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Abstract

Motivation: Protein post-translational modifications (PTMs) regulate a wide range of cellular pro-

tein functions. Many PTM sites from the same (intra) or different (inter) proteins often cooperate

with each other to perform a function, which is defined as PTM cross-talk. PTM cross-talk within

proteins attracted great attentions in the past a few years. However, the inter-protein PTM cross-

talk is largely under studied due to its large protein pair space and lack of a gold standard dataset,

even though the PTM interplay between proteins is a key element in cell signaling and regulatory

networks.

Results: In this study, 199 inter-protein PTM cross-talk pairs in 82 pairs of human proteins were col-

lected from literature, which to our knowledge is the first effort in compiling such dataset. By com-

paring with background PTM pairs from the same protein pairs, we found that inter-protein cross-

talk PTM pairs have higher sequence co-evolution at both PTM residue and motif levels. Also, we

found that cross-talk PTMs have higher co-modification across multiple species and 88 human tis-

sues or conditions. Furthermore, we showed that these features are predictive for PTM cross-talk

between proteins, and applied a random forest model to integrate these features with achieving an

area under the receiver operating characteristic curve of 0.81 in 10-fold cross-validation, prevailing

over using any single feature alone. Therefore, this method would be a valuable tool to identify

inter-protein PTM cross-talk at proteome-wide scale.

Availability and implementation: A web server for prioritization of both intra- and inter-protein

PTM cross-talk candidates is at http://bioinfo.bjmu.edu.cn/ptm-x/. Python code for local computer is

also freely available at https://github.com/huangyh09/PTM-X.

Contact: litt@hsc.pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-translational modifications (PTMs) of proteins add another

layer to the complexity of the proteome, by reversibly modifying

amino acid residues with chemical groups, e.g. phosphate. Recent

advances in mass spectrometry have enabled PTMs measurement in

a high-throughput manner (Witze et al., 2007), and consequently

increased our understanding the biological functions of PTMs
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(Beltrao et al., 2012; Li et al., 2013) in cellular localization of pro-

tein, protein complex formation, etc. In addition, PTMs often inter-

play with each other to modulate cell signaling and biological

processes, known as PTM cross-talk (Beltrao et al., 2013), which

has shown many important impacts, including in DNA repair

(Ivanov et al., 2007), gene expression regulation (Khidekel and

Hsieh-Wilson, 2004) and protein stability (Bengoechea-Alonso and

Ericsson, 2009; Esteve et al., 2011; Ruan et al., 2013). One typical

example is that more than 10 PTMs on TP53 function cooperatively

and precisely in suppressing tumorigenesis (Dai and Gu, 2010).

Furthermore, the PTM cross-talk not only occurs within one protein

but also between two different proteins, though the latter is normal-

ly more difficult to identify due to a larger examination space. As an

example of inter-protein PTM cross-talk, the methyltransferase ac-

tivity of histone-lysine N-methyltransferase EZH2 can be suppressed

when Ser-21 of EZH2 is phosphorylated by Akt, which results in a

decrease of lys-27 trimethylation on histone H3 (Cha et al., 2005).

Also, on tyrosine-protein phosphatase non-receptor type 12, the

phosphorylation at Ser-19 changes its substrate interface, which

leads to the suppression of activity toward human epidermal growth

factor receptor-2 Tyr-1196 site (Li et al., 2018).

Despite the important biological function of PTM cross-talk, its

experimental identification is a bottleneck challenge, and has only

been applied to small or medium scales, e.g. the global interaction

between phosphorylation and ubiquitylation in Saccharomyces cere-

visiae (Swaney et al., 2013). On the other hand, computational

methods emerge to prioritize PTM cross-talk candidates at whole

proteome scale, and much efforts have been made on deciphering

the properties of PTM cross-talk from different dimensions, e.g. se-

quence co-evolution across eukaryotes (Minguez et al., 2012), co-

existence of histone modifications in different experiments

(Schwammle et al., 2014) and sequence motif pattern for proximate

PTMs (Peng et al., 2014). In our previous study (Huang et al.,

2015), we found that intra-protein PTM cross-talk can be well pre-

dicted by integrating distance, disordered region location and co-

evolution information. Very recently, the focus has also been

extended to inter-protein level. For example, we found that co-

occurrence in multiple tissues or multiple experimental conditions

is a good measurement of PTM cross-talk, both within and

between proteins (Li et al., 2017). Also, PTMcode v2 extends the

PTM cross-talk prediction to inter-protein level by either sequence

co-evolution or the physical distance within a complex (Minguez

et al., 2015). However, a quality dataset of inter-protein PTM cross-

talk is highly demanded to evaluate these predictions, and a set of

predictive features remains to be determined, together with develop-

ment of a powerful classifier to predict PTM cross-talk between

proteins.

In this study, we systematically surveyed the published literature

to collect experimentally validated inter-protein PTM cross-talk

pairs. In total, 199 pairs of PTM sites in 82 pairs of human proteins

with experimental support were manually compiled from the pub-

lished literature. We measured the evolutionary correlations of

cross-talk pairs at both sequence and modification levels, including

the sequence co-evolution on PTM residues across multiple species

and their surround motifs and the PTM co-modification across

multiple species and multiple conditions. Except the co-modification

across species, the other three features were then integrated into a

random forest (RF) classifier to predict PTM cross-talk,

achieving an area under the receiver operating characteristic (ROC)

curve of 0.81 in 10-fold cross-validation, superior to any single fea-

ture alone.

2 Materials and methods

2.1 Cross-talk data collection
We retrieved inter-protein PTM cross-talk pairs from the published lit-

erature. We manually reviewed 4067 related articles which were

extracted from PubMed on September 21, 2017 with the keywords

‘(residue-specific OR site-specific) AND (cross-talk OR phosphorylation

OR acetylation OR methylation OR ubiquitination OR SUMOylation

OR O-N-acetylgalactosamine OR O-N-acetylgucosamine)’. In addition,

we quarried physically connected PTM pairs between two interactive

proteins in PepCyber: P �Pep (Gong et al., 2008) (http://www.pep

cyber.org/PPEP/), a database of phosphoprotein-binding domains medi-

ated human protein–protein interactions. We only consider these items

that are supported in literature. In order to ensure the high quality of

the collected PTM cross-talk data, we manually reviewed the publica-

tions for each item, and checked their protein sequence in UniProt data-

base (The UniProt Consortium, 2017). During the manually reviewed

process in UniProt database, we also found additional PTM cross-talk

samples. Finally, 199 inter-protein PTM cross-talk samples across 82

human protein pairs were obtained. The summarized PTM types and

their interaction is listed in Table 1, and more details about these 199

samples are given in the Supplementary Table S1, including their posi-

tions on the protein sequences, modification types, brief descriptions of

the cross-talk mechanism and the data source.

2.2 Generation of control sets
As a reference, 345 877 human PTM items were downloaded from

PhosphoSitePlusVR database, version date August 1, 2018 (Hornbeck

et al., 2015) (www.phosphosite.org), which not only includes phos-

phorylation, but also acetylation, methylation, ubiquitination,

SUMOylation, O-N-acetylgalactosamine, O-N-acetylglucosamine,

etc. As mentioned in this database, these PTMs were manually gath-

ered either from published experiments indexed in PubMed or un-

published data generated at the Cell Signaling Technology (http://

www.cellsignal.com). We use the PTMs listed in this database for a

candidate space, and for generating an evaluation control set, we

only consider those PTM pairs from any of the 82 protein pairs in

the cross-talk dataset. We further filtered out those PTM pairs

whose both PTM sites are included in the cross-talk set, no matter

whether they are recorded as a cross-talk pair or in two separate

cross-talk events. This procedure gives us a control set of 13 656

PTM pairs in total. Then, we further filtered out those samples with

PTM type combination that is not observed in the cross-talk set.

Therefore, we have 11 858 control samples for comparison and pre-

diction analysis in this work. It should be noted that there may be

some false negatives in the control set due to the incompletion of

experimentally annotated of cross-talk events, however, the false

Table 1. The occurrence of the PTM type combinations in compiled

PTM cross-talk pairs

Number O-GlcNA SUMO Acetyl Methyl Phospho

O-GlcNA 0 0 0 0 4

SUMO — 0 2 0 12

Acetyl — — 0 2 22

Methyl — — — 2 5

Phospho — — — — 150

Note: O-GlcNA: O-GlcNAcylation, SUMO: SUMOylation, Acetyl:

Acetylation, Methyl: Methylation, Phospho: Phosphorylation.
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positives in prediction may be reduced thanks to a such control set

that is generated from functionally connected protein pairs.

2.3 Sequence co-evolution
In order to study the evolution on protein sequences, multiple se-

quence alignment (MSA) across about 50 vertebrates species includ-

ing human were downloaded from the vertebrates non-supervised

orthologous groups ‘align’ dataset in the eggNOG database v4.5,

date April 11, 2015 (Powell et al., 2014). When multiple paralogs

from one species are included in an MSA item, only the one with the

shortest editing distance to the human homolog reference is used.

For studying a pair of MSAs for two proteins, we only keep the

shared species for analysis.

Residue co-evolution

The co-evolution of two PTM residues between proteins was meas-

ured using the normalized Hamming distance (NHD), a widely used

method in information theory to measure the difference of two

equal-length strings, as follows:

NHD ¼ 1

n

Xn

i¼1

Iðxi;1 ¼ xi;2Þ (1)

where xi;1 and xi;2 are the conservation states of the amino acids of

the two PTM sites in species i comparing to their human references.

Namely, xi;j is 1 if it is the same as its human reference, otherwise 0

(see Fig. 1A). In other words, the NHD measures the fraction of spe-

cies that the two PTM sites have the same conservation states.

Sequence motif co-evolution

In addition to the co-evolution of a single amino acid, we also con-

sidered the co-evolution of their surrounding sequence motifs. We

extracted the 63 amino acids surrounding a PTM site as a 7-mer

motif. We measure the normalized motif co-evolution for a pair of

PTMs by a mathematical dot product with normalization to its di-

mension (i.e. number of species n here), as follows:

NMC ¼ 1

n

Xn

i¼1

ðxi;1 � xi;2Þ (2)

where xi;1 and xi;2 are the motif conservation scores (i.e. fraction of

the conserved amino acids) for species i to human reference motifs

on PTM site 1 and site 2, respectively (see Fig. 2A). In this way, a

high motif co-evolution requires high motif conservations on both

PTM sites simultaneously.

2.4 Co-modification across different species and

different conditions in human
Co-modification across three species

Although the sequence conservation of a PTM on its residue and motif

provides the potential for the modification conservation, we still need

experimental measure of the PTM from one species to another to fur-

ther reinforce its functional importance. The co-modification across

species, i.e. modification co-conservation, was initially proposed in our

previous study for PTM cross-talk within proteins (Huang et al.,

2015). Here, we extended this evolutionary co-modification to inter-

protein level for PTM cross-talk. First, 345 877 PTMs on human,

141 041 PTMs on house mice and 47 910 PTMs on brown rat were

downloaded from PhosphoSitePlusVR (Hornbeck et al., 2012). Then 1-

to-1 orthologs between human and mouse and human and rat were

downloaded from InParanoid database v8 (Sonnhammer and Östlund,

2015), and only those 1-to-1 orthologs with confidence scores greater

than 0.9 were remained. The protein sequences of these three species

were also downloaded from InParanoid v8 and then aligned by

MUSCLE v3.8.31 (Edgar, 2004) to form a three-species MSA. Finally,

the co-modification score between two inter-protein PTM sites is

defined as our previous study (Huang et al., 2015):

M ¼ 1

3

X

i2SP

si;1 � si;2; SP ¼ human;mouse; ratf g (3)

where si;j; ðj ¼ 1; 2Þ is the indicator variable to indicate whether the

amino acids residue is the same as human, and the PTM is also observed

in species i. The value of ðsi;1 � si;2Þ can be 1 only when the residue and

modification status at both sites are the same as human, otherwise 0. The

co-modification across species measure can take values of 1/3, 2/3 or 1

when considering a pair of known inter-protein PTM sites on human.

Note, when an input PTM is not included in the human PTM set from

PhosphoSitePlus, its querying PTM pair will be omitted for this feature.

Co-modification across 88 conditions in human

Besides co-modification across different species, the co-modification

across multiple conditions in human is also applied, similar to our

Fig. 1. Sequence residue co-evolution analysis of cross-talk PTMs. (A) Demonstration of sequence residue co-evolution with two excerpts of MSA. One excerpt of

MSA of protein AKT1 and the other excerpt of MSA of protein PHB across the common 19 species. The two discrete random variables denoting the conservation

states of amino acids with 1 for conserved state and 0 otherwise. (B) Comparison of the sequence residue co-evolution scores between the cross-talk set (posi-

tive) and control set (negative)
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previous study (Li et al., 2017). Proteome-wide human phosphoryl-

ation dataset measured from 88 different tissues or conditions are

used to explore the independence between two phosphorylations.

When comparing two PTMs, we can count the number of conditions

with both modifications k1;1, with a single modification k0;1, or k1;0,

and with no modification k0;0. Based on this table of four numbers,

we used a Fisher’s exact test to calculate the probability of a null hy-

pothesis that these two modifications happen independently across

these 88 conditions. The one-sided P-value with � log 10 transform-

ation is used as the co-modification score. Therefore, the higher of

� log 10ðpÞ, the less likely that the two PTMs are independent. Note,

we only include those PTMs that have at least one modification state

across the 88 conditions for analysis.

2.5 PTM cross-talk prediction and performance

evaluation
To integrate different features to predict inter-protein PTM cross-

talk, we used the RF model implemented in SciKit-learn (Pedregosa

et al., 2011) with the parameter n_estimators of 100 (denote the

number of trees in the forest), and the other parameters as default.

Since the positive and negative samples are highly imbalanced (199

versus 11 585), we down sampled the negative samples to the size

of positive samples and repeated this procedure with the replace-

ment of 100 times. The final prediction result on new samples is

the averaged prediction scores from the 100 balanced RF models.

We call this ensemble classifier multi-balanced RF (MBRF), and all

prediction analyses in this work are based on MBRF. For inter-

protein PTM cross-talk, given two PTM sites from different

proteins as input, four attributes will be computed: (i) the residue

co-evolution, (ii) sequence motif co-evolution, (iii) PTM co-

modification across species and (iv) co-modification across differ-

ent conditions, based on which the probability of cross-talk will be

predicted by the MBRF classifier. There are three types of feature

combinations for integrative models: (i) both sequence features,

(ii) sequence features and modification across conditions and

(iii) all four features. It should be noted that the sequence-based

features (i.e. residue co-evolution and sequence motif co-evolution)

cannot be omitted, otherwise the sample will be skipped for

prediction.

We used a 10-fold cross-validation to evaluate the performance

of the MBRF prediction models. The cross-talk and control PTM

pairs were divided into 10 random equal-sized subsets separately;

this split is the same for all feature combinations. Then one subset of

the 10 subsets was retained as the test set, and the other nine subsets

were used as the training set to build the prediction model. Each of

the 10 subsets will be used as the test set once. Note, the down-

sample strategy is included in the MBRF rather than the cross-

validation split. Due to the small size of the sample set, the random

split in the cross-validation may affect the performance evaluation.

Therefore, the 10-fold cross-validation process was repeated 100

times by using different 10-fold split, and the prediction results were

pooled together to generate an overall ROC curve.

2.6 Permutation test
The standard permutation test is used here to test whether each fea-

ture is significantly different from cross-talk set, say A, to control

set, say B. As this test does not require any distribution assumption,

it is very useful for analyzing some features in this work, particularly

the co-modification across species as a categorical feature. Briefly,

we calculate the original mean difference d0 between the two sets A

and B. Then we pooled A and B together, and randomly re-divided

them into two sets with the original sizes as one permutation. Then

we can have the mean difference d̂ i of the permuted two sets for the

ith permutation, which is repeated 100 000 times here. Finally, we

calculated the two-sided P-value by the proportion of permutations

that have jd̂j > jd0j.

3 Results

In this study, we manually compiled 199 inter-protein PTM cross-

talk pairs from 82 protein pairs across 86 human proteins (see

details in Section 2 and Supplementary Table S1). When counting

the number of PTM cross-talk events that each protein is

involved in (Supplementary Table S2), interestingly we found a

few proteins have much more than the majority (median 4 events),

especially CDC25C with 26 events, CDK1 with 22 events and

AKT1 with 16 events. Also, a few protein pairs have more PTM

cross-talk events than others (Supplementary Table S3), e.g. 17

PTM cross-talk events occur between CDC25C and CDK1 as the

most. We further present the PTM cross-talk into a protein inter-

action network (Supplementary Fig. S1), and we surprisingly found

that 47 out of the 86 proteins form a sub-graph, suggesting the im-

portant roles of PTM cross-talk in cell signaling and regulatory

network.

Fig. 2. Sequence motif co-evolution analysis of cross-talk PTMs. (A) Demonstration of motif co-evolution with two excerpts of MSA. One excerpt of MSA of pro-

tein AKT1 across five species and the other excerpt of MSA of protein PHB across six species. Note that, the two proteins have five common species in the

excerpts. (B) Comparison of motif co-evolution scores between cross-talk set (positive) and control set (negative)
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3.1 Sequence co-evolution at residue level and motif

level
Sequence co-evolution is widely used to study the functional associ-

ation between two amino acids, as it presents a conservation inter-

dependence across species in complex ecological networks (de Juan

et al., 2013). Here, we explore the sequence co-evolution of inter-

protein PTM cross-talk at both a single residue level and a 7-mer

motif level.

We first used the NHD to measure how frequent two residues

conserve or mutate jointly across around 50 vertebrates. Figure 1A

shows an example of AKT1 and prohibitin (PHB) across 20 verte-

brates with a cross-talk event between S473 on AKT1 and Y114 on

PHB. As described in the Section 2, only the species shared by both

proteins are taken into account, thus Carlito syrichta is discarded as

it is missing for PHB. For the remaining 19 shared species, 17 species

have the same conservation states for both PTM residues (16 co-

conserved and 1 co-mutated), which gives a residue co-evolution

score of 17/19 for this example. Residue co-evolution scores were

further calculated for 168 of the 199 cross-talk pairs, and 8574 of

the 11 585 control pairs. The remaining 31 cross-talk and 3011 con-

trol pairs do not have this feature because either one of the proteins

does not have an MSA or the amino acid of the input PTM does not

match the MSA even if one or two position shift is allowed. By com-

paring the available samples in these two datasets, we found that the

cross-talk PTM pairs have a significantly higher residue co-

evolution than that of the control PTM pairs (mean: 0.807 versus

0.704, P < 10�5 by permutation test, Fig. 1B).

Based on the same MSA data, we extended the sequence co-

evolution from the residue level to the sequence motif level. On the

same example between protein AKT1 and PHB (Fig. 2A), we first

extracted the 63 amino acids surrounding the PTM sites as a 7-mer

motif. For S473 on AKT1, the two residues on �1 and 0 position in

Dipodomys ordii was different from their human references, there-

fore the motif conservation for this species is 5/7 ¼ 0.714. Similarly,

we can have the motif conservation scores for all shared species on

these two proteins, forming two motif conservation vectors. Then

the motif co-evolution score is calculated by taking the dot product

between these two motif conservation vectors with normalized to

the number of common species. From the same sets of samples as

the residue level, i.e. 168 cross-talk pairs and 8574 control pairs, we

clearly see that cross-talk PTM pairs also have significantly higher

motif co-evolution than that of the control set (mean: 0.754 versus

0.679, P < 10�5 by permutation test, Fig. 2B). Together, the two

results suggest that sequence co-evolution at both PTM residue level

and motif level can be good indicators of PTM cross-talk between

proteins.

3.2 Co-modification across different species and

different conditions in human
The effectiveness of using protein sequence conservation for analyz-

ing the functional importance of PTMs is possibly because it gives

an approximate PTM conservation status across species. Thus, the

directly and experimentally verified PTM status across multiple spe-

cies can be very informative to study the functions of PTM and their

interplays (Beltrao et al., 2012; Landry et al., 2009). Indeed, in our

previous study (Huang et al., 2015), we have shown that co-

conservation of modifications among three species has the potential

link to the functional interplay between two PTMs within a protein

and can been used to predict intra-protein PTM cross-talk. Here, we

apply the co-modification across Homo sapiens, Mus musculus and

Rattus norvegicus to measure the modification co-conservation.

Same as Huang et al. (2015), the co-modification measures the pro-

portion that the two PTMs conserve simultaneously on the reference

residues across the three species. Figure 3A shows example of modi-

fication status of two PTM pairs on the proteins AKT1 and PHB in

the three species. The cross-talk pair between S473 on AKT1 and

Y114 on PHB has co-modification states in human and mouse, giv-

ing a co-modification score of 2/3, while the non-cross-talk pair,

S475 on AKT1 and S121 on PHB, has co-modification only in

human, scoring at 1/3. Even though both PTM pairs have fully co-

conserved residues across the three species, the co-modification lev-

els are different, and may imply different functional dependence.

Here, for fairness we removed the 13 PTM cross-talk samples whose

one or two PTMs are not included in human PTM set in

PhosphoSitePlus, and consequently we have 186 cross-talk pairs and

11 585 control pairs for further analysis. By comparing these two

sample sets, we found that the score of co-modification across spe-

cies is significantly higher in cross-talk pairs than that of control

pairs (mean: 0.507 versus 0.429, P < 10�5 by permutation test,

Fig. 3B).

Besides the evolutionary process, the correlation of modification

status across different conditions in one species can also suggest

functional associations. In a previous study, we proposed a co-

occurrence method to explore functional connections between PTM

sites by calculating their tendency to be modified simultaneously

across 88 different conditions in human (Li et al., 2017). Here, the

same proteome-wide human phosphorylation dataset is used meas-

ure the co-modification across conditions for inter-protein PTM

pairs (see Section 2 for more details). Figure 4A shows two examples

of co-modification across the 88 conditions: a cross-talk sample be-

tween Y412 on protein FGR (tyrosine-protein kinase Fgr) and Y281

on SLAF1 (signaling lymphocytic activation molecule), and a con-

trol sample between S132 on SHIP2 and Y281 on SLAF1. Their

phosphorylation status (red: on, blue: off) across 88 conditions are

shown in the heatmap, where we can calculate the co-modification

scores, i.e. �log10(p) in Fisher exact test, for these two examples

and have 12.549 for cross-talk sample and 0.397 for control sample.

As this feature is only available for phosphorylation-

phosphorylation pairs, we only have co-modification scores for 87

of 199 cross-talk and 3040 of 11 585 control PTM pairs. Still, we

see that the cross-talk pairs show a clearly higher co-modification

across multiple conditions than that of the control pairs (mean:

2.111 versus 1.044, P < 10�5 by permutation test, Fig. 4B), indicat-

ing that the cross-talk PTM pairs have much higher chance to reject

the independence null hypothesis than the random PTM pairs.

Together, the above two analyses reveal that co-modification across

different species and different conditions can be predictive features

for identifying inter-protein cross-talk pairs.

3.3 Integrative prediction of PTM cross-talk between

proteins
As demonstrated above, the inter-protein PTM cross-talk pairs dis-

play evolutionary correlations at both sequence level and modifica-

tion level. Therefore, we ask if these four properties can be used to

predict PTM cross-talk between proteins. First, we tested the dis-

crimination power of each of the four features by 10-fold cross-

validations. The area under the curve (AUC) values in Figure 5A

show that the sequence co-evolution on the PTM residue is the most

discriminative feature (AUC ¼ 0.785), and it also has a relatively

low no-call rate, namely only 31 out of 199 cross-talk and 3011 out

of 11 585 control pairs do not have the residue co-evolution meas-

ures. Following features are sequence motif co-evolution (168 cross-
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talk samples, AUC ¼ 0.685) and co-modification across conditions

(87 cross-talk samples, AUC ¼ 0.654). By contrast, the performance

of co-modification across species was relatively poor (186 cross-talk

samples, AUC ¼ 0.558), partly due to the incompleteness of PTM

data in mouse and rat. Then, we further ask if the integration of

these four features can improve the prediction comparing to using a

single feature alone. For fairness, we only used the 76 cross-talk

samples and 2593 control samples that have all these four features

to compare single-feature models and integrative model.

Unsurprisingly, the performance with each single feature alone

slightly decreases on this smaller dataset comparing to use all avail-

able samples before (see single feature in Fig. 5A and B). However,

the integration of three predictive features, i.e. sequence co-

evolution and co-modification across conditions, has the best per-

formance and increases the AUC to 0.814 from 0.756 by a single

feature alone (i.e. residue co-evolution). Due to the limited predic-

tion power of co-modification across species, this feature fails to im-

prove the performance in the integrative model by adding it.

Therefore, we omit this feature in the integrative model.

Though the co-modification across conditions contributes a lot

to the integrative model, a large number of samples do not have this

attribute. Therefore, we also recommend the usage of only both se-

quence co-evolution features for most PTM pair candidates. Also,

the sequence feature combination gives more than double cross-talk

Fig. 3. Co-modification across species analysis of cross-talk PTMs. (A) Demonstration of co-modification across species with sequence alignments across human,

mouse and rat. (B) Comparison of co-modification across species scores between cross-talk set (positive) and control set (negative)

Fig. 4. Co-modification across different conditions analysis of cross-talk

PTMs. (A) Demonstration of co-modification across 88 conditions for two

PTM pairs (all phosphorylations; cross-talk: Y412 on FGR and Y281 on SLAF1;

control: S132 on SHIP2 and Y281 on SLAF1, achieved the score of 12.549 and

0.017, respectively). The specific information of 88 conditions is listed in

Supplementary Table S2. (B) Comparison of co-modification across different

conditions scores between cross-talk set (positive) and control set (negative)

Fig. 5. Evaluating the performance of predicting PTM cross-talk using different features combinations; 10-fold cross-validation with repeating 100 times are

pooled together to generate an overall ROC curve. (A) Evaluation is performed on all available samples for each feature (combination); the size of cross-talk sam-

ples are presented in the brackets. (B) Evaluation is performed on 76 cross-talk and 2593 control fully featured samples. Abbreviations: sequence residue co-evo-

lution (Seq_residue), sequence motif co-evolution (Seq_motif), co-modification across species (PTM_species), co-modification across different conditions

(PTM_conditions), both sequence co-evolution (Seq both), both co-modification (PTM both)
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sample size comparing to that with co-modification across condi-

tions (168 versus 76). Additionally, Figure 5B suggests that in this

small sample set, the integration of both residue and motif co-

evolution gives better performance than either of them alone,

though this improvement is marginal, and need to be examined

more extensively.

3.4 Influence of PTM type bias on prediction

performance
Among the 199 inter-protein PTM cross-talk pairs, 150 pairs are

cross-talk events between two phosphorylation sites (Table 1). In

other words, the compiled cross-talk set is bias toward the

phosphorylation-phosphorylation PTM types. It is not clear if the

prediction model can be used for PTM types that are not included or

underrepresented in the training set. To test the influence of PTM

types, we trained MBRF models with only phosphorylation-

phosphorylation cross-talk pairs (150 cross-talk set pairs and 7312

control pairs), and tested the prediction performance on the rest

PTM types (49 cross-talk pairs and 4273 control pairs). Figure 6

shows that phosphorylation–phosphorylation dataset is predictive

for other PTM types (AUC ¼ 0.777), even though only two se-

quence co-evolution features are available. With a threshold of 0.65,

the false positive rate can be as low as 9.7% and the true positive

rate is 38.5%. This prediction is equivalent as an independent test,

evidencing the power of our method in predicting inter-protein PTM

cross-talk and its robustness to PTM type bias.

3.5 PTM-X online server
Combining our previous intra-protein prediction method, we pro-

vide a web server named PTM-X for the prediction of intra- and

inter-protein PTM cross-talk (http://bioinfo.bjmu.edu.cn/ptm-x/).

The MBRF prediction model in the web site was trained with all

human cross-talk and control pairs, for two types of feature combi-

nations: (i) residue and motif sequence co-evolution and (ii) the add-

ition of co-modification across conditions. Users can input

candidate PTM pairs by specifying the protein UniProt accession

number and the PTM positions on protein sequences. Then PTM-X

server will give a final prediction result for each PTM pair by using

the same feature combinations, by displaying on the web with a

download link to a text file (see example in Supplementary Fig. S3).

The input PTM pairs can be taken as potential cross-talk pairs if

their prediction scores are higher than a given threshold. Generally,

a strict threshold gives lower false positive rate but higher false nega-

tives, while a more lenient threshold can be used to obtain more sen-

sitive predictions. We provide an interface to facilitate this

procedure, if users click on the prediction score on the web page, the

ROC curve from the 10-fold cross-validation will appear and dis-

play the related false positive and true positive rate with the predic-

tion score as a selected threshold (Supplementary Fig. S3).

4 Discussion

In this study, we extended our previous work in intra-protein PTM

cross-talk prediction (Huang et al., 2015) to inter-protein level.

However, the methods for PTM cross-talk prediction cannot be dir-

ectly migrated from intra-protein level to inter-protein level. The

most discriminative feature for PTM cross-talk within protein is the

proximate location on both primary sequences and tertiary struc-

tures, which is unavailable for PTM pairs from two proteins.

Physical distance within a protein complex can be an alternative

measurement for inter-protein PTM pairs (Minguez et al., 2015),

while this information is only available for a very small subset of

protein pairs and will result in a large number of missing values

when used for prediction (all missing for cross-talk and 99.7% miss-

ing for control).

On the other hand, the protein sequences are much easier to ac-

cess, therefore, the sequence co-evolution was first extended to

inter-protein level for functional association between PTM sites

(Minguez et al., 2012). Initially, mutual information (MI) and its

normalized value (nMI) were successfully applied to measure this

feature at the intra-protein level (Huang et al., 2015; Minguez et al.,

2012). However, we noticed that nMI is not suitable when extend-

ing from intra-protein to inter-protein level (Supplementary Fig. S4).

One possible reason is that inter-protein PTM pairs have much

higher sequence divergence than intra-protein counterpart, but nMI

is very sensitive to this divergence and exponentially decreases to

zero (Supplementary Fig. S4C–F). Therefore, in this work we

applied the NHD to measure sequence co-evolution, which shows

clearly better prediction performances than nMI (Fig. 5A and

Supplementary Fig. S4B).

Though the sequence co-evolution across vertebrates has been

shown a very predictive feature for PTM cross-talk, it is less certain

whether there is an optimal range of species that sequence co-

evolution predicts PTM cross-talk best. When stretching from verte-

brates to animals, the sequence co-evolution decreases for both posi-

tive and negative samples, which has a strong correlation with the

number of species or the maximum evolutionary distance in the ani-

mal set (Supplementary Fig. S5C–F). Surprisingly, cross-talk PTMs

decrease more severely than non-cross-talk PTM pairs

(Supplementary Fig. S5C–F). After further extending to eukaryotes

and all organisms in eggNOG, cross-talk PTMs even nearly lose its

advantage on this dimension and show no clear difference to the

background PTM pairs (Supplementary Fig. S6A for NHD and

Supplementary Fig. S7A for nMI). This reduction of the prediction

power remains even if we down sampled the negatives to achieve the

same distribution of species numbers between positive and negative

sets (Supplementary Figs S6B and S7B) or when we removed protein

pairs with too high or too low number of species (Supplementary

Figs S6C and S7C). Together, these observations imply that an

Fig. 6. Evaluating the robustness of the prediction model using biased train-

ing sets (phosphorylation– phosphorylation dataset). The ROC curves of the

MBRF classifier using phosphorylation– phosphorylation dataset as training

set and the rest as testing set. The false positive rate and true positive rate are

presented in the brackets following the corresponding threshold 0.35, 0.5 and

0.65
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optimal evolutionary range may exist for cross-talk PTMs to achieve

highest gain in sequence co-evolution comparing to background

PTM pairs, but admittedly a larger set of PTM cross-talk samples

are needed to enhance this hypothesis.

Furthermore, the most precious though still limited data is the dir-

ect measurement of PTMs in different species and different conditions,

both of which have been shown good potential in predicting PTM

cross-talk within protein (Huang et al., 2015; Li et al., 2017). Here,

again we evidenced that cross-talk PTM pairs between proteins also

have higher co-modification across three species and multiple condi-

tions. We expect that the co-modification features have a great poten-

tial in predicting PTM cross-talk, however due to incompleteness, only

three species, human, mouse and rat, are used in this work (see

Supplementary Table S5). Other species, including Saccharomyces,

Arabidopsis, Caenorhabditis and Drosophila, have 2000–5000 verified

PTMs, but they are relatively far from human and hence have much

fewer orthologs comparing to mouse or rat (Supplementary Table S6).

Alternatively, using predicted PTM data, e.g. dbPTM (Huang et al.,

2016), which is better covered, may relieve this issue, though the ideal

way is to coherently model the PTM status and their cross-talk.

We further applied a RF classifier to predict PTM cross-talk be-

tween proteins by integrating three predictive features: residue and

motif co-evolution, co-modification across different conditions. The

co-modification across species is not included due to its limited predic-

tion power, though it shows a good potential but probably requires

more completed PTM sets. Still, the integrative model achieves good

prediction and outperforms any single feature alone. In order to re-

duce the no-call rate in the integrative model, it is also sensible to

omit the co-modification across conditions and use the two sequence

co-evolution features only, which balance the prediction performance

and the usage of the samples. Furthermore, we saw that the model

trained by phosphorylation-phosphorylation cross-talk subset can pre-

dict well on other PTM types, indicating that the prediction model

can be used to unseen or less represented PTM types.

Though we believe PTM-X offers a valuable new tool to prioritize

a large number of inter-protein PTM cross-talk candidates, there are

also many other directions for investigation. First, a bigger dataset of

validated inter-protein PTM cross-talk events is still highly demanded,

through which more sophisticated model can be applied to achieve

better prediction performances, and distinct properties of cross-talk

events may be revealed between different PTM types. Second, more in-

formation can be integrated into the prediction model, e.g. the protein

level interaction may increase the baseline in prediction of the inter-

action between PTMs, by filtering PTMs from less interactive protein

pairs (Minguez et al., 2015). Third, the predicted PTM cross-talk be-

tween proteins may in return improve our understanding of protein or

gene regulatory network; the big sub-graph among the 199 cross-talk

samples is a very interesting example (Supplementary Fig. S1).
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