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Abstract

Motivation: High-Throughput Sequencing technologies produce huge amounts of data in the form

of short genomic reads, associated quality values and read identifiers. Because of the significant

structure present in these FASTQ datasets, general-purpose compressors are unable to completely

exploit much of the inherent redundancy. Although there has been a lot of work on designing

FASTQ compressors, most of them lack in support of one or more crucial properties, such as sup-

port for variable length reads, scalability to high coverage datasets, pairing-preserving compres-

sion and lossless compression.

Results: In this work, we propose SPRING, a reference-free compressor for FASTQ files. SPRING

supports a wide variety of compression modes and features, including lossless compression,

pairing-preserving compression, lossy compression of quality values, long read compression and

random access. SPRING achieves substantially better compression than existing tools, for ex-

ample, SPRING compresses 195 GB of 25� whole genome human FASTQ from Illumina’s

NovaSeq sequencer to less than 7 GB, around 1.6� smaller than previous state-of-the-art FASTQ

compressors. SPRING achieves this improvement while using comparable computational

resources.

Availability and implementation: SPRING can be downloaded from https://github.com/shubham

chandak94/SPRING.

Contact: schandak@stanford.edu or mhernaez@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

There has been a tremendous increase in the amount of genomic

data produced in the past few years, mainly driven by the improve-

ments in High-Throughput Sequencing technologies and the reduced

cost of sequencing a genome. A single genome sequencing experi-

ment on humans typically results in hundreds of millions of short

reads (of length 100–150 bp), which are (possibly corrupted) sub-

strings of the same underlying genome sequence. These raw sequenc-

ing data is typically stored in the FASTQ format, which consists of

the reads along with the quality values which indicate the confidence

in the read sequence and read identifiers which consist of metadata

related to the sequencing process. In most cases, the reads are

sequenced in pairs from short fragments of the genome, resulting in

paired-end FASTQ files. A typical FASTQ dataset for a human gen-

ome sequencing experiment requires hundreds of GBs of storage

space (for a typical sequencing coverage of 30�). Due to the huge

sizes involved, compression of the FASTQ files is of utmost import-

ance for their storage and distribution.

There is significant amount of recent work on FASTQ compression

(Numanagi�c et al., 2016), including SCALCE (Hach et al., 2012),
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Fqzcomp (Bonfield and Mahoney, 2013), DSRC 2 (Roguski and

Deorowicz, 2014) and FaStore (Roguski et al., 2018). Since the reads

are sub-strings of the underlying genome, there is much redundancy to

be exploited for compression. Specialized compressors, which explicitly

utilize the structure present in the reads, can achieve a compression gain

of more than 10� as compared to generic universal compressors such

as Gzip (Numanagi�c et al., 2016). The quality values, on the other

hand, have less structure and thus can take up a more significant frac-

tion of the storage space in the compressed domain. Recent work

(Ochoa et al., 2017; Roguski et al., 2018) has shown that the quality

values can be lossily compressed without adversely affecting the per-

formance of variant calling, one of the most widely used downstream

application in practice. Moreover, newer technologies such as

Illumina’s Novaseq are using quality values with fewer levels (4 levels

instead of the previous 8 or 40 levels), hence supporting the claim that

the precision in the quality values can be reduced with no impact on

variant calling performance.

Although there has been a lot of work on designing FASTQ com-

pressors, most of them lack in support of one or more crucial prop-

erties, such as support for variable length reads (Roguski et al.,

2018), scalability to high coverage datasets, pairing-preserving com-

pression (Roguski and Deorowicz, 2014) and lossless compression

(Hach et al., 2012). Partly due to these factors, Gzip is still the

prevalent FASTQ compressor, even though it provides worse com-

pression ratios (Numanagi�c et al., 2016).

In this work, we present the next-generation compressor

SPRING, which supports all the crucial properties, while achieving

significantly better compression as compared with state-of-the-art

FASTQ compressors. SPRING is also eminently practical in terms of

its memory/time requirements, and supports selective access to the

compressed data.

2 Methods and results

SPRING supports the following recommended modes of FASTQ

compression:

i. Lossless mode (default): In this mode, the FASTQ file is com-

pressed so that it can be exactly reconstructed, i.e. the reads,

quality, read identifiers and the read order information can be

perfectly recovered.

ii. Recommended lossy mode: In this mode, the information rele-

vant for most of the genomic applications (such as alignment, as-

sembly, variant calling, etc.) is preserved. This includes the reads

along with pairing information and binned quality values.

The quality values are subjected to the Illumina’s standardized 8-

level binning (https://www.illumina.com/documents/products/

whitepapers/whitepaper_datacompression.pdf) before

compression (Novaseq qualities are left unchanged). The read

identifiers and the order of the pairs is discarded (i.e. the decom-

pressed FASTQ file contains the read pairs in an arbitrary order).

The relative ordering of the first and the second read in each pair

is still preserved.

Although we advocate for these default modes, SPRING can be

highly customized based on the user needs, and provides additional

capabilities such as custom binning of quality values using QVZ

(Malysa et al., 2015) and binary thresholding.

For short reads (up to 511 bp), the read compression in SPRING

is based on HARC (Chandak et al., 2018), with significant improve-

ments and added support for variable-length reads. SPRING also

supports long read compression, where BSC (https://github.com/

IlyaGrebnov/libbsc/) is used as the read compressor. Furthermore,

SPRING compresses the streams in blocks, allowing for fast decom-

pression of a subset of reads (random access). More details and

results for these features are provided in the Supplementary

Material.

Table 1 shows the compression results for the two recom-

mended modes for selected datasets. We compare SPRING to

FaStore (Roguski et al., 2018), the best performing FASTQ com-

pressor and pigz (parallelized Gzip), the most commonly used

FASTQ compressor in practice. We observe that SPRING achieves

significant compression gains with respect to FaStore in both

modes, especially for human NovaSeq datasets, while being com-

parable in computational resources (Supplementary Material). For

example, running with eight threads in the lossless mode, SPRING

requires 2 h and 31 GB RAM for compressing the 25� NovaSeq

Homo sapiens dataset, which is competitive with FaStore (2.5 h

and 41 GB). For decompressing the dataset, SPRING requires

26 min and 6.1 GB RAM. This is slower than FaStore (12 min), but

with significantly lower memory consumption (23 GB for FaStore).

In comparison to pigz, SPRING achieves 2�–5� better compres-

sion ratios but requires higher computational resources (see

Supplementary Material for further details and more extensive

results).

In conclusion, this work presents the FASTQ compressor

SPRING, which outperforms existing tools, offering 1.3�–1.8� im-

provement in compression over the next best performing tool on

data sequenced on Illumina’s latest sequencer, NovaSeq. SPRING

supports a wide variety of modes and features and is competitive in

terms of computational requirements. Furthermore, the streams gen-

erated by SPRING can be easily transformed to streams compatible

with the upcoming standard developed by the MPEG-G group for

genomic information representation (Alberti et al., 2018). Future

work includes integration of SPRING into the standard and devel-

oping specialized read compressors for long read technologies.

Table 1. Compressed sizes (in MB) for selected datasets

Organism Technology Coverage Uncompressed Lossless mode Recommended lossy mode

Size pigz FaStore SPRING Improvement FaStore SPRING Improvement

Pseudomonas

aeruginosa

GAIIx 50 768 279 145 115 1.26� 88 62 1.41�

Metagenomic HiSeq 2000 –– 19 284 6911 3602 3206 1.12� 1935 1736 1.11�
H.sapiens HiSeq 2000 28 227 246 74 250 35 662 28 901 1.23� 17 417 13 460 1.29�
H.sapiens NovaSeq 25 195 748 36 131 11 101 6971 1.59� 9927 5657 1.75�
H.sapiens NovaSeq 100 787 616 144 927 33 734 25 883 1.30� 28 846 20 316 1.42�

Notes: Improvement is reported with respect to FaStore. Best results for each mode are bold-faced.
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