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Abstract

Motivation: Genome-wide chromosomal contact maps are widely used to uncover the 3D organ-

ization of genomes. They rely on collecting millions of contacting pairs of genomic loci. Contacts at

short range are usually well measured in experiments, while there is a lot of missing information

about long-range contacts.

Results: We propose to use the sparse information contained in raw contact maps to infer high-

confidence contact counts between all pairs of loci. Our algorithmic procedure, Boost-HiC, enables

the detection of Hi-C patterns such as chromosomal compartments at a resolution that would be

otherwise only attainable by sequencing a hundred times deeper the experimental Hi-C library.

Boost-HiC can also be used to compare contact maps at an improved resolution.

Availability and implementation: Boost-HiC is available at https://github.com/LeopoldC/Boost-HiC.

Contact: carron@lptmc.jussieu.fr or mozziconacci@lptmc.jussieu.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromosomal conformation capture has originally been developed

to identify sets of DNA segments in close spatial proximity within a

cell nucleus, and thus get an experimental in-vivo access to the gen-

ome 3D organization. It relies on the chemical fixation of chromo-

somal contacts, digestion with a restriction enzyme and subsequent

re-ligation of the cross-linked fragments (Dekker et al., 2002). Next-

generation sequencing techniques brought this protocol to the whole-

genome scale (Hi-C) in cell populations (Van Berkum et al., 2010).

An ever increasing number of datasets is now available, providing

contact counts for the detected pairs of genomic fragments. These

datasets are usually difficult to compare since they can largely vary in

terms of quality and sequencing depth. The highest resolution that

can be achieved is in theory the size of the restriction fragments but

very few datasets reach this resolution in practice. As a stunning ex-

ample of pushing the experimental technique to its limits, Rao et al.

provided the first 1 kb-resolution contact map of the human genome,

obtained by sequencing 4 billion of read pairs (Rao et al., 2014). This

dataset has been used in several studies since its release. Many other

datasets have been produced in other human cell types and other

organisms, but generally at a lower resolution (Schmitt et al., 2016).

In mouse, another very high-resolution dataset has recently been pro-

duced, covering the in-vitro differentiation of mouse neurons (Bonev

et al., 2017). These maps are often interpreted by determining the

position along the genome of 3D structural features such as

Topologically Associated Domains (TADs) boundaries, chromatin

loops and chromosomal compartments (e.g. in Rao et al., 2014).

Many algorithms have been developed to delineate these features of

the 3D genome organization, however their power is hindered by the
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limited resolution of the dataset itself. While in principle the reso-

lution can be improved arbitrarily by increasing the sequencing

depth, this also dramatically increases the financial cost of the experi-

ment. Improving the resolution by computational methods is there-

fore a good option. A method relying on deep neural networks,

HiCPlus, has recently been developed (Zhang et al., 2018). In this

method, contact map enhancement relies on determining more pre-

cisely low contact counts from the contact patterns of the genomic

neighbours. Adopting a different viewpoint, our guideline is to use in-

stead the path-length on the contact graph (Morlot et al., 2016) as a

quantitative index indicating how low-confidence contact counts are

to be reinforced. The shorter the path on the contact graph between

two genomic sites, the higher should be their contact count., In this

scheme, long-range contact counts, of low confidence in the original

matrix, are derived from the counts of the subset of lower-range

higher-confidence contacts forming the shortest path (Fig. 1A). The

numerical implementation of this principle, Boost-HiC, is thus

expected to dramatically improve the accuracy, reliability and usabil-

ity of low-resolution contact maps.

2 Materials and methods

2.1 Hi-C sequence alignment
We used a previously published dataset (Bonev et al., 2017) from

mouse embryonic stem cells (ESCs) and cortical neurons (CN) avail-

able as GSE96107. Hi-C reads were processed using the mm9 refer-

ence genome with HiC-Pro (Servant et al., 2015). Bowtie2

(Langmead and Salzberg, 2012) was used with default pipeline par-

ameter—very-sensitive -L 30 –score-min L,-0.6,-0.2 –end-to-end –

reorder. We analyzed replicates for each dataset at a resolution of

10 kb separately, before merging them at the end of the HiC-Pro

pipeline. This merged array defines the raw contact map, M.

2.2 Hi-C filtering
The finite experimental resolution amounts to discretize the genome

into bins of size equal to the resolution. For each bin, the number of

contacts involving a genomic locus in the bin was computed, hence-

forth termed the contact count of the bin. Hi-C maps were then fil-

tered in two steps. First, bins with vanishing contact counts were

removed. In a second step, the distribution of non-zero contact

counts was fitted using a Gaussian Kernel Density function

(Pedregosa et al., 2011) with parameter kernel¼‘gaussian’,

bandwidth¼2000. Since Gaussian Kernel Density function returns

the logarithm of the distribution, we took the exponential of the out-

put. The resulting distribution was then used to identify bins for

which the contact count has a value below 5% and above 95% of

the mean contact count. These bins were removed from the contact

map. Filtered datasets were finally normalized using the Sequential

Component Normalization (SCN, Cournac et al., 2012) so that the

L1-norm of each column/line ¼1. The component Cij of the resulting

SCN-normalized matrix, henceforth termed the normalized contact

count, is the conditional probability that the fragment i establishes a

contact with fragment j given that it establishes one contact. Note

that this normalization produces contact maps that can be compared

and plotted with the same colour-scale.

2.3 Contact probability curve
The contact probability curve P(s) as a function of the genomic dis-

tance s is computed as the mean normalized contact count along the

Fig. 1. (A) Schematic explanation of our shortest-path enhancement algorithm on Hi-C maps: the low-confidence long-range contact between sites i and j (white dot)

is enhanced using the information on shorter-range higher-confidence contacts (black dots) with intermediary nodes (here k). On the contact graph, the shortest path

between i and j goes through k, and the enhanced contact value is related to its length. (B) Contact probability curve P(s) of ESCs from their Hi-C map downsampled

to 10% of contacts. The blue points display the contact probability curve from the downsampled map. Yellow line displays the curve after information enhancement

by means of our shortest-path method. The red line displays the improved contact probability curve at the end of Boost-HiC algorithm, including the step of re-normal-

ization. (C)–(F) Panels display SCN-normalized contact maps (mESC, for a region on chromosome 16 located between 100 kb and 29.8 Mb) at different downsampling

ratios: 100, 10, 1 and 0.1% of contacts retained. The SCN normalization applied with the L1 norm ensures that the sum of each line and column is converging to one.

The same colour map can be used for all maps. Upper triangular parts display the raw contact map at different downsampling ratios. Lower triangular parts show the

map improvement after implementation of Boost-HiC. Colourmap in log10 scale. (G) Spearman rank correlation (in red) between the initial contact map (100%) and

downsampled-then-enhanced maps for different downsampling ratios, as a function of the parameter a used in Boost-HiC algorithm. The blue line shows the fraction

of updated elements between the downsampled map and the boosted map. From top to bottom, we consider downsampling to 10, 1 and 0.1% of the initial contacts.

The shaded beige regions, manually determined, emphasize the optimal ranges for a. (Color version of this figure is available at Bioinformatics online.)
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secondary diagonal located at a distance s from the main diagonal.

Since there are less contacts between bins which are more distant

along the genome than between closer ones, contacts are averaged

over a number of diagonals that increases with s according to a geo-

metric progression (log-binning) of scale factor 1.01. When neces-

sary, we denote PCðsÞ the contact probability curve associated with

the (normalized) contact map C.

2.4 Boost-HiC implementation
Boost-HiC algorithm operates in several steps. The initial normal-

ized contact map C is first transformed element-wise into a prelimin-

ary distance matrix do as described in Lesne et al. (2014):

do
ij ¼ ðCijÞ�a

where a is a tunable exponent. This preliminary distance matrix suf-

fers from two major drawbacks. First, since the majority of contact

counts in the matrix C are zeros, the matrix do contains many un-

defined elements. Second, calling it a distance matrix is improper in

the sense that its elements do not necessarily satisfy the triangular in-

equality (see Supplementary Fig. S1A). For these two reasons, a

shortest-path algorithm (Floyd, 1962) is then run on do to get a

bona fide distance matrix d. The distance dij between any pair of

loci i and j is defined as the length of the shortest path connecting

them on the weighted contact graph, in which each edge of the

graph is given a length equal to the do—distance between its ends

(Morlot et al., 2016). The resulting matrix d contains elements

which are now all defined, non-zero and fulfilling the triangular in-

equality (see Supplementary Fig. S1B). This complete distance ma-

trix d is then turned element-wise into a densely filled contact map

Fo according to the formula:

Fo
ij ¼ ðdijÞ�1=a:

This formula is the inverse of the formula used to compute the

preliminary distance matrix do from the normalized contact counts.

It thus restores quantities with a similar meaning, while now giving

non-vanishing values to elements equalling zero in the matrix C.

The same value of a is used in the full range of genomic distances in

order to minimize the number of tunable parameters. The number

of updated elements, Nr, is computed by counting the number of ele-

ments (i, j) which have not the same value in C and Fo. In order to

optimize the value of the a exponent, we started with a small value

(e.g. 0.05) and then increased this value by step of 0.01 and com-

puted Nr. When Nr started to increase, meaning that we start to

spuriously change non-zeros values of the initial contact map (see

Fig. 1G), we stopped the procedure and kept this value for the expo-

nent a.

Since the contact probability P(s) as a function of the genomic

distance s may change between C and Fo, we have to re-adjust the

contact matrix so that the contact probability curve matches exactly

the one computed for C. To do so, each contact Fo
ij for bins i and j

separated by a genomic distance s ¼ ji� jj is multiplied by the ratio

PCðji� jjÞ=PFo ðji� jjÞ (see Fig. 1B). The final matrix is SCN-normal-

ized at the end of the process to ensure that the sum of lines/columns

¼1, yielding normalized contact counts.

The code implementing Boost-HiC for a given value of a is avail-

able at https://github.com/LeopoldC/Boost-HiC.

Note that the step of dimensional reduction currently involved in

3D chromosomal reconstruction methods [e.g. in ShReC3D Lesne

et al. (2014) or BACH Hu et al. (2013)] is not included in Boost-

HiC, since it would result in a loss of information. Adapting Boost-

HiC procedure to another reconstruction method than ShReC3D,

e.g. BACH, would require to carefully dissect the original algorithm

in order to exclude the reduction step.

2.5 HiCPlus implementation
HiCPlus has been used as described in Zhang et al. (2018). We

modified the original code in order to apply the algorithm to the

whole contact map whereas it was originally developed to enhance

short-range contacts only. The version of the code we used is avail-

able at https://github.com/jbmorlot/HiCPlus/.

2.6 Downsampling
In order to quantify the efficiency of our algorithm, we tested

whether it is capable of inferring the full information available in a

deeply-sequenced contact map, from a map with less contacts. To

implement this test, we sampled the raw contact map using a bino-

mial probability. For every couple of bins i and j, the number of con-

tacts Mij between these two genomic regions in the raw map is

replaced with a random number generated from a binomial distribu-

tion of parameters Mij and k. We successively used three different

values of k: 0.1, 0.01 and 0.001, corresponding respectively to

downsampling the raw map to 10, 1 and 0.1% of the contacts. This

parameter k, controlling the percentage of contacts retained, is

henceforth termed the downsampling ratio.

To validate our downsampling method, we used raw reads from

ESCs replicate 4. We use two different downsampling procedures:

either by using the read sampling programme seqtk (Li, 2018) before

running the mapping procedure, or directly on the contact counts

obtained after mapping as described above (Supplementary Fig. S2).

Resulting contact maps were compared with the original map using

both eigenvector similarity (see below compartment determination)

and Spearman rank correlation (Supplementary Fig. S3A and B). We

also confirmed that the slope of the contact probability curve P(s) is

sensitive neither to the downsampling strategy nor to the downsam-

pling ratio, which only affects the level of its fluctuations at large

genomic distance (Supplementary Fig. S3C and D).

2.7 Compartments and TADs
Compartments were obtained as in Lieberman-Aiden et al. (2010).

First, SCN-normalized contact maps were transformed component-

wise to their observed/expected ratio, i.e. each component is divided

by the average over the diagonal line to which it belongs.

Correlation maps were obtained by computing the correlation be-

tween the lines of these transformed matrices, namely the (i, j) com-

ponent of the correlation map is defined as the correlation between

lines i and j. The sign of the components of the first eigenvector of

the correlation map was used to infer two compartments, one com-

prising the bins for which the eigenvector components were positive,

the other the bins for which the components were negative. Which

one is the A compartment (active compartment) was settled by com-

puting the gene density in each compartment and assigning the label

A to the highest-density compartment, the other one being the in-

active B compartment.

To infer the position of TADs borders, we computed a TAD bor-

der score for each position p along the genome, with a resolution of

10 kb. This score is obtained by summing the contact map elements

over a square region of size h with its lower-left corner located on

the main diagonal, at the position p. We plotted the TAD border

score along the genome by sliding the square along the diagonal of

the contact map (Kruse et al., 2016). We chose here a size h of

300 kb. Local minima of this score determined the TAD borders

(Smith et al., 2016). Similar TAD borders were obtained using two
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other state-of-the-art methods: the Insulation score method

(Crane et al., 2015) and TopDom (Shin et al., 2016) (Supplementary

Fig. S4).

3 Results and discussion

3.1 Boost-HiC partially restores the resolution of

downsampled contact maps
Hi-C datasets are generally processed in the form of contact maps,

in which the component associated to a pair of loci is determined by

normalizing the number of times they have been found together in

the Hi-C library, henceforth termed the normalized contact count

(Cournac et al., 2012). At fine resolution, i.e. when contacts are

summed over small genomic regions (‘bins’), this number is fre-

quently ¼0 due to the finite sequencing depth. The issue is currently

circumvented by working at a lower resolution, by aggregating the

restriction fragments into larger and less numerous bins. We propose

a computational alternative, Boost-HiC, to infer the missing fine-

resolution contact counts from the knowledge of the measured con-

tacts, and get a complete fine-resolution contact map. The procedure

is based on the computation of shortest paths between any pair of

genomic loci on the contact network, a method that we introduced

previously for 3D reconstruction (Lesne et al., 2014; Morlot et al.,

2016). More precisely, we first compute the contact probability P(s)

as a function of the genomic distance s between two loci, for the nor-

malized contact map C. We also transform the contact map, with

elements Cij, in a distance map with elements

do
ij ¼ ðCijÞ�a

where the exponent a is a parameter to be later optimized. The same

value of alpha is used in the full range of genomic distances to min-

imize the number of tunable parameters. This initial distance map

do is used to define a weighted contact network, where the link be-

tween the loci i and j is given a length do
ij. We then compute an

updated distance map using a shortest-path algorithm: the distance

dij between any two loci i and j is set to the minimal distance be-

tween nodes i and j, i.e. the length of the shortest path relating i and

j on the contact graph. In this way we get a full distance map d with

finite elements dij, even when the measured contact frequency be-

tween the loci i and j vanishes. This distance map is then converted

into a contact map Fo by inverting the above relation element-wise,

namely Fo
ij ¼ ðdijÞ�1=a. Since short-range contact values are often

used to infer longer-range contact values, the contact probability

curve may have changed after the procedure. A proper element-wise

rescaling of Fo restores the original contact probability curve P(s)

(see Section 2 and Fig. 1B). The resulting map is finally normalized

using the SCN procedure (Cournac et al., 2012) to give the final

‘boosted’ contact map F. This map F lies at the same fine resolution

than the original one, but originally vanishing elements are now

replaced with their inferred values.

To assess the capabilities of our algorithm, we generated three

contact maps downsampled to 10, 1 and 0.1% of the initial con-

tacts, from a high-resolution contact map of a region of mouse chro-

mosomes 12, 16 and 19 at 10 kb resolution (see Section 2). As

expected, as the downsampling ratio increases, more and more ma-

trix elements become ¼0 in the downsampled matrix (Fig. 1C–F,

upper triangles). We then constructed the corresponding boosted

maps (Fig. 1C–F, lower triangles). In order to quantitatively compare

the boosted maps and our objective, i.e. the original high-resolution

version, we computed the Spearman rank correlation between the

boosted maps and this original map, as a function of the tunable

parameter a. While some other methods have been developed

to compare contact maps from different origins (Sauria et al.,

2015; Yang et al., 2017), this straightforward measure is apt to com-

pare downsampled maps with the original one. We found that the

downsampled maps displayed a reduced Spearman rank correlation

of 0.51, 0.26 or 0.11 for downsampling ratios ¼10, 1 or 0.1%, re-

spectively. This correlation drop was found to be less dramatic

when using Pearson correlation, with values of 0.91, 0.83 or 0.34,

respectively. The reason for this discrepancy is that Pearson correl-

ation is mainly driven by the high contact count values found close

to the diagonal, while being quite insensitive to variations in the

lower counts corresponding to long-range contacts. In contrast, the

Spearman rank correlation gives a similar importance to all the ele-

ments of the contact map and is therefore a better choice (Yang

et al., 2017). We then applied Boost Hi-C to the downsampled maps

and found an important increase in Spearman rank correlation

when a is chosen between 0.51 and 0.59 for the boosted maps

obtained from the map downsampled to 10% of the contacts, be-

tween 0.26 and 0.51 for a downsampling ratio of 1%, and between

0.11 and 0.47 for a downsampling ratio of 0.1%, as shown on

Figure 1G. Pearson correlation remained ¼0.94, or increased from

0.86 to 0.90 and from 0.51 to 0.76, respectively.

In comparison, HiCPlus (Zhang et al., 2018), which relies on a

deep-learning approach where contacts are enhanced using the in-

formation contained in the contacts established by the adjacent sites

along the genome, achieves Spearman rank correlation values of

0.59, 0.44 and 0.34. Boost-HiC thus offers a better improvement in

this case. HiCPlus was specifically designed for enhancing short-

range contacts, whereas Boost-HiC mostly improves low-count ele-

ments corresponding to long-range contacts. To illustrate this be-

haviour, we computed the Spearman rank correlation between the

diagonal lines of the original full map and the downsampled maps

before and after application of Boost-HiC, as a function of the gen-

omic distance (recalling that the distance between a diagonal line

and the main one is precisely the genomic distance). While the cor-

relation between the full map and raw downsampled maps continu-

ously decreases with increasing genomic distance, boosted maps

display a higher correlation with the full map for intermediate gen-

omic distances and an improved correlation at long ranges

(Supplementary Fig. S5).

3.2 Optimizing the parameter a
The different values of the Spearman rank correlation obtained at

increasing values of the tunable parameter a showed that unless a is

chosen below 0.1 or above 1, the choice of its value has a mild effect

on the enhancement efficiency, e.g. Spearman rank correlation

changes from 0.53 to 0.58 for a downsampling ratio of 10%,

Figure 1G. The value of a yielding the most accurate recovery of the

initial map ¼0.25, 0.5 and 0.6 for downsampling ratios ¼10, 1 and

0.1%, respectively, hence it is not obvious to assess the value to be

used in a practical case. The range of optimal values for a increases

when the sequencing depth decreases (mimicked here by decreasing

the downsampling ratio). For low a values, only vanishing elements

of the downsampled matrix are changed into non-zero values in the

boosted matrix (Supplementary Fig. S6). When a increases, the num-

ber of matrix elements that are updated by Boost-HiC procedure

increases and non-zero elements (close to the diagonal, correspond-

ing to short-range contacts) are also modified. In order to see

whether the optimal value for a depends on this number of updated

elements, we plotted the number of matrix elements that are reas-

signed as a function of a value for three different downsampling
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ratios (10, 1 and 0.1%). This analysis showed that for all three

downsampling ratios, the optimal value of a corresponds to the

updating of vanishing elements only, i.e. all the zeros and few non-

zeros elements (Fig. 1G).

This gives a way to choose an optimal a value in real cases,

where we have only access to sparse data. We therefore imple-

mented a search procedure for the optimal a, which corresponds to

a re-assignment of all the zeros and 10% of the non-zeros elements

only. Since this optimization step for a can be long for large matri-

ces, we propose in this case to estimate the optimal a based on the

sparsity of the matrix. For low-sparsity maps (i.e. lower than 0.9) an

a value of 0.25 works well whereas for high-sparsity maps (i.e.

higher than 0.99) a should be chosen close to 0.6. For intermediate

sparsity values, a should be taken between those two bounds.

3.3 Boost-HiC enables the precise determination of

compartments from low-resolution maps
As the contact patterns vanish in downsampled maps (Fig. 1C–F),

the detection of A/B compartments using the state-of-the-art proced-

ure is accordingly impaired. At a downsampling ratio ¼0.1%, com-

partments cannot be identified anymore (Fig. 2A). When the Boost-

HiC procedure is applied to the downsampled maps, the detection of

these structural features is restored, showing the ability of our

computational strategy to reliably detect 3D features from sparse

data (Fig. 2B). The algorithm also showed good performance on full

chromosome contact maps (Supplementary Fig. S7). Determination

of the bins that are more prone to a change in compartment assign-

ment upon downsampling showed that they are usually found in

smaller compartments (Supplementary Fig. S8). Using HiCPlus to en-

hance the downsampled maps also resulted in a partial recovery of

the compartments (Fig. 2C). All these results are summarized in

Figure 2D, which displays the fraction of bins that are attributed to a

correct compartment (i.e. as determined from the high-resolution

map), for different downsampling values and enhancement methods.

Boost Hi-C robustly allows a better prediction of compartments from

low-resolution maps.

We took further advantage of our downsampling methodology

to compute the finest resolution that can be achieved in determining

compartments, given the total number of reads in a chromosomal

contact map (Supplementary Fig. S9). Our results on chromosome

19 showed that without Boost-HiC, even a resolution of 100 kb can-

not be attained with 105 contacts, whereas compartments can be ef-

ficiently determined at 40 kb with a similar number of contacts after

application of Boost-HiC (Supplementary Fig. S9C and D).

On the other hand, as TADs are determined from short-range

contacts, the TAD border score is not (or very mildly) modified by

Boost-HiC procedure, hence TAD detection is not affected (Fig. 2E).

In contrast, HiCPlus does change the signal at short scales but the

positions of TAD borders given by the minima of the TAD border

score are still properly recovered.

3.4 Boost Hi-C enables high-resolution comparison

between contact maps
We finally assessed the performance of Boost-HiC procedure for

comparing contact maps obtained in different biological conditions.

The comparison is usually done by computing the element-wise log-

ratio of two such maps. In order to be informative, this comparison

could only be done at a resolution for which the signal-to-noise ratio

is high. On Figure 3, we compare two contacts maps from two dif-

ferent cell types, mouse ESCs and CN (see Materials and Methods),

at different sequencing depths, with and without using Boost-HiC.

A

D E

B C

Fig. 2. (A) Profile along the genome of the first eigenvector of mouse ESC cor-

relation map, for a region on chromosome 16 located between 100 kb and

29.8 Mb, at different downsampling ratios: 100, 10, 1, 0.1% (from top to bot-

tom). (B) Similar profiles computed after application of the Boost-HiC algo-

rithm. (C) Similar profiles computed after application of HiCPlus algorithm

(Zhang et al., 2018). (D) Fraction of genomic regions attributed to the correct

compartment, i.e. the compartment derived from the initial map (100%),

when starting from downsampled maps, without enhancement (raw maps)

or using different enhancement methods, for downsampling ratios ¼10, 1

and 0.1%, as indicated below the barplot. (E) TAD border score along the gen-

ome (from 13.98 to 24.35 Mb on chromosome 16). The blue line displays the

score obtained for the initial contact map, i.e. comprising 100% of the con-

tacts. Red and yellow lines correspond to the contact map downsampled to

10% enhanced with Boost-HiC and HiCPlus methods, respectively. (F) Same

as panel (E) for a downsampling ratio of 1%. (Color version of this figure is

available at Bioinformatics online.)

A

B

Fig. 3. Comparison of contact maps of CN and ESCs. The figure displays the

log2-ratio between CN and ESC contact maps, before (left panels) and after

(right panels) application of Boost-HiC procedure. A null element in one map

will give an infinite value in the log2-ratio. (A) Log2-ratio for maps without

downsampling. (B) Log2-ratio for maps downsampled to 10%
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These maps represent only a sub-region of mouse chromosome 16,

however many pairwise contacts between 10 kb bins are equal to 0

in in a typical Hi-C experiment, even at the highest coverage

(Fig. 3A). When computing the log-ratio, these elements of the ratio

map will therefore be undefined, as they will be equal to 6 infinity (in

green and yellow on Fig. 3, left panels). In contrast, when the maps

have been complemented with Boost-HiC prior to this differential

analysis, these elements are now endowed with a finite value (in red

and blue on Fig. 3, right panels). As can be expected, this improve-

ment is even more pronounced at low resolution (e.g. at 10% down-

sampling in Fig. 3B).

4 Conclusion

Boost-HiC is an efficient computational method to enhance low-

resolution chromosomal contact maps. The resulting maps give a

high-resolution access to chromosomal compartments. Boost-HiC

procedure also improves the identification of differential contacts

between two conditions.
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