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Abstract

Motivation: Deep mutational scanning experiments have enabled the measurement of the

sequence-function relationship for thousands of mutations in a single experiment. The Protein

Analysis and Classifier Toolkit (PACT) is a Python software package that marries the fitness metric

of a given mutation within these experiments to sequence and structural features enabling down-

stream analyses. PACT enables the easy development of user sharable protocols for custom deep

mutational scanning experiments as all code is modular and reusable between protocols.

Protocols for mutational libraries with single or multiple mutations are included. To exemplify its

utility, PACT assessed two deep mutational scanning datasets that measured the tradeoff of en-

zyme activity and enzyme stability.

Results: PACT efficiently evaluated classifiers that predict protein mutant function tested on deep

mutational scanning screens. We found that the classifiers with the lowest false positive and high-

est true positive rate assesses sequence homology, contact number and if mutation involves

proline.

Availability and implementation: PACT and the processed datasets are distributed freely under the

terms of the GPL-3 license. The source code is available at GitHub (https://github.com/JKlesmith/

PACT).

Contact: hackel@umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Deep mutational scanning (DMS) is a powerful method to assess the

function of thousands of protein genotypes in a massively parallel

fashion (Fowler et al., 2010). These experiments are set up such that

naı̈ve unselected population sequences are compared to a population

with a particular function after a screen or selection. The per-

mutant change of frequency upon selection is computed, which is a

quantitative readout for the selected function. DMS has been

applied to many diverse protein systems involved with binding or

epitope mapping (Wang et al., 2017; Whitehead et al., 2012), en-

zyme catalysis or metabolic pathway flux (Kotler et al., 2018;

Romero et al., 2015; Stiffler et al., 2015), viral inhibition

(Ashenberg et al., 2017), protease susceptibility (Rocklin et al.,

2017) and chaperone engineering (Medina-Cucurella Angélica et al.,

2018). These experiments typically involve comprehensive site satur-

ation libraries, which diversify each residue to all 20 amino acids

and nonsense codons. Recent methods have enabled the creation of

these genetic libraries in rapid and high-throughput manner

(Firnberg and Ostermeier, 2012; Wrenbeck et al., 2016). Future

experiments will start to utilize deeper multi-mutant libraries given

the development of mass-produced low cost oligo pools (Klein et al.,

2016). Furthermore, data repositories like ProtaBank (Wang et al.,

2018) are making DMS data readily available for analysis.

In this work, we describe a new software package, Protein

Analysis and Classifier Toolkit (PACT), which provides workflows

to apply sequence and structural analyses to deep sequencing
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datasets from DMS experiments (Fig. 1). All analyses are performed by

user-shareable protocols that can be customized for any experimental

workflow. Furthermore, it is possible to use some of the included anal-

yses on non-DMS datasets. PACT includes a protocol to process deep

sequencing reads to per-mutation fitness metric values or import exist-

ing mutational datasets calculated from external packages like Enrich

(Fowler et al., 2011; Rubin et al., 2017) or dms_tools (Bloom, 2015).

The PACT fitness protocol replicates the core functionality of these

existing packages with some improvements and differences; however,

PACT goes beyond their scope (Fig. 1). In short, existing software

packages process deep sequencing reads then calculate a metric of per-

variant function. For example, Enrich2 provides an implementation of

a random-effects model that is geared for calculating variant enrich-

ment over multiple time points while combining multiple replicates.

Experiments targeted by the PACT fitness protocol are end-point with

a reference library and a selected library where replicates are processed

separately and compared via correlation statistics. More importantly,

other protocols within the PACT platform are not included within

existing packages. PACT protocols include routines to (i) create, im-

port and combine fitness metric datasets, (ii) compare datasets against

each other and against sequence or structural measurements and (iii)

perform statistical analyses. PACT protocols (Fig. 1) include:

• fitness: the per-variant fitness metric values are calculated from

deep sequencing. Mutation fitness metric data are saved as a

heatmap, column dataset and as a binary encoded Python dic-

tionary file of the entire dataset. Mutation combinations that are

mutually beneficial in multi-site libraries are calculated (Dunn

et al., 2008). A brief comparison to existing software packages is

also included (Note S1).
• classification_features: mutations from PACT fitness datasets are

classified based on z-score or fitness metric values then all se-

quence and structural features are calculated and combined as a

training dataset for used within other protocols (Note S2).
• function_filter: fitness metrics, sequence and structural features

are binned and counted. These same mutations can be scored

against a naı̈ve Bayes classifier trained on the enzyme levogluco-

san kinase (LGK)-WT/LGK.1 and binary filtering (Note S3).
• sequence_homology: mutations are compared to homologous se-

quence site-wise frequency or PSIBlast Position-Specific Scoring

Matrix (PSSM) data (Goldenzweig et al., 2016) (Note S4).
• structure_analysis: the distance to active site, contact number,

distance to surface, distance to interface, (relative) accessible sur-

face area and fraction burial per residue are calculated for a PDB

input (Note S5).
• Shannon_entropy: site-wise Shannon entropy (Kowalsky et al.,

2015) is calculated from enrichment values (Note S6).
• back_to_consensus: the probability of mutation type at consen-

sus or non-consensus residues is calculated using site-wise hom-

ologous sequence frequency or PSIBlast PSSM data (Note S7).
• pact_vs_pact: mutations from fitness datasets are compared

against each other or against available features (Note S8).
• pact_vs_feature: mutations from a fitness dataset are compared

against various features (Note S9).
• tools: additional tools for library creation and FASTQ processing

are accessible via the protocol and the command line (Note S10).

Fig. 1. Relationship of PACT protocols to features, and comparison of scope of existing packages. (A) PACT offers a protocol (fitness) to process DMS deep

sequencing data and calculate the per-mutation fitness metrics for comprehensive single or multiple point libraries. This functionality is replicated in various for-

mats by Enrich, dms_tools and other existing packages. The per-mutation fitness metric data from the fitness protocol or outside packages is imported and made

available for the analysis protocols. Analysis protocols serve three functions: (i) assess the DMS datasets against other DMS datasets or versus sequence or

structural features, (ii) provide a direct method to calculate and output feature measurements and (iii) combine DMS datasets with features to train classifiers or

assess datasets against existing classifiers. Analysis protocols leverage the variance of synonymous codon fitness metrics (Classification) to classify the function

of non-synonymous mutations relative to wild-type. This data is combined with features to provide insight into the effect of mutations on function, and enable

statistical classifier training [inset: the structure of levoglucosan kinase (PDB: 4ZLU) with residue G359 highlighted and the probability of mutational class versus

distance to active site]. (B) Scope of existing DMS tools versus PACT
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Examples are routines to import csv files of mutational fitness

metric data for analysis protocols, split FASTQ files based on

shared start sequence and creation of single-site saturation

primers.

We describe how PACT processes deep sequencing reads into

per-mutation fitness metrics for single-site and multi-site amino acid

libraries. We then detail protocols that apply sequence and struc-

tural analyses to processed deep sequencing datasets. Finally, to

show the utility of PACT we examined published comprehensive

datasets that selected for mutations that enhance stability or activity

of the enzyme LGK to train a naı̈ve Bayes classifier and binary filters

to identify mutations that enhance stability and retain activity via

numerous sequence and structural features. We then test this classi-

fier and filter against a separate enzyme, amidase AmiE. We found

that the filter with the lowest false positive and highest true positive

rate assesses sequence homology, contact number and if the muta-

tion involves proline.

2 Implementation

The minimum runtime requirement is 64-bit Python version 3.4.

PACT is operating system independent and has been tested on

Windows, OSX, Linux and on a distributed Linux cluster.

Recommended hardware is a multi-core processor with 8 GB of

RAM. PACT primarily uses the standard Python library to allow

greater system compatibility; however, some external Python pack-

ages and external programs are required for various protocols.

Required packages are NumPy and SciPy for mathematical opera-

tions and matplotlib for figure generation. External software utilized

by individual features and protocols and instructions to link to these

programs is in Note S11. Individual protocols are Python scripts

that constitute analysis workflows. The main script pact.py loads a

user-defined config text file. This file selects the specific protocol

and provides user customizable options for the protocol. Protocol

workflow descriptions, config file options, inputs and outputs are

explained in Notes S1–S10.

The calculated metric of mutational function in many DMS

experiments is the log2 enrichment of the frequency change of a vari-

ant in the selected (or final) population relative to the reference (or

initial) population (Note S12). Available fitness metrics offered by

the fitness protocol are in Supplementary Table S1 with extended

derivation in Note S12. Also, in experiments where gene length

exceeds sequencing read length, gene sections (called ‘tiles’) are inde-

pendently mutated, screened and sequenced. This approach necessi-

tates the use of fitness metrics that normalize the variant enrichment

using internal and experimental measurements to enable cross-tile

comparisons, which PACT efficiently accomplishes.

One source of error in DMS experiments is in the frequency cal-

culation of each library member. This error can be modeled as a

Poisson process as library members with low counts from depletion

or low abundance have larger errors versus library members with a

larger representation (Supplementary Fig. S1). A minimum read

count threshold in either the reference or selected population is

enforced. For variants with no counts in a population and significant

counts in the other, a conservative count of 1 is added for that vari-

ant to enable calculation of the log2 enrichment. Because the min-

imum error with counting approximates Poisson noise, PACT

calculates the fitness metric variance through propagation of errors

(Klesmith et al., 2015) (Note S12).

To quantify the strength of depletion or enrichment, mutations

are compared to neutral variance, which is approximated from a

Gaussian distribution (Hietpas et al., 2011; Klesmith et al., 2017) of

synonymous wild-type genes (i.e. silent genetic mutants). Per-variant

depletions or enrichments are reported as the number of synonym-

ous standard deviations from wild-type (z-score), and evaluated for

statistical significance using Welch’s t-test. Alternately, analysis pro-

tocols will accept user-defined fitness metrics instead of z-score to

classify mutations. The sample size for any given non-synonymous

variant is approximated by a calculated expectation value for the

number of experiments performed on the variant within the screen

for FACS (Note S13) or for growth (Note S14).

3 Identification of classifiers that predict the
function of mutations

To demonstrate the utility of the PACT platform, we examined pub-

lished comprehensive DMS datasets from the enzymes LGK

(Klesmith et al., 2015), and the amidase AmiE (Wrenbeck et al.,

2017) to discover classifiers using combinations of sequence and

structural features that identify mutations beneficial for activity and

stability with a low false positive rate of deleterious mutations. We

focused on the enzyme LGK as it has two comprehensive datasets,

one starting from the wild-type sequence (LGK-WT) and a second

starting with a more stable yet similarly active triple mutant

(LGK.1). These DMS datasets were complemented with experimen-

tal enzymatic activity and stability measurements for numerous

purified isogenic single-point variants. As the experimental selection

temperature was above the Tm of LGK-WT, enzyme activity assays

of purified isogenic single-point mutants indicated that the majority

of mutations enriched within that selection had increased thermal

stability with a concurrent decrease of enzymatic activity. This result

was opposite of LGK.1 as the starting enzyme Tm was above the se-

lection temperature; therefore mutations enriched in this selection

primarily enhanced enzyme activity. The combined analysis of these

two datasets provides a view into the role of mutations that trade-

off enzyme stability and enzyme activity and form our training set to

predict function.

Our rationale for the current work originates from a recent pub-

lication that leveraged the LGK.1 enzyme activity dataset in combin-

ation with a yeast surface display solubility screen to identify

solubility-enhancing mutations that do not hinder activity (Klesmith

et al., 2017). The term solubility referred to the probability that a

protein is properly folded upon translation, which is a function of

protein aggregation propensity, thermodynamic stability and folding

rate, among other factors. This experimental screen combined with

computational sequence and structural features trained on the

LGK.1 dataset led to the creation of a binary mutation filter that is

able to identify and remove deleterious mutations with a 3% false

positive rate. Herein, we assessed if it would be possible to predict

the function of mutations via purely computational methods with-

out using data informed from an experimental solubility screen

while retaining a similar false positive rate.

We processed the LGK-WT and LGK.1 deep sequencing stabil-

ity/activity datasets using the fitness protocol with the growth fitness

metric. Library coverage and wild-type synonymous statistics are in

Supplementary Table S2. We approximated neutral mutations as

those within 1.5 SD of wild-type synonymous mutations. The aver-

age library fitness metric for both selections is �0.16 at 1.5 SD,

which correlates to a 12% increase (þ1.5 SD) or 10% decrease

(�1.5 SD) in the growth rate of a library variant relative to wild-

type (Supplementary Fig. S2). Within this range, mutations are con-

sidered neutral, while growth above 12% is beneficial and below

Improved mutant function prediction via PACT 2709

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/16/2707/5258100 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1042#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1042#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1042#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1042#supplementary-data


�10% is deleterious. Comparing the LGK-WT and LGK.1 DMS

datasets allows mutations to be classified into nine different stability

and activity categories based on individual variant z-scores

(Supplementary Fig. S3). To validate the classification prediction

categories, we assessed if enzymatic activity and stability measure-

ments from the 15 published isogenic LGK single-point mutation

variants (Klesmith et al., 2015) matched the functional prediction of

the category that they were classified in. Ten out of 15 (67%)

matched our expectations where the measured change in stability or

activity matched the cross-comparison categories (Supplementary

Table S3). Of the five that did not match our expectations, three had

higher activity and one had higher stability than predicted.

Previous work has shown that mutations to any residue seen in

protein homologs reduced the rate of a deleterious mutation on

function as compared to the basal selection rate (Cochran et al.,

2006). We used the consensus protocol to assess mutations to the

consensus residue or any residue observed in sequence homologs at

sites where the wild-type was not the consensus (Supplementary Fig.

S4). The basal rate for deleterious mutation in LGK.1 is 78% where-

as any mutation observed in sequence homologs dropped the rate to

67%. If we limit mutations to sites for which wild-type was not con-

sensus, mutating to any observed homolog mutation or the consen-

sus dropped the deleterious rates to 55 and 39%, respectively.

Furthermore, if we constrain this analysis to surface residues

(Supplementary Fig. S5), the rate of deleterious mutations drops to

23%.

We calculated naı̈ve Bayesian classification probabilities from

the LGK-WT and LGK.1 datasets for the newly developed consen-

sus features (Supplementary Figs S4 and S5) with other sequence

and structural features (distance to active site, contact number, and

PSSM, fraction burial of a residue, and the size and chemical change

of mutation based on distance to active site, contact number and

fraction burial). Previous work indicated that residue size and chem-

ical change did not show power in classification (except mutations

to or from proline) (Klesmith et al., 2017). However, we hypothe-

size that if we bin the mutation types based on burial or location we

could potentially resolve mutation classifications. We reduced the

nine LGK-WT/LGK.1 mutation categories into just three: (i) benefi-

cial z-score >1.5 on the LGK.1 selection or >1.5 on the LGK-WT

and within 61.5 on LGK.1 (as these should be desirable active stabi-

lizing mutations); (ii) neutral on LGK.1 and non-beneficial on LGK-

WT and (iii) deleterious on LGK.1. Feature counts used for prob-

ability generation are in Supplementary Table S4.

To assess generalizability of the naı̈ve Bayes classifier we

assessed all combinations of LGK feature Bayesian probabilities

against published comprehensive fitness metric data of the amidase

enzyme AmiE (Wrenbeck et al., 2017) selected on the two substrates

acetamide (Fig. 2) and propionamide (Supplementary Fig. S6). We

approximated AmiE neutral mutations if they had a fitness metric

that was within 60.15 or � 610% change in growth rate which is

similar to the LGK z-score classification threshold. Single selection

basal rates are listed in Supplementary Table S5. We based our com-

parisons on the predicted combination of beneficial and neutral

mutations as there are significantly more truly beneficial mutations

predicted as neutral than beneficial (Supplementary Fig. S7). The

frequency of identifying a beneficial mutation versus a deleterious

mutations indicated a group of classifier combinations that were pu-

tatively higher performing (Fig. 2A and B, Supplementary Fig. S6

and Tables S6 and S7). This group was also evident if the fraction of

deleterious mutations and fraction of beneficial mutations were

compared between the acetamide and propionamide datasets

(Fig. 2B, Supplementary Fig. S6B).

The best Bayesian classifier—with the lowest deleterious false

positive rate and the maximum beneficial mutations per deleterious

Fig. 2. Bayesian classifier optimization indicates a group of feature combinations with increased predictive power. The predictive performance of all 210 combina-

tions of feature Bayesian probabilities trained on LGK datasets (Supplementary Table S4) was evaluated on fitness data from the AmiE amidase datasets. Each

dot is a combination of feature Bayesian probabilities for mutations predicted to be beneficial or neutral in activity. A subset of feature Bayesian probabilities (red

color, squares; Supplementary Tables S6–S8 and Fig. S6) exhibited a high rate of finding a truly beneficial mutation for AmiE activity on acetamide (A), and a low

rate of finding a truly deleterious mutation between acetamide and propionamide (B) if the mutation was predicted to be beneficial or neutral. This subset shows

similar performance characteristics between the acetamide and propionamide selections. The best Bayesian classifier assesses if the wild-type residue is consen-

sus, if the mutation is consensus, and the natural wild-type homolog frequency
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mutation found—assesses if the wild-type residue is consensus, if the

mutation is consensus, and the natural wild-type homolog frequency.

About 19% of predicted beneficial mutations are actually deleterious

(Supplementary Table S7). Other top features in this group included

the natural homolog frequency of the mutation, and contact number

binned on proline mutations (Supplementary Table S6).

We then wanted to compare this classifier to (i) the computation-

al portion of the previously published (Klesmith et al., 2017) binary

filter: PSSM �0, distance to active site �15 Å, contact number �16

and excluding any proline-involved mutations (‘old filter’); and (ii)

this filter plus features based on the herein research: fraction burial

<0.4 and at sites where wild-type is not consensus (‘new filter’). For

the AmiE acetamide dataset the false positive rate of the old and

new filters were 58 and 31%, respectively. Similarly, for LGK the

false positive rate for the old and new filters is 35 and 9.9%, respect-

ively (Supplementary Table S8).

An alternate way to assess these filtering approaches is to judge

them upon their expected functional change in growth rate. The previ-

ous work classified mutations based on the expected phenotype by bin-

ning mutations as neutral if their fitness metric values were expected to

be �80% of the growth rate of wild-type, slightly deleterious if they

were <80 and �50% of the wild-type growth rate and deleterious if

they were <50% of the wild-type growth rate (Klesmith et al., 2017).

Doing so significantly lowers the basal deleterious rate of each selection

(48 versus 88% for AmiE acetamide, and 34 versus 78% for LGK.1),

however, the corresponding false positive rate also decreased and is

similar to or better than the reported value from the combined yeast

surface display and computational filter screen of 3% for LGK

(Supplementary Tables S5 and S8). The deleterious false positive rate

for the AmiE acetamide dataset was 0.0% for the Bayesian classifier

while the old and new binary filters were 9.1 and 1.8%, respectively.

The resulting false positive rate was 3.6 and 1.4% for the old and new

filter, respectively, for LGK (Supplementary Table S7).

4 Discussion

We built PACT as a software package to aid in the processing and

analysis of DMS experimental datasets. We demonstrated the utility

of processing comprehensive DMS experiments and analysis of fit-

ness metric information to train and build mutational filters that

identify mutations deleterious for enzymatic function. We trained a

naı̈ve Bayesian classifier on published datasets from the enzyme

LGK and assessed generalizability on datasets from the enzyme

AmiE. We identified that classifiers selective for excluding deleteri-

ous mutations utilize features based on sequence homology and con-

tact number binned on proline mutations.

In the most stringent case for the acetamide substrate, the rate of

finding a deleterious mutation via the naı̈ve Bayesian classifier out-

performed the updated binary filter (19 versus 31%) in our test

dataset. While 19% is not perfect, it is an improvement over the

basal rate of 88%. In practical application, the 19% deleterious rate

over the 88% basal rate would lead to 66 less deleterious variants

per 96 tested. In addition, our solely computational filters are com-

parable or better than the previously published combination experi-

mental yeast surface display/computational filter indicating that a

separate experimental screen is not needed if there is sufficient se-

quence and structural homology data available. However, a separate

experimental screen may still be needed depending on the context of

where the protein is being tested. This may be the case where certain

residues are highly optimized for a given organism, but are sub-

optimal in the context of other organisms. Sequence homology

would then not be the best feature.
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