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In Bioinformatics article, ‘Empirical comparison of web-based anti-

microbial peptide prediction tools’ (Gabere and Noble, 2017), a

comparison of different antimicrobial peptide prediction tools was

described. This is an important task as it allows scientists to use the

corresponding tools for their purposes. The authors consider ten

tools divided into three groups classified by target species: anti-

microbial, antibacterial and bacteriocins. For each group, the

authors consider their own test sets. Our comments concern the

threshold-based comparison of tools included in the first group. In

this group, the authors consider six prediction tools: CAMP3(RF)

(Waghu et al., 2016), CAMP3(SVM) (Waghu et al., 2016), ADAM

(Lee et al., 2015), DBAASP (Vishnepolsky and Pirtskhalava, 2014),

AMPA (Torrent et al., 2012) and MLAMP (Lin and Xu, 2016). For

tools’ testing, common sets of sequences were used. We would like

to note that these tools have some specific areas of application and

so not all sequences in the datasets can be used as input for each

tool. Some tools have particular limitations on input sequences:

ADAM, DBAASP, CAMP3 (RF), CAMP3 (SVM) do not allow using

non-standard amino acids. DBAASP has limitation on peptide size

(<100 amino acids). Although some other tools [CAMP3(RF) and

CAMP3(SVM)] do not limit sequence size, the predictive models are

relied on training and test sets (Waghu et al., 2016) constructed on

sequences of length <100. Therefore, we think that optimal test sets

suitable for most tools must contain sequences with no more than

100 amino acids and without non-standard amino acids. It is not

correct to test tools on sequences that cannot be taken as input (the

programs give error) and calculate metrics relative to set of full

sequences in datasets.

To make reliable assessments, new test sets, meeting the above-

mentioned requirements, were created from the datasets (DAMPD

and APD3) of the original paper. According to the original paper,

positive sets of the DAMPD and APD3 benchmark were down-

loaded from DAMPD (Seshadri et al., 2012) and APD3 (Wang

et al., 2016) databases, respectively, and became unredundant by

using CD-HIT software (Li and Godzik, 2006). The corresponding

negative sets were constructed on the basis of randomly extracted

sequences from the UniProt database (The Uniprot Consortium,

2015), which were not annotated as AMPs (Gabere and Noble,

2017). After taking into account the above-mentioned requirements,

new benchmarks O-DAMPD-P and O-DAMPD-N were created

from DAMPD and APD3, respectively. O-DAMPD-P set consists of

positive (464 sequences) and negative (2362 sequences) sets selected

from DAMPD (Supplementary Tables S1and S2). O-APD3-P set

consists of positive (1682 sequences) and negative (8409 sequences)

sets selected from APD3 (Supplementary Tables S3 and S4).

For comparison of the different tools, the following performance

measures were used: sensitivity [Sens ¼ TP/(TP þ FN)], specificity

[Spec ¼ TN/(TN þ FP)], precision [Pres ¼ TP/(TP þ FP)] and bal-

anced accuracy: [Bal acc ¼ (Sens þ Spec)/2], where TP is true posi-

tive, TN is true negative, FP is false positive and FN is true negative.

The prediction results on O-DAMPD and O-APD3 have been

presented in Tables 1 and 2. Most metrics have close values to the

original paper, but some differences still occur. Specificity and bal-

ance accuracy for CAMP3(RF) and CAMP3(SVM) have higher val-

ues than those in the original paper. It can be explained by the fact

that CAMP3(RF) and CAMP3(SVM) predict almost all long sequen-

ces as antimicrobial.

The most considerable difference between the results presented

in the original paper and the results on the new datasets appeared

for DBAASP in the case of O-DAMPD dataset. The main reason is

that the authors miscalculated the number of correctly predicted

peptides on DAMPD dataset. In the original paper, the authors state

that on DAMPD dataset, DBAASP correctly predicts 121 peptides

(TP). In fact, the value of TP is 306. It can be easily checked from

https://dbaasp.org/prediction. We can also note that on the predic-

tion results of DBASSP can influence the fact that DBAASP has two
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more requirements to input sequences: peptides should be liner and

C-terminal amidation must be taken into account. C-terminal ami-

dation affects the charge density of the peptide, so it has influence

on the peptide prediction potency, obtained by DBAASP tool. By

our evaluation, sensitivity will increase by �5% (data not shown).

On the whole, all tools show similar results on O-DAMPD and

O-APD3. The best prediction for both datasets gives CAMP3 tools,

then follow DBAASP, ADAM and MLAMP (having very similar

results by balance accuracy) and in the end is AMPA. The results for

AMPA can be explained by the fact that this tool is based on the

data of peptides tested against the particular strain of Pseudomonas

aeruginosa. So this tool possibly cannot correctly predict antimicro-

bial potency for other species. In order to check this supposition, the

sets with active and non-active peptides against most studied strain

ATCC 27853 of P. aeruginosa were selected from DBAASP database

(Pirtskhalava et al., 2016). The definitions of active and non-active

peptides against particular strain were based on the data of min-

imum inhibitory concentration of peptide (MIC). Generally saying,

standardization of MIC’s assessment is problematic. The data on

MIC available from literature have been evaluated using different

methods (broth dilution, agar dilution, etc.) and conditions (differ-

ent broth, CFU, etc.). Low accuracy of estimation is a cause of the

accepted practice, which considers that if MIC is within 62 dou-

bling dilutions for �95% of the compared test result sets, the match-

ing of the results is defined as excellent (Reynolds et al., 2003). The

threshold of MIC values to segregate a positive and negative sets

were chosen according to this practice. We suggested, that, rather

large interval between positive and negative sets would allow to di-

minish an impact of experimental errors. So peptides were defined

as active against P.aeruginosa ATCC 27853 if their MIC<25mg/ml

and non-active if MIC>100mg/ml. Initially sets with 347 active and

373 non-active peptides were selected from DBAASP. After remov-

ing similar sequences using the CD-HIT web-server with 90% max-

imum sequence identity threshold, 235 and 195 sequences remain in

the positive and negative sets, correspondingly (Supplementary

Tables S5 and S6). The prediction results for all tools on last sets are

presented in Table 3. Sensitivity of AMPA becomes almost twice as

high as it was on O-DAMPD and O-APD3 datasets (Tables 1 and 2),

Table 1. Prediction results for O-DAMPD dataset

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal acc (%)

CAMPR3(RF) 433 381 31 1981 2826 93.32 83.87 53.19 88.60

CAMPR3(SVM) 422 410 42 1952 2826 90.95 82.64 52.04 86.80

ADAM 433 845 31 1517 2826 93.32 64.23 33.88 78.78

MLAMP 338 481 126 1881 2826 72.84 79.64 41.27 76.24

DBAASP 306 238 158 2124 2826 65.95 89.92 56.35 77.94

AMPA 216 253 250 2109 2826 46.55 89.29 46.06 67.92

Table 2. Prediction results for O-APD3 dataset

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal acc (%)

CAMPR3(RF) 1593 1266 89 7143 10 091 94.71 84.94 55.72 89.83

CAMPR3(SVM) 1525 1480 157 6929 10 091 90.67 82.40 50.75 86.54

ADAM 1550 3270 132 5139 10 091 92.15 61.11 32.16 76.63

MLAMP 1290 1900 392 6509 10 091 76.69 77.41 40.44 77.05

DBAASP 1084 785 598 7624 10 091 64.44 90.66 56.00 77.55

AMPA 654 806 1028 7603 10 091 38.89 90.42 44.79 64.66

Table 3. Prediction results for the set of the peptides from DBAASP being active or non-active against P. aeruginosa ATCC 27853

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal acc (%)

CAMPR3(RF) 220 161 15 34 430 95.74 15.90 57.74 55.82

CAMPR3(SVM) 225 164 10 31 430 93.62 17.44 57.84 55.53

ADAM 228 184 7 11 430 97.02 5.64 55.34 51.33

MLAMP 193 149 42 46 430 82.13 23.59 56.43 52.86

DBAASP 206 131 29 64 430 87.66 32.82 61.13 60.24

AMPA 168 77 67 118 430 71.49 60.51 68.57 66.00

Table 4. Prediction results for L-DAMPD dataset

Tool TP FP FN TN Total Sens (%) Spec (%) Prec (%) Bal acc (%)

CAMPR3(RF) 202 381 18 1981 2583 91.40 83.87 34.65 87.64

CAMPR3(SVM) 189 410 32 1952 2583 85.52 82.64 31.55 84.08

ADAM 198 845 23 1517 2583 89.59 64.23 18.98 76.91

MLAMP 164 481 57 1881 2583 74.21 79.64 25.43 76.93

DBAASP 169 238 52 2124 2583 76.47 89.92 41.52 83.20

AMPA 75 253 146 2109 2583 33.94 89.29 22.87 64.66
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although lower than for the other tools. At the same time specificity

is strongly higher than for the other tools, and so, balance accuracy is

the best among all tools.

The results presented in Table 3 show that for the development

of the predictive models for particular species, special approaches

are required.

It is interesting to test the tools on the sets convenient for all.

Among the considered six tools, DBAASP has the most restrictions

for input sequences. Taking into account this fact, we create the

positive test set, which is a set of linear peptides selected from O-

DAMPD dataset. Positive set consists of 221 peptides (L-DAMPD,

Supplementary Table S7), negative set is not changed (O-DAMPD-

N, Supplementary Table S2). The results of prediction on last sets

have been presented in Table 4. As we can see, the values of balance

accuracy for DBAASP become closer to CAMP3 tools. We must

note that we cannot take into account information about C-terminal

amidation of the peptide sequences since this information is not

available from the DAMPD dataset. So real data for sensitivity and

balance accuracy for DBAASP will be higher (Vishnepolsky and

Pirtskhalava, 2014). Most other tools (except MLAMP) show slight-

ly lower values of sensitivity and balance accuracy than it was on O-

DAMPD dataset.

Thus, we can say that different tools have various areas of appli-

cation and this fact has to be taken into account in selection of the

appropriate tool. So, CAMP3 and ADAM tools can be used for pre-

dicting wide spectrum of antimicrobial peptides. Other tools have

narrow area of application: DBAASP can be used for the prediction

of linear peptides, MLAMP is aimed for prediction antimicrobial

families and AMPA better works for peptides, which have activity

against P. aeruginosa.
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