
Sequence analysis

Implementation of a Stirling number estimator

enables direct calculation of population genetics

tests for large sequence datasets

Swaine L. Chen 1,2,*

1Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of

Singapore, Singapore 119228, Singapore and 2Infectious Diseases Group, Genome Institute of Singapore,

Singapore 138672, Singapore

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on September 4, 2018; revised on November 11, 2018; editorial decision on December 4, 2018; accepted on December 10, 2018

Abstract

Motivation: Stirling numbers enter into the calculation of several population genetics statistics,

including Fu’s Fs. However, as alignments become large (�50 sequences), the Stirling numbers

required rapidly exceed the standard floating point range. Another recursive method for calculating

Fu’s Fs suffers from floating point underflow issues.

Results: I implemented an estimator for Stirling numbers that has the advantage of being uniform-

ly applicable to the full parameter range for Stirling numbers. I used this to create a hybrid Fu’s Fs

calculator that accounts for floating point underflow. My new algorithm is hundreds of times faster

than the recursive method. This algorithm now enables accurate calculation of statistics such as

Fu’s Fs for very large alignments.

Availability and implementation: An R implementation is available at http://github.com/swaine

chen/hfufs.

Contact: slchen@gis.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Population genetics statistics are commonly used to test for evolu-

tionary inference from sequence alignments. Well-known statistics

include Tajima’s D (Tajima, 1989), Fay and Wu’s H (Fay and Wu,

2000) and Fu’s D and F (Fu and Li, 1993). Another statistic, Fu’s Fs

(Fu, 1997), was recently shown to be potentially useful for identify-

ing the causative mutation leading to a recent population expansion

in the bacterium Campylobacter jejuni (Wu et al., 2016). There are

several existing software packages that can calculate Fu’s Fs.

However, some of these programs fail to calculate Fu’s Fs when

alignments become too large, and others disagree on the value. I

show that these issues are due to floating point overflow and under-

flow, respectively. I developed a hybrid algorithm to circumvent

these computational issues. I demonstrate that this algorithm is hun-

dreds of times faster than another recursive algorithm that is usable

on large alignments. My algorithm may be useful for further testing

the utility of Fu’s Fs on contemporary datasets, which can easily be

in the hundreds to thousands of sequences.

2 Materials and methods

Fu’s Fs can be calculated from a multiple sequence alignment. One

requires the number of alleles (denoted k0) and the mean number of

pairwise nucleotide differences (denoted ĥp). The statistic S0 is then

defined as:

S
0 ¼

X
k�k0

Skj jĥ
k

p

SnðĥpÞ
(1)

where Sn ĥp

� �
¼ ĥp ĥp þ 1

� �
� � � ðĥp þ n� 1Þ and Sk is the coefficient

of ĥ
k

p in Sn (Fu, 1997). The coefficients Sk are also denoted in other

literature as S
ðkÞ
n , where they are referred to as Stirling numbers of

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2668

Bioinformatics, 35(15), 2019, 2668–2670

doi: 10.1093/bioinformatics/bty1012

Advance Access Publication Date: 12 December 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2668/5239656 by guest on 20 April 2024

http://orcid.org/0000-0002-0107-2861
http://github.com/swainechen/hfufs
http://github.com/swainechen/hfufs
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1012#supplementary-data
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: M
https://academic.oup.com/

the first kind (Temme, 1993); hereafter I refer to these simply as

Stirling numbers. Fu’s Fs is then defined as:

Fs ¼ ln
S0

1� S0

� �
: (2)

Stirling numbers can grow large very quickly, leading to floating

point overflow. To circumvent this, I used the Stirling number esti-

mator developed by Temme (1993) [Equation (3.5) therein]. The use

of the logit transformation leads to floating point underflow when S0

is close to 1. Further details of the theory and program details can be

found in the Supplementary Material, including Equations (A1)–

(A10).

3 Results

I used several software programs to calculate Fu’s Fs using the fimH

dataset (Table 1). PopGenome and PGEToolbox gave the same

results for all tests; only results for PopGenome are shown.

PopGenome and PGEToolbox explicitly calculate Stirling numbers

as part of the Fu’s Fs calculation; neither provides an answer when

the Stirling numbers overflow the floating point range in R or

Matlab (1.8e þ 308). In contrast, DnaSP uses a recursive algorithm

based on Equations (19)–(23) from Ewens (1972), avoiding calcula-

tion of Stirling numbers. However, the other programs disagreed at

some values (bold in Table 1).

To reconcile the results, I implemented a Fu’s Fs calculator in R

using the logarithmic Stirling number estimator (Temme, 1993). I

also ported the Stirling number calculator from PGEToolbox and

the recursive Fu’s Fs calculator from DnaSP v6. The limited range at

low values of Fu’s Fs for DnaSP v6 is due to floating point under-

flow; because Fu’s Fs is calculated by Equation (A4), when the nu-

merator is close to zero, two numbers close to 1 are subtracted,

leading to a lower bound determined by machine precision

(Fig. 1A). It occurs occasionally because the underflow test does not

catch all cases (Table 1, bold underlined values for real data;

Fig. 1A, red for simulated data). Arlequin suffers from a similar

issue.

There are minor differences in Fu’s Fs values calculated by the

different programs for �500 sequences (Table 1, bold bold values

with no underlining). DnaSP v6 performs a second test for floating

point underflow, in which case S0 is estimated as p k0ð Þ [Equation

(A4)], leading to this discrepancy. To further confirm which values

were correct, I reimplemented the PGEToolbox algorithm in perl

using the bignum package for arbitrary precision mathematics; these

explicit values agree with those obtained using the logarithmic

Stirling number estimator.

For Fu’s Fs values <0, those calculated using a Stirling number

estimator agree well with those calculated using explicit Stirling

numbers (Fig. 1B, black dots). For high values of Fu’s Fs (where S0 is

close to 1), the range is limited again because of floating point

underflow (1� S0 is limited by machine precision). This can be recti-

fied by using Equation (A4) with the Stirling number estimator,

which now agrees with values calculated using explicit Stirling num-

bers (Fig. 1B, red dots).

Therefore, the final algorithm (termed hfufs for hybrid Fu’s Fs)

is:

1. Direct calculation of Fu’s Fs using Stirling numbers if the number

of alleles is relatively small (n � 30).

2. If n > 30, or there is overflow from direct calculation, then cal-

culate Fu’s Fs using a Stirling number estimator.

3. If the value obtained is >0, then calculate Fu’s Fs using a Stirling

number estimator by Equation (A4).

The DnaSP algorithm generally works well, but is recursive. I

benchmarked my algorithm against the reimplemented DnaSP algo-

rithm in R. R is notoriously slow for recursion, though caching of

function results can help. I found that my algorithm was several

hundred times faster [0.35 6 0.09 s (for hfufs) compared with

162.65 6 13.20 s for 100 calculations]. As expected, the recursive

algorithm was far faster when rerun on the same parameter set (tak-

ing advantage of function caching for the recursive step;

0.89 6 0.09 s for 100 calculations), but hfufs (which did not use

caching) remained 2.5 times faster.

4 Conclusion

The hfufs algorithm solves issues with data size, floating point

underflow and overflow, and accuracy in calculating Fu’s Fs. By

Table 1. Fu’s Fs values calculated on subsets of fimH sequences

n=k0 ĥp Pop genome DnaSP v5 DnaSP v6 Arlequin hfufs Bignum

5/5 7.80 �0.678 �0.678 �0.678 �0.678 �0.678 �0.678

10/9 7.69 �2.294 �2.294 �2.294 �2.294 �2.294 �2.294

25/20 9.39 �6.832 �6.832 �6.832 �6.832 �6.832 �6.832

50/31 9.61 �10.129 �10.129 �10.129 �10.129 �10.130 �10.129

100/40 9.37 �10.230 �10.230 �10.230 �10.230 �10.231 �10.230

250/67 8.96 NaN �26.409 �26.410 224.115 �26.409 �26.409

500/95 9.04 NaN 247.06 231.781 223.964 246.763 �46.763

1000/152 9.07 NaN 2112.627 2112.627 223.718 2112.427 �112.427

2001/213 9.03 NaN 2192.343 230.617 223.596 2192.181 �192.181

Fig. 1. Validation of Fu’s Fs calculations. (A) Plot of Fu’s Fs calculated by the

DnaSP V6 algorithm reimplemented in R versus the hfufs algorithm. Red dots

indicate where underflow is not detected by the DnaSP code. (B) Plot of Fu’s

Fs calculated using the Stirling number estimator versus using explicit

Stirling numbers. Black dots calculated using Equation (2), red dots using

Equation (A4). Dotted black lines are drawn at y¼x

Stirling number estimator for population genetics 2669

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2668/5239656 by guest on 20 April 2024

Deleted Text: (
Deleted Text: (
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1012#supplementary-data
Deleted Text:
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: (
Deleted Text: &hx003E;&hx003D;
Deleted Text: (
Deleted Text: less than
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: (
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text:)
Deleted Text: &hx2009;
Deleted Text: &hx2009;

avoiding recursion, it also improves speed. A software implementa-

tion in R is available at http://github.com/swainechen/hfufs.

Acknowledgements

I thank Shyam Prabhakar, Niranjan Nagarajan, Weiwei Zhai and the mem-

bers of the Chen lab for useful discussions.

Funding

This work was supported by the National Medical Research Council,

Ministry of Health, Singapore [grant numbers NMRC/CIRG/1357/2013,

NMRC/CIRG/1467/2017]; and the Genome Institute of Singapore (GIS)/

Agency for Science, Technology and Research (A*STAR).

Conflict of Interest: none declared.

References

Ewens,W.J. (1972) The sampling theory of selectively neutral alleles. Theor.

Popul. Biol., 3, 87–112.

Fay,J.C. and Wu,C.I. (2000) Hitchhiking under positive Darwinian selection.

Genetics, 155, 1405–1413.

Fu,Y.X. (1997) Statistical tests of neutrality of mutations against popula-

tion growth, hitchhiking and background selection. Genetics, 147,

915–925.

Fu,Y.X. and Li,W.H. (1993) Statistical tests of neutrality of mutations.

Genetics, 133, 693–709.

Tajima,F. (1989) Statistical method for testing the neutral mutation hypothesis

by DNA polymorphism. Genetics, 123, 585–595.

Temme,N.M. (1993) Asymptotic estimates of Stirling numbers. Stud. Appl.

Math., 89, 233–243.

Wu,Z. et al. (2016) Point mutations in the major outer membrane protein

drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni.

Proc. Natl. Acad. Sci. USA, 113, 10690–10695.

2670 S.L.Chen

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/15/2668/5239656 by guest on 20 April 2024

http://github.com/swainechen/hfufs

