriguing to reconstruct trajecto-

ries on the non-equilibrium landscape (see Section 4).

With high accuracy and efficiency, we demonstrate that

DensityPath visualizes and reconstructs not only simple branched

trajectories on Paul data (Supplementary Note S4 and Fig. S2),

HSPCs data (Supplementary Note S5 and Fig. S3) and SLS3279 data

(Supplementary Note S6 and Fig. S5), but also complex trajectories

with multiple bifurcating and trifurcating branches on HPE data

(Section 3.2) and PHATE data (Sections 3.3 and 3.4).

3.2 DensityPath reveals cell fates of complex

trajectories with both bifurcating and trifurcating events

on HPE
We apply DensityPath to the HPE data of 1529 single cells of HPE

from Petropoulos et al. (2016). The cells isolated from embryos,

ranging from the eight-cell stage up to the time point just prior to

implantation, were collected and labeled with time from embryonic

day 3–7 (E3–E7). The cell differentiation process of HPE was

reported as the synchronous differentiation of the inner cell mass

(ICM) into three distinct cell types of the mature blastocyst: troph-

ectoderm (TE), primitive endoderm and epiblast at E5 from the zyg-

ote (Petropoulos et al., 2016). Besides the dominant processes

involving segregation of ICM, the cells in TE lineage were also

reported to be further subdivided into two subpopulations, reflect-

ing that polar and mural cells are present within the TE lineage

(Petropoulos et al., 2016).

We select the 4600 most variable genes across all cells, as in

Rizvi et al. (2017), for further DensityPath analysis. DensityPath

constructs the density landscape of the cells on the EE coordinates

(Fig. 2a), and then extracts 14 high-density clusters of RCSs with

sizes ranging from 1 to 84, summing up to 500 of the total 1529

cells (Fig. 2b). DensityPath connects the peak points of RCSs by the

MST on the surface of density landscape, resulting in a complex tra-

jectory with two bifurcating events and one trifurcating event

(Fig. 2b and d). Finally, DensityPath calculates the pseudotime of

the cells (Fig. 2c), having a high PCC of 0.8286 with the experimen-

tal embryonic time.

The trifurcating event identified by DensityPath occurs among

cells from E5 (Fig. 2d), which is completely consistent with the pro-

gression during E5 in which the ICM lineage separates into primitive

endoderm, epiblast and ICM lineages (Petropoulos et al., 2016). The

bifurcating event appearing at E6 and E7 (Fig. 2d) is also consistent

with the existence of two subpopulations which occurred in the pro-

gression of the TE lineage (Petropoulos et al., 2016). In addition, we

also identify a newly bifurcating event recovered at E4 (Fig. 2d),

which was not reported in Petropoulos et al. (2016).

We further identify several branch-specific expressed genes

(Fig. 2e and f), validating the two bifurcating and one trifurcating

events reconstructed by DensityPath. The identified genes show spa-

tial patterns of gene expression on the embedded 2-d space by EE

(Fig. 2e), and by mapping the cells onto the cell state-transition path

as in step A5, those genes show high expression levels at specific

branches (Fig. 2f; the branches are annotated according to Fig. 2d).

For example, genes RNF11 and PPAP2C are highly expressed in the

cells mapped to the ‘E4’ branch (Fig. 2e and f), supporting the exist-

ence of the bifurcating event recovered at time E4.

3.3 DensityPath visualizes the intrinsic structure of

scRNA-seq data in the 2-d plane
By adopting the EE algorithm for dimension reduction, DensityPath

visualizes the hidden complex trajectories in the 2-d plane of EE1

and EE2, preserving the intrinsic structure, both globally and local-

ly. We illustrate this with the simulated PHATE data from Moon

et al. (2017), which contains 1440 single cells and 60 genes. The

PHATE data have an embedded continuous tree structure with 10

branches, each of which contains around 140 points (cells) in differ-

ent data subdimensions of a 60-dimensional space to model a system

within which the progression along a branch corresponds to an

increasing expression of several genes. The tree has three bifurcating

events and one trifurcating event. The trunk (starting branch in red

color) first bifurcates into two branches (green and black), one

(green) of which subsequently bifurcates into two branches, while

the other one (black) trifurcates into three branches, followed by

one (blue) of the three branches further bifurcating into two

branches (see the embedded tree structure in Fig. 3a, which is based

on Fig. 7a of Moon et al., 2017).

DensityPath maps the data onto the 2-d plane of EE1 and EE2

and reconstructs the complex trajectory with 10 branches, recover-

ing the simulated progression of the embedded tree structure com-

pletely (Fig. 3b). In comparisons, PCA identifies four branches with

one trifurcating event (Fig. 3c); DM identifies five branches with

two bifurcating events (Fig. 3d); tSNE breaks the samples into at

least five separate components, shattering the order of trajectory

and failing to preserve the global structures (Fig. 3e). The PHATE

algorithm developed by Moon et al. (2017) also recovers the simu-

lated structure completely (Fig. 3f). However, the branch lengths on

the 2-d plane by EE (Fig. 3b) are more uniformly distributed than

those revealed by the PHATE algorithm (Fig. 3f), showing better

consistency with uniform branch lengths of the embedded tree

model.

DensityPath 2597

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2593/5233001 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data


We compare EE with the other 4 dimension reduction methods

on the HSPCs data. The PCA, tSNE and EE all recover the branched

trajectories (Supplementary Fig. S4), but DM fails to recover the

branched structure on the first two diffusion components

(Supplementary Fig. S4). The PATHE algorithm also fails to recover

the branching structure in its first two components (Supplementary

Fig. S4).

EE can, in general, reveal the intrinsic structure of data in 2-d

space (Section 3.1). We also embed the three real datasets of Paul,

HSPCs and HPE into 3-d latent space by EE. The third dimension

EE3, however, does not provide additional information on distin-

guishing the structure of clusters (see detailed results in

Supplementary Note S7 and Fig. S31).

3.4 DensityPath reconstructs optimal cell state-

transition paths of complex trajectories with high

accuracy
DensityPath reconstructs the optimal cell state-transition path

(Section 3.1). When applied to the PHATE data, DensityPath recov-

ers the embedded complex trajectory completely (Fig. 3b). With the

initial cell fixed as the starting point of simulated time, we calculate

the pseudotime of the cells and branch assignment (Supplementary

Figs S12 and S13). The PCC between pseudotime recovered by

DensityPath and the real time of the simulation is 0.9528, while the

ARI value between the branch assignment of the cells to the recon-

structed trajectory by DensityPath and the ground truth by simula-

tion is 0.7317.

Furthermore, when we conduct systematic comparisons of

DensityPath with Monocle2, DPT, Wishbone and TSCAN on Paul

data, HPE data and simulated datasets of PHATE and SLS3279, we

find that DensityPath outperforms other methods in terms of com-

plex trajectory reconstruction, pseudotime calculation and branch

assignment (see detailed results in Supplementary Note S8 and

Table 1).

3.5 Robustness analysis of DensityPath
We extensively test the robustness of DensityPath on (i) the choices

of parameters k (Supplementary Figs S17 and S18) and k

(Supplementary Figs S19–S24) around their defaults, (ii) the number

of input informative genes (Supplementary Figs S25 and S26), (iii)

subsampling cells (Supplementary Fig. S27) and (iv) effect of drop-

out events (Supplementary Fig. S28). The robustness of DensityPath

is confirmed in both parameter choices and permutations of data

(see detailed results in Supplementary Note S9).

3.6 DensityPath is computationally efficient
On the five datasets utilized in this study, the computation time of

DensityPath ranges from 25.3 s in SLS3279 to 213.9 s in HPE

Fig. 2. DensityPath visualizes and reconstructs the complex trajectory of HPE data. (a) DensityPath estimates the density landscape of single cells on a 2-d plane

of EE. The red triangle points are the peak points of RCSs identified by DensityPath, while the black squares are the modes (local maxima) identified by the MS al-

gorithm. (b) DensityPath reconstructs a complex trajectory with 2 bifurcating events and 1 trifurcating event by connecting the peaks of the 14 separate RCSs

identified by LSC. (c) Given a start cell (cell No. 1481 in the data), DensityPath calculates the pseudotime of each cell with cell start time set as 0. (d) The cells from

embryonic day 3–7 are plotted with different colors on the embedded 2-d space of EE. The branches of the cell state-transition path are annotated according to

the embryonic day and their positions on the plot. For example, ‘E7U’ stands for the upside branch occurring at E7. (e) The scattering plots of genes of the cells

on the embedded 2-d space of EE showing the branch-specific expression patterns. (f) The violin plots of gene expressions for cells mapped onto each branch.

The branch labels ‘E3’,. . ., ‘E7U’ correspond to the branch annotations in (d), respectively

2598 Z.Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2593/5233001 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data


(Supplementary Table S1), working on a MacBook Pro laptop with

a 2.9 GHz Processor and 16 GB DDR3 memory. Among the steps of

PCA (A1), EE (A1), reconstruction (including density estimation in

A2, LSC in A3 and construction of the cell state-transition path in

A4) and mapping and pseudotime calculations in A5 and A6, the

core part of DensityPath, i.e. reconstruction (A2–A4), consumes

only around 10% of the total time, ranging from 3.1% in HPE to

17.4% in SLS3279 (Supplementary Table S1).

DensityPath is efficient in large-scale datasets. For example,

when tested on a large-scale scRNA-seq dataset with sample size

over 38 k on a tower server with 48 logic cores (Intel Xeon CPU E5-

2697 v2 2.70 GHz) and 378 GB DDR3 memory (only one core was

utilized), DensityPath took �2 h for step A1, including both PCA

and EE, and �2.5 h on the reconstruction steps of A2–A4. For sam-

ple sizes up to millions, the generalizable and scalable approach

based on the neural network, as done in the net-SNE (Cho et al.,

2018), is also applicable to EE.

4 Discussion

The theoretical framework and justification of the Waddington

landscape was solved for a gene network constituted by two inter-

acting genes (Wang et al., 2011). However, for gene networks with

tens of thousands of genes, it still remains challenging to understand

the mechanisms of epigenetic landscape. Recently, physical model-

based methods have been emerging to construct energy landscape

and transition-state path using scRNA-seq data (Guo and Zheng,

2017; Jin et al., 2018). DensityPath provides an alternative

data-driven approach for the visualization and reconstruction of the

optimal cell developmental trajectories on the density landscape,

inheriting the physical interpretation as the least action path of

minimum-transition-energy on the energy landscape.

Many cell developmental trajectory reconstruction or visualiza-

tion methods, including TSCAN and Monocle2/RGE, rely on the

use of clustering methods, such as hierarchical clustering and K-

means algorithm, to construct the principal graphs. However, these

clustering methods, which seek an optimal partition of the data,

may be unstable when the data are heterogeneous and noisy or ex-

hibit complex multimodal structures. Furthermore, both clustering

methods require pre-specification of the number of clusters, and the

output may be sensitive to the number of K specified (Qiu et al.,

2017). In contrast to the clustering methods, such as hierarchical

clustering and K-means algorithm, LSC does not require pre-

specification of the number of clusters, and it is robust to the noise

of the data. DensityPath develops the unsupervised clustering

method LSC to extract high-density clusters of RCSs as the land-

marks of the complex density landscape. The extracted RCSs by

LSC show more homologous representation of subpopulations and

gene expression, as, e.g. in the Paul data (Supplementary Note S4

and Fig. S2), indicating its superiority for clustering and characteriz-

ing complex heterogeneous single-cell data.

The identification of intermediate and/or rare cell states is intri-

guing, but challenging (MacLean et al., 2018). We notice that some

RCSs may have small numbers of cells in them. For example, the

RCS C7 of the HPE data (Fig. 2b) only contains one cell, with a

short length branch connected. Although not as stable as other

RCSs, RCS C7 still shows its robustness by surviving in (i) the choice

of parameter k from 5 to 10 around default 10 (Supplementary Fig.

S17), (ii) choice of parameter k from 7 to 17 around default 15

(Supplementary Fig. S21), (iii) input informative genes ranging from

920 to 8280 in 6 out of 9 cases (Supplementary Fig. S26). In add-

ition, we also test LSC with another density-based method, mean-

shift (MS) (Cheng, 1995; Comaniciu and Meer, 2002; Wasserman,

2018), which seeks the modes (local maxima) of the multimodal

density landscape as well as clusters the data. Both LSC and MS

achieve the same results on modes and peaks findings, and, here, the

peak of RCS C7 coincides with one of the modes identified by MS

(Fig. 2a). Meanwhile, we identify a number of markers specifically

expressed on the lineage E5R to which RCS C7 maps, showing

strong evidence of the existence of that cell state (e.g. genes GDF3,

NANOG and BMP2 in Fig. 2e and f).

DensityPath maps each of the single cells onto the cell state-

transition path by finding a point on the path that has the smallest

geodesic distance to a given cell (step A5). Such mapping achieves

high accuracy on pseudotime calculation and branch assignment

(Section 3.4). In addition, we also check the accuracy of our cell

mapping on computational cell state by MS. For any given point,

MS iteratively approximates its local modes by following the density

gradient ascent paths. MS will assign each sample to one of the

modes identified, and we denote the assigned mode as the computa-

tional cell state. Samples assigned to the same mode belong to the

same state according to MS (Supplementary Fig. S29). With our step

A5, a cell is mapped to one of the edges of the MST (cell state-

transition path) by DensityPath, which is connected by two peak

points. If one of the peak points of the mapped edge coincides with

its computational cell state by MS, we would consider the mapping

Fig. 3. Visualization of the intrinsic structure of PHATE data by different meth-

ods. (a) Embedded tree structure of simulated PHATE data. (b) EE. (c) PCA. (d)

Diffusion Map. (e) tSNE. (f) PHATE algorithm. Colors of points in (b–f) are

annotated according to the branch assignments of cells in (a). The black

curves in (b–f) correspond to their trajectories reconstructed according to the

procedures described in steps A2–A4 of DensityPath

Table 1. Comparison of methods for PCC on PHATE, SLS3279 and

HPE data and for ARI on PHATE data only

PHATE SLS3279 HPE

Method PCC ARI PCC PCC

Monocle2 0.8127 0.4427 0.8602 –

Wishbone 0.8613 0.2286 0.8888 0.8418

DPT 0.8663 0.4076 0.9270 0.7552

DensityPath 0.9528 0.7317 0.9291 0.8286

Note: Since no real branch assignment information is available for

SLS3279 and HPE datasets, ARI values are not considered in the two data-

sets. Monocle2 fails to reconstruct the trajectory in HPE data, and we denote

the corresponding result as ‘-’.

DensityPath 2599

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2593/5233001 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1009#supplementary-data


of that cell by DensityPath to be correct; otherwise, wrong. The

accuracies (percentage of correctly mapped cells) are 98.4, 96.8,

98.7, 100 and 99.8% on Paul, HSPCs, HPE, PHATE and SLS3279

data, respectively (Supplementary Fig. S30), indicating a high accur-

acy of cell mapping. It is worth noting that DensityPath can also

adopt the MS method, instead of LSC, on identifying modes/peaks

of density landscape. However, in practice, MS is computationally

expensive in the iterative computation and thus not applicable to

large-scale scRNA-seq data.

The choice of bandwidth H of kernel density estimator in the

DensityPath algorithm plays an important role. Small bandwidths

give very rough estimates, while large bandwidths give smoother

estimates (Wassermann, 2006). Although many methods, such as

rule of thumb, least square cross-validation, biased cross-validation

and the plug-in method, have been developed based on the choice of

bandwidth H, choosing an optimal smoothing bandwidth that will

lead to better estimation of geometric/topological structures remains

an open question (Chen, 2017). Nonetheless, we find the plug-in

method (Sheather and Jones, 1991; Woodroofe, 1970) to be super-

ior to other methods in our study.

The cell fate decisions may undergo multi-scaled processes which

result in hierarchical structures with differed scale. By identifying

the RCSs with high-density as landmarks on the whole density land-

scape, DensityPath is capable of recovering the intrinsic global struc-

ture, that reflected by the full samples, at the largest scale. As both

the global and local structures are preserved on EE space,

DensityPath can further recover the refined structures at sub-scales

by hierarchically applying to subsets of samples. For examples,

when full samples of Paul data are utilized, DensityPath recovers the

global tree-like structure with two bifurcating events occurring at

RCSs C1 and C7 on Supplementary Figure S2b. However, a richness

of local structures of the data, especially in the low-density regions,

is hidden under the global structure (Supplementary Fig. S2b). To re-

cover the fine-scale structures, we extract the 1407 cells that are

mapped to the major branches C1-C6-C7-C8(C9-C10) based on

step A5. These cells are mainly constitute of GMP and CMP cells.

By applying steps A2–A4 of DensityPath, with a smaller bandwidth

H, on this subset, we construct a cell state-transition sub-path on the

refined density landscape with 4 bifurcating events connected by 19

RCSs (the start point is set as the right most point) (Supplementary

Fig. S32a–c). The refined density landscape with local structures of

the subset can be further validated by the branch-specific expressed

genes (Supplementary Fig. S32d). In comparison, Monocle2 recon-

structs the pseudo-trajectory with 6 bifurcating events which are

connected by 12 cell states (Supplementary Fig. S33 a and b). Beside

the major branch reconstructed by Monocle2 which corresponds to

cell state 8, the other states are all mapped to the refined density

landscape. Each Monocle2 state is distinguishable on the state-

transition sub-path recovered by DensityPath (Supplementary Fig.

S33e), which indicating both DensityPath and Monocle2 can reveal

the fine-scaled structure. However, the visualization by Monocle2

fails to retain cell-to-cell variabilities (Supplementary Fig. S33b):

cells are mostly condensed along the trajectory, making branches

with non-negligible numbers of cells tending too short to be visible.

In contrast, the visualization by DensityPath not only recovers the

intrinsic hierarchical structures of data with global and refined local

information, but also retains cell-to-cell variabilities.

The cell state-transition path is reconstructed based on the as-

sumption that the system is in equilibrium (Weinreb et al., 2018a).

However, the real biological systems of cell differentiation and de-

velopmental processes are not in a state of equilibrium, resulting in

slight deviations from the optimal trajectory constructed (see Fig. 10

in Wang, 2015). Time series scRNA-seq data are accumulating, which

poses a challenge to constructing a non-equilibrium landscape.

Pioneering work of Schiebinger et al. (2017) has applied a sophisti-

cated mathematical tool of optimal-transport analysis to model cell

fate determination. The level-set method is also promising for the ana-

lysis of developmental non-equilibrium landscape of time series

scRNA-seq data, and we plan to pursue this topic in our future work.
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