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Abstract

Motivation: Cardiovascular disease is the primary cause of death globally accounting for approxi-

mately 17.7 million deaths per year. One of the stakes linked with cardiovascular diseases and

other complications is hypertension. Naturally derived bioactive peptides with antihypertensive

activities serve as promising alternatives to pharmaceutical drugs. So far, there is no comprehen-

sive analysis, assessment of diverse features and implementation of various machine-learning

(ML) algorithms applied for antihypertensive peptide (AHTP) model construction.

Results: In this study, we utilized six different ML algorithms, namely, Adaboost, extremely

randomized tree (ERT), gradient boosting (GB), k-nearest neighbor, random forest (RF) and support

vector machine (SVM) using 51 feature descriptors derived from eight different feature encodings

for the prediction of AHTPs. While ERT-based trained models performed consistently better than

other algorithms regardless of various feature descriptors, we treated them as baseline predictors,

whose predicted probability of AHTPs was further used as input features separately for four differ-

ent ML-algorithms (ERT, GB, RF and SVM) and developed their corresponding meta-predictors

using a two-step feature selection protocol. Subsequently, the integration of four meta-predictors

through an ensemble learning approach improved the balanced prediction performance and model

robustness on the independent dataset. Upon comparison with existing methods, mAHTPred

showed superior performance with an overall improvement of approximately 6–7% in both bench-

marking and independent datasets.

Availability and implementation: The user-friendly online prediction tool, mAHTPred is freely ac-

cessible at http://thegleelab.org/mAHTPred.
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1 Introduction

Hypertension (HT) known as high blood pressure is the most com-

mon global health concern that affects 25% of the population and

its occurrence increases with age (Chockalingam et al., 2006).

Besides heart-related diseases, HT can also lead to other abnormal-

ities like renal failure, multi-infarct dementia, amputation and HT

retinopathies (Varounis et al., 2016). Due to its high prevalence and

detrimental effects, it has been necessitated to discover novel drugs

and treatments to reduce or eliminate HT-related repercussions.

Currently, there are a number of effective drugs available in the mar-

ket for the treatment of HT, such as alpha- and beta-blockers, angio-

tensin-converting enzyme (ACE) inhibitors, angiotensin-II receptor

blockers, calcium channel blockers, diuretics, peripheral adrenergic

inhibitors, renin inhibitors and vasodilators (Puchalska et al., 2015).

However, these drugs induce notable side-effects, including cough,

dizziness, fatigue, headaches, hyperkalemia, hypotension, impaired

taste, increased potassium level, leg edema and skin rashes (Husserl

and Messerli, 1981). Therefore, it remains challenging to design and

deliver safer drugs for prevention and treatment of HT.

The renin–angiotensin system that plays a pivotal role in regulat-

ing arterial pressure is linked with blood pressure control. Renin

converts angiotensinogen to the decapeptide angiotensin I, which

further undergoes proteolytic cleavage by ACE to biologically active

octapeptide, angiotensin II (Dostal and Baker, 1999; Hong et al.,

2008). Angiotensin II plays a vital role in vasoconstriction, stimu-

lates aldosterone production and increases sodium and fluid reten-

tion. Thus, inhibition of these enzymes aid in reducing blood

pressure. Several bioactive peptides that inhibit angiotensin I, ACE

and angiotensin II type I receptor in the cardiovascular system help

in the prevention and treatment of HT (Hong et al., 2008). These

bioactive peptides could be extracted from plant and animal sources,

including milk and dairy products, pork, meat, fish, blood, ovalbu-

min, rice, wheat, potato, cereal, peas, garlic, etc. (Dostal and Baker,

1999). Such identification of bioactive peptides as antihypertensive

peptides (AHTPs) led to the implementation of peptides as safe and

effective drugs in the treatment of HT (Bhat et al., 2017; Jakala and

Vapaatalo, 2010; Majumder and Wu, 2014; Puchalska et al., 2015).

Moreover, due to the laborious and time-consuming experimental

procedures, it is compelling to develop an effective computational

approach for classifying available peptides as AHTP or non-AHTP.

In the recent decade, few computational studies (summarized

below) have shown the potency of machine-learning (ML)

approaches in AHTP classification. Initially, Wang et al. built

QSAR models of ACE-inhibitor oligopeptides based on G-scale

descriptors using partial least square (PLS) regression method

(Wang et al., 2011). The drawback of this method is its applicability

for the prediction of inhibitory activity of tiny peptides (i.e. di- and

tripeptides) only. In 2015, Kumar et al. developed four different

model types for predicting AHTPs with varied lengths [i.e. tiny (di-

and tripeptides), small (tetra-, penta- and hexapeptides), medium

(sizes ranging from 7 to 12) and large peptides (greater than 12

amino acids)] using ML approaches (Kumar et al., 2015b). For tiny

peptides, SVM-based regression models were developed using chem-

ical descriptors, and correlations of 0.701 and 0.543 were obtained

for di- and tripeptides, respectively. For smaller peptides, SVM-

based classification models were built and accuracies of 76.67,

72.04 and 77.39% were attained for tetrapeptides, pentapeptides

and hexapeptides, respectively. Similarly, in the case of medium and

large peptides, SVM-based classification models were developed

using amino acid compositions, and maximum accuracies of 82.61

and 84.21% were obtained. Also, a web-based platform, AHTpin, a

web-based platform, was established for predicting, designing and

screening of AHTPs. Recently, another paper on AHTPs prediction

using ML approaches was published (Win et al., 2018), where the

authors developed classification models based on varied combina-

tions of amino acid, dipeptide and pseudo amino acid composition

descriptors using random forest (RF) approach and this method

showed marginal improvement over AHTpin. Moreover, the feature

importance analysis highlighted the significance of Proline and non-

polar amino acids at the carboxyl terminal and the importance of

short peptides for robust activity as well. Additionally, an online

web server, PAAP, was developed for the proposed model.

Although the above-mentioned methods produced encouraging

results and stimulated research on AHTP prediction, there are cer-

tain drawbacks associated with these approaches which are as

follows: (i) only limited features have been utilized by the state-of-

the-art methods, further emphasizing that other potential features

yet remain to be defined; (ii) exploration of several ML algorithms

on the same benchmarking dataset is necessitated and preference of

an appropriate algorithm for a specific problem (AHTP prediction)

rather than selecting ML algorithm randomly or choice of interest

(employed in the existing methods); and (iii) embodiment of redun-

dant features in model development decreases the performance.

Thus, to eliminate redundant features and subsequently enhance the

prediction performance, feature selection is usually required.

However, the above-mentioned methods failed to adopt these strat-

egies. Therefore, novel and competent computational approaches

are necessitated to address the mentioned limitations to provoke

more accurate models for efficient AHTPs prediction.

Here, we developed mAHTPred, a new meta-predictor for the

identification of AHTPs. Firstly, we applied a feature representation

learning scheme to extract informative features (51 features based

on probabilistic information) from diverse sequence-based descrip-

tors, including amino acid composition (AAC), amino acid index

(AAI), binary profile features (BPF), composition-transition-

distribution (CTD), dipeptide composition (DPC), other features

(OF), overlapping property features (OVP) and twenty-one-bit fea-

tures (TOB). Secondly, we inputted 51 features separately into four

different ML algorithms [extremely randomized tree (ERT), gradi-

ent boosting (GB), RF and SVM] and developed their corresponding

optimal meta-predictor using a two-step feature selection protocol.

Finally, we integrated these four ML-based meta-predictors into an

ensemble model for the final prediction. Comparative results with

the existing methods on benchmark and independent datasets

showed that mAHTPred improvement is significant. To the best of

our knowledge, our study is the first meta-based approach in the

prediction of AHTPs. Henceforth, we highly anticipate that our

work will instigate the development of novel computational

approaches and also will facilitate experimentalists in the discovery

of novel AHTPs.

2 Materials and methods

The mAHTPred methodology (Fig. 1) consists of five major steps: (i)

construction of benchmarking and independent datasets; (ii) feature

extraction that covers several aspects of sequence information; (iii)

feature representation learning scheme; (iv) construction of a meta-

predictor using two-step feature selection strategy [i.e. feature rank-

ing and sequential forward search (SFS)]; and (v) construction of the

final model for the classification. Each of these major steps has been

detailed in the following sections.
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2.1 Construction of benchmarking and independent

datasets
To develop a prediction model, we considered the same non-redun-

dant dataset as originally proposed in (Kumar et al., 2015b) that

consisted of peptides ranging from dipeptides to larger (>13 amino

acid) peptides. In this study, we excluded peptides whose lengths

were < 5 amino acid residues due to the difficulty in generating in-

formative features for the shorter sequences. The remaining peptides

were considered as the benchmarking dataset. Our final balanced

benchmarking dataset constitutes an equal number of AHTPs (913)

and non-AHTPs (913). In case of AHTPs, all the sequences are ex-

perimentally validated ones derived from the publicly available data-

bases AHTPDB (Kumar et al., 2015a) and BIOPEP (Iwaniak et al.,

2016; Minkiewicz et al., 2008). Due to the lack of experimentally

validated non-AHTPs, random peptides generated from Swiss-Prot

proteins were considered as negative ones. This approach of consid-

ering random sequences as negative dataset has been routinely used

in peptide-based prediction methods due to the chances of

finding random sequences as positive ones are very minimal

(Agrawal et al., 2018; Chen et al., 2016; Manavalan et al., 2017,

2018d; Sharma et al., 2013; Usmani et al., 2018a; Wei et al.,

2018c).

To evaluate the performance of our method with the existing

tools, we constructed a non-redundant independent dataset. Firstly,

we extracted experimentally validated AHTPs by manual curation

from various literatures (Win et al., 2018; Yi et al., 2018) and data-

bases, including, AHTPDB (Kumar et al., 2015a) and BIOPEP

(Iwaniak et al., 2016; Minkiewicz et al., 2008). Furthermore, ran-

dom peptides generated from the Swiss-Prot were considered as

negative samples. Here, the random peptides similar to AHTPs were

removed and considered the remaining ones as non-AHTPs.

Subsequently, we applied CD-HIT to remove the sequences which

shares a sequence identity of >90% in the independent dataset

against the sequences in the benchmarking dataset. Finally, we

obtained 386 AHTPs and 386 non-AHTPs.

2.2 Feature representation
Depiction of a peptide sequence (P) is as follows:

P ¼ R1R2R3 . . . : Rn (1)

where R1, R2 and R3 respectively denote the 1st, 2nd and 3rd resi-

dues, respectively, in a peptide P and so on. n denotes the length of

the peptide sequence. Each residue (Ri) in a peptide belong to the

standard amino acid. To construct an ML model, peptides with

diverse-length were formulated as fixed-length feature vectors. Since

the feature extraction influences the performance of the prediction

model, we exploited various compositions, hybrid features and pro-

files that includes several facets of sequence information as detailed

below:

Amino acid composition (AAC)

AAC is the percentage of standard amino acids with a fixed

length of 20 features (Liu, 2017). Formulation of AAC is as follows:

AACðPÞ ¼ ðV1; V2; V3; . . . . . . ;V20Þ (2)

where Vi ¼ Ri

n i ¼ 1; 2; 3; . . . ; 20Þð is the percentage of the com-

position with amino acid type i, Ri is the quantity of type i observed

in the protein.

Dipeptide composition (DPC)

DPC is the rate of dipeptides normalized by all possible dipeptide

combinations with a fixed length of 400 features (Agrawal et al.,

2018; Dhanda et al., 2017; Kumar et al., 2018). Formulation of

DPC is as follows:

DPCðPÞ ¼ ðV1; V2;V3; . . . . . . ;V400Þ (3)

where Vi ¼ Ri

n i ¼ 1; 2; 3; . . . ; 400Þð is the percentage of the com-

position with dipeptide type i and Ri is the quantity of type i appear-

ing in the protein.

Composition-transition-distribution (CTD)

CTD is employed to delineate the global composition of amino

acid property (Dubchak et al., 1995) for a given protein or peptide

sequence. Standard amino acids are divided into three different clus-

ters, such as hydrophobic, neutral and polar. Composition (C) com-

putes the percentage composition values of the above three different

clusters from a given peptide sequence. Transition (T) computes per-

centage frequency of a specific property of an amino acid progressed

by another property. Distribution (D) constitutes five values for

each of the three groups and determines the percentage of a target

sequence length within which 25, 50, 75 and 100% of the amino

acids of a specific property are situated. A more detailed explanation

for this calculation can be found in these studies (Li et al., 2006;

Zhang et al., 2017). CTD engenders twenty-one features for each

physicochemical property. Furthermore, seven different physico-

chemical properties (charge, hydrophobicity, normalized van der

Waals volume, polarity, polarizability, secondary structure and solv-

ent accessibility) yield a sum of 147 features.

Amino acid index (AAI)

The AAIndex database contains various biochemical and physi-

cochemical properties of amino acids (Kawashima et al., 2007).

Recently, Saha et al. (2012) identified eight high quality AAIs by

clustering 566 AAIs present in the AAIndex database, whose

accession codes in the AAIndex database are BIOV880101,

BLAM930101, CEDJ970104, LIFS790101, MAXF760101, NA

KH920108, TSAJ990101 and MIYS990104 (Liu et al., 2015).

These high-quality indices are encoded as 160(¼20�8)-dimensional

vectors from the target peptide sequence. However, the average of

these eight high-quality AAIs for each amino acid (a 20-dimensional

vector) was used as an input feature to minimize the computational

time.

Fig. 1. Overview of the proposed methodology for predicting AHTPs that

involved the following steps: (i) construction of benchmarking and independ-

ent dataset; (ii) extraction of 8 different feature encodings that characterize

those peptides in different ways and generation of 51 feature descriptors; (iii)

generation of 51-dimensional feature vector using feature representation

learning scheme; (iv) ranking the 51-dimensional feature vector using RF al-

gorithm; (v) generation of the optimal meta-predictor model using sequential

forward search; (vi) construction of the final prediction model by integrating

four meta-predictors that separates the input into putative AHTPs and non-

AHTPs
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Other features (OF)

In addition to the above composition, other features are: (i) abso-

lute charge per residue ( ðRþ K�D� EÞ=n� 0:03
�� ��); (ii) aliphatic

index (i.e. [Aþ2.9Vþ3.9Iþ3.9L]/n); (iii) a fraction of turn-

forming residues (i.e. [NþGþPþ S]/n); (iv) molecular weight; and

(v) sequence length.

Hybrid features

Generally, hybrid features tend to perform better than individual

composition because it contains multiple information from the se-

quence (Manavalan et al., 2018a, c, d). Hence, we generated hybrid

features using a linear combination of five compositions (AAC,

DPC, CTD, AAI and OF). Supplementary Table S1 shows the 20 hy-

brid features employed in this study with various possible combina-

tions covering different perspectives of sequential information.

Binary profile (BPF)

The binary encoding of amino acids converts each amino acid

into a 20-dimensional vector. Every amino acid type of 20 different

standard amino acids is deciphered with the following feature vector

0/1 (Nagpal et al., 2017; Usmani et al., 2018a, b; Vens et al., 2011).

For example, the first amino acid type A is deciphered as b(A) ¼ (1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the second amino

acid type C is deciphered as b(C) ¼ (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0) and so on. Consequently, for a given peptide se-

quence P, its N- or C-terminus with a length of k amino acids was

deciphered as follows:

BPFðkÞ ¼ ½bðp1Þ; bðp2Þ; . . . ; bðpkÞ� (4)

BPF(k) dimension is 20�k, where k values are assigned as 3, 4

and 5 at N- and C-terminus, which resulted as follows: BPFN3,

BPFN4, BPFN5, BPFC3, BPFC4 and BPFC5. In addition to this, we

also generated BPFN3-BPFC3 (BPFNC3), BPFN4-BPFC4 (BPFNC4)

and BPFN5-BPFC5 (BPFNC5).

Overlapping property (OVP) features

Based on the physicochemical properties, the standard amino

acids are divided in to ten groups (Supplementary Table S2). Due to

the possibility of two or more physicochemical properties overlap by

a specific amino acid type, there is a chance of overlapping a differ-

ent group (Govindan and Nair, 2011). To show the relationship of

varied properties, we computed a 10-bit vector comprised of 0/1 to

depict each amino acid of a given peptide. If a residue of the peptide

belongs to each property, the parameter will be set to 1, else 0 (Wei

et al., 2018c). From Supplementary Table S2, the amino acid type A

is deciphered as b(A) ¼ (0, 0, 0, 0, 1, 0, 1, 0, 1, 0), b(C) ¼ (0, 0, 0, 1,

1, 0, 1, 0, 1, 0) and so on. Consequently, for a given peptide se-

quence P, its N- or C-terminus with length of k amino acids was

deciphered as follows:

OVPðkÞ ¼ ½bðp1Þ; bðp2Þ; . . . ; bðpkÞ� (5)

OVP(k) dimension is 10�k, where k values are assigned as 3, 4

and 5 at N- and C -terminus, which resulted as follows: OVPN3,

OVPN4, OVPN5, OVPC3, OVPC4 and OVPC5. In addition to this,

we also generated OVPN3-OVPC3 (OVPNC3), OVPN4-OVPC4

(OVPNC4) and OVPN5-OVPC5 (OVPNC5).

Twenty-one-bit (TOB) features

TOB features considers seven physicochemical properties,

including charge, hydrophobicity, normalized Van der Waals vol-

ume, polarizability, polarity, secondary structure and solvent acces-

sibility (Dou et al., 2014). Supplementary Table S3 shows the

classification of amino acid residue into seven physicochemical

properties, where any two groups are not overlapped. Similar to

OVP deciphering, each residue of the peptide P is deciphered as a

21-bit vector composed of 0/1, where the position of each bit pos-

ition is set to 1 if the amino acid fits in the corresponding group, else

0 (Wei et al., 2018b, c). TOB dimensionality is 21�k, where k val-

ues are assigned as 3, 4 and 5 at N- and C-terminus, which resulted

as follows: TOBN3, TOBN4, TOBN5, TOBC3, TOBC4 and

TOBC5. In addition to this, we also generated TOBN3-TOBC3

(TOBNC3), TOBN4-TOBC4 (TOBNC4) and TOBN5-TOBC5

(TOBNC5).

2.3 Feature representation learning scheme
Recently, Wei et al. reported a novel feature learning scheme that

was successfully applied in various prediction problems, including

anticancer peptide (Wei et al., 2018c), cell penetrating peptide

(Qiang et al., 2018b) and Quorum sensing peptide predictions (Wei

et al., 2018b). In this study, we followed a similar protocol and the

steps are as follows:

Step 1. Construction of an initial feature Pool

As mentioned in the previous sections, we extracted eight feature

encoding schemes were obtained based on composition, profiles and

physicochemical properties, including AAC, AAI, BPF, CTD, DPC,

OF, OVP and TOB. Hybrid features contain 20 different feature set

(Supplementary Table S1), based on a different combination of five

feature encodings, including AAC, DPC, CTD, AAI and OF. In case

of BPF, OVP and TOB, the value of k was set in the range of 3–5.

Since the minimal sequence length of the peptide in our dataset is

five residues, we cannot use the value of k>5. Furthermore, we con-

sidered N-terminal residues, C-terminal residues and a combination

of N- and C-terminal residues, which led to 27 (¼9 feature set � 3

encodings) feature set. In total, we generated 51 feature set (FS)

based on the eight feature encodings that are listed in

Supplementary Table S4. For clarity, the jth feature set is repre-

sented as FSj (j¼1, 2, 3,. . ., 51).

Step 2. Construction of feature learning model

For each FSj (j¼1, 2, 3,. . ., 51), we developed their correspond-

ing ERT-based prediction model, represented as M(FSj), using

benchmarking dataset and 10-fold cross-validation (CV).

Acknowledging that running 10-fold CV with random partitioning

of benchmarking dataset might yield biased ML parameters, hence,

we re-run 10-fold CV for additional five times and considered me-

dian ML parameters as the optimal value. Finally, we obtained 51

prediction models and considered them as the baseline model.

Step 3. Learning a new feature vector to construct a Meta

predictor

For a given peptide P, we used each baseline model (M(FSj)) to

determine its probability value of AHTPs, whose value lies in the

range of 0-1. The predicted probability value by each model was

subsequently used as a feature. In our experiment, predicted prob-

ability value � 0.5 belongs to AHTPs, else non-AHTPs. To this end,

the sequence P is deciphered with a new feature vector (FV) by join-

ing all features produced by 51 models, which is represented as:

FVERT Pð Þ ¼ Y P; M FS1ð Þð Þ; Y P; M FS1ð Þð Þ; . . . Y P; M FS51ð Þð Þ
(6)

where FVERT (P) is the feature vector for a given peptide sequence P.

Y P; M FSj

� �� �
is the prediction probability of each model for the se-

quence P.

2.4 Construction of meta-predictor
All the features generated in step 3 of feature representation learning

scheme (Eq. 6) were subsequently provided as an input discretely to

four different ML algorithms (ERT, GB, RF and SVM) and their
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corresponding optimal meta-predictor was established using a two-

step feature selection strategy. Detailed description of feature selec-

tion strategy is mentioned below:

Feature selection

In general, biological datasets are represented as higher dimen-

sional features, which led to decrease the algorithm speed and poor

prediction performance (Liu et al., 2017). However, feature selec-

tion procedure plays an important role to overcome the above limi-

tations, which is regarded as a potent step in ML-based model

development. To enhance the feature representation capability and

determine the subset of optimal features from the original 51 fea-

tures (Eq. 6) which contribute to the appropriate classification of

AHTPs or non-AHTPs, a new two-step feature selection strategy

was utilized. Remarkably, the two-step feature selection protocol

utilized here is similar to the one employed in our recent research

(Manavalan and Lee, 2017, 2018b, c, d). In our previous protocol,

features were ranked according to the variable or feature importance

scores (FISs) using the RF algorithm in the first step, and feature sub-

sets were selected manually in the second step based on the FISs. It is

of noteworthy that the first step is same with our previous protocol.

But, a SFS was utilized in the second step to select the optimal fea-

ture subset (Basith et al., 2018), rather than employing manual fea-

ture subset selection.

A given set of features was provided as an input to the RF algo-

rithm and 10-fold CV was performed. For each round of CV, we

built 1000 trees were built utilizing a mtry range from 1 to 50. To

rank the features, average FISs from all the trees were employed.

D ¼ ½F1; F2; F3; . . . . . . ; FN�T (7)

where F1 is the first feature with the maximum FIS; F2 is the second

feature with the second maximum FIS; F3 is the third feature with

the third maximum FIS and so on; N and T are respectively total

number of features and the transpose operator.

In the next step, SFS was utilized to identify and select the opti-

mal features from a ranked feature set based on the following steps:

(i) The first feature subset contained only the first feature in the

ranked set D. The second feature subset contained the first and the

second feature in D, and so on. Lastly, we obtained N feature sub-

sets; (ii) All the N feature subsets were inputted to four different ML

algorithms (ERT, GB, RF and SVM) for the development of their

corresponding prediction model using a 10-fold CV test

(Supplementary Material). Certainly, the best performance in terms

of accuracy produced by the feature subset was regarded as the opti-

mal feature set.

2.5 Implemented machine learning algorithms for

model development
mAHTPred utilizes four different ML algorithms such as ERT, GB,

RF and SVM, which were implemented using the Scikit-Learn pack-

age (v0.18) (Abraham et al., 2014). Details and utility of these meth-

ods in this study along with the evaluation metrics are provided in

the Supplementary Material.

3 Results and discussions

3.1 Impact of various classifiers on feature learning

models
In this study, we generated 51 feature descriptors as described in

Section 2.3 using eight different feature encodings and varied the

parameters for only three feature encodings (Supplementary Table

S4). Using these feature descriptors, we examined the predictive

performance of six commonly-used ML algorithms or classifiers,

namely AB, ERT, GB, k-NN, RF and SVM, by performing 10-fold

CV. In total, we obtained 306 prediction models with six ML algo-

rithms using 51 feature descriptors, whose performances are sum-

marized in Supplementary Tables S5–S10. Apart from ERT and GB,

the remaining four ML algorithms achieved their best performances

using different feature descriptors, we observed that RF, ERT, GB,

AB and k-NN achieved their corresponding maximum accuracies of

82.0, 82.3, 80.9, 76.8 and 75.7% using CTD, H11 (a linear combin-

ation of AAC, AAI, and DPC), H8 (AAI and DPC), H11, H15

(DPC, CTD, and OF) and H6 (AAC and AAI) feature descriptors,

respectively. These results show that the performance of existing fea-

ture descriptors is greatly influenced by the utilized classifiers.

Surprisingly, the top 10 models (Supplementary Tables S5–S10) for

each classifier showed similar performances, and none of the feature

descriptors provided a significant performance improvement as we

expected. Furthermore, comparisons of the best feature descriptors

among six predictors showed that H11 and ERT classifier was

somewhat better than RF and GB, and remarkably better than AB

and k-NN in terms of accuracy (0.3–6.6%) and MCC (0.3–14%).

Based on our analysis, we conclude that the predictive model trained

with ERT classifier and H11 descriptor has relatively high discrim-

inative power to classify AHTPs from non-AHTPs.

Additionally, the effectiveness of the classifiers in predicting

AHTPs were explored. Figure 2 shows the performance of six classi-

fiers with respect to 51 feature descriptors. For each classifier, the

performances in terms of accuracy was fluctuating and we did not

observe any stable performance between feature descriptors. Among

various descriptors, TOB feature encoding with varying parameters

performed poorer than other descriptors regardless of the ML algo-

rithm, indicating that it has a less discriminative power. Overall, we

observed that the accuracy of the feature descriptors using the ERT

classifier is generally higher than other classifiers, thus demonstrat-

ing its superiority. Therefore, we selected these models for learning

feature representation. In case of other classifiers, RF, GB and SVM

seem to be competitive with each other, while AB and k-NN showed

worst performances among the compared classifiers.

3.2 Construction of meta-predictors using two-step

feature selection strategy
Since AB and k-NN showed worst performances among the six clas-

sifiers in AHTPs prediction, we excluded these methods from further

analysis and included only the remaining four methods, namely

SVM, ERT, RF and GB for the construction of meta-predictor.

Fig. 2. Performance of various classifiers in distinguishing between AHTPs

and non-AHTPs with respect to 51 feature descriptors
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In general, meta-predictor consider output from a variety of individ-

ual algorithms under the assumption that combined methods pro-

vide more accurate predictions than the single method. Here, ERT-

based predicted AHTP probability values derived from 51 learnt fea-

tures were provided as inputs to four ML algorithms and their corre-

sponding optimal meta-predictor models were developed using a

two-step feature selection protocol. Primarily, we sorted 51 learnt

features and ranked them in accordance with FIS produced by RF al-

gorithm (Fig. 3A and Supplementary Table S11). As shown, it is evi-

dent that 28th [H10 (AAI and CTD)] and 47th [H14 (AAI, DPC and

CTD)] features which have a FIS of approximately 0.76 appeared to

be essential and thus proved most potent for classification.

Subsequently, we added the features in succession from the ranked

features to the previous ones and their respective prediction models

were built. Figure 3B shows the performance in terms of accuracy

corresponding to feature number using SFS, where performance of

each method steadily increased in parallel with feature number until

15 and it remained stable thereafter. A model with the highest accur-

acy was selected as the best optimal model, whose corresponding

features were regarded as the optimal feature set. Unlike the per-

formances in feature learning, the selected best model of SVM, RF,

ERT and GB produced a similar performance of approximately

85.0% with a larger feature number of 48, 39, 47 and 45, respect-

ively. Although we expected a significant improvement from the

two-step feature selection strategy as reported in previous studies

(An et al., 2016; Dao et al., 2018; Lai et al., 2017; Qiang et al.,

2018a, b; Song et al., 2018; Zhang et al., 2018), the improvement of

the optimal four models on an average was very marginal (�0.5%)

when compared to the control (using all the features) (Fig. 3C). This

might be due in part to the optimal feature size (on an average �45

features), which is almost similar to the control (51 features).

3.3 Construction of mAHTPred
Since the performances of four meta-predictor models are similar,

we integrated these models into an ensemble model called

mAHTPred, which are as follows:

E ¼ RF8SVM8ERT8GB

where E and 8 refers to the ensemble model and fusion operator, re-

spectively. Subsequent to fusion, the average probability cut-off val-

ues corresponding to the accuracy using grid search to define the

class (as AHTPs or non-AHTPs) were optimized. Best performance

was observed with a 0.44 cut-off, henceforth we fixed it as an opti-

mal cut-off. Therefore,

S ¼ AHTPs; if E � 0:44
non� AHTPs; else

�

Although, we observed that mAHTPred performance in terms of

MCC and accuracy is similar with other methods, but it achieved

more balanced prediction results (Fig. 3D). Notably, the four meta-

predictor models achieved a very high specificity and comparatively

lower sensitivity with an average difference of �9% (i.e. Specificity-

Sensitivity), however, mAHTPred achieved 4% lesser than the above

methods.

To show the advantage of meta-predictor, we compared the

performance of mAHTPred with the best models from each of the

six different ML algorithms obtained from feature learning

(Supplementary Tables S5–S10). Figure 4 shows that MCC and ac-

curacy of mAHTPred were respectively 5.0–18.0% and 2.5–9.0%

higher than the single models. Furthermore, we compared the AUC

between mAHTPred and other methods and computed P-value

using two-tailed t-test (Hanley and McNeil, 1982). Using a P-value

threshold of 0.05, mAHTPred significantly outperformed all single

models. While this approach has been quite commonly applied for

protein structure (Bujnicki et al., 2001) and peptide function predic-

tions (Wei et al., 2018b, c), however, it is of noteworthy that this is

the first illustration where meta-predictor method has been

employed for AHTPs prediction.

3.4 Feature selection analysis
To understand the effectiveness of our features, we computed T-dis-

tributed Stochastic Neighbor Embedding (t-SNE) for positive and

Fig. 3. Feature selection and the final model construction. (A) Ranking of 51-

dimensional vector according to the feature importance score. (B) SFS curve

for discriminating AHTPs and non-AHTPs. The maximum accuracy (i.e. SFS

peak) obtained in 10-fold CV for the four different methods, namely ERT, GB,

RF and SVM is shown in arrow. (C) Comparison of the optimal model (normal

font) with respect to the control (bold) (i.e. using all the features). (D)

Comparison of mAHTPred with the individual ML-based prediction model
Fig. 4. Performance of mAHTPred and the base-line models. The

Performance comparison between mAHTPred and the base-line models in

terms of MCC, accuracy, sensitivity, specificity and AUC
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negative samples of the 51-dimensional vector and compared with

the top five individual feature descriptors which have been ranked

by RF algorithm. Figure 5A–E shows that positive and negative sam-

ples of five feature descriptors are distributed differentially in the

feature space (A–E). Conversely, we observed a clear distinction be-

tween positive and negative samples for 51-dimensional vector, al-

though few samples appear overlaid (Fig. 5F). These results

demonstrate that AHTPs and non-AHTPs present in 51-dimensional

vector could be easily differentiated when compared to the other

feature space, thus enhancing the performance. Our feature selection

protocol could be proven effective due to the following reasons: (i)

no tuning of the parameters is necessary for datasets as commonly

done by most of the existing descriptors; (ii) it can be easily scalable

for both peptide and protein feature representations; and (iii) easy

transformation from high-dimensional feature space into low-

dimensional one is possible, thus leading to the expedition of predic-

tion process and extending its applicability to genome-wide predic-

tions too.

3.5 Performance evaluation of mAHTPred with other

predictors on benchmarking dataset
To evaluate the performance of mAHTPred, our computational

protocol was compared with two exiting methods available in the

literature, namely AHTpin and PAAP. It is to be noted that AHTpin

has two prediction models (the first one is based on AAC and the se-

cond one is based on atomic composition) and we used both in our

analysis. The rationale for considering these two methods in our

analysis are as follows: (i) the authors trained and validated their

prediction models using the same benchmarking dataset as presented

in this study and (ii) these methods have been reported to demon-

strate excellent performance in AHTPs identification. As shown in

Table 1, we observed that among the compared predictors,

mAHTPred demonstrated the best performance in terms of MCC,

accuracy, sensitivity and specificity of 0.697, 84.8, 82.1 and 87.4%,

respectively. Indeed, MCC and accuracy of mAHTPred were re-

spectively 11.2–13 and 5.7–6.3% higher than existing methods,

thus demonstrating the superiority of our proposed protocol.

Furthermore, to evaluate the generalization, robustness and prac-

tical applicability of our method, we evaluated the performances of

all these methods on independent dataset.

3.6 Performance evaluation of mAHTPred with other

predictors on the independent dataset
To assess the robustness of mAHTPred, its performance using inde-

pendent dataset was compared with AHTpin only because the other

reported method’s PAAP webserver was not functional during our

manuscript preparation. As shown in Table 2, mAHTPred showed

the best performance in terms of MCC, accuracy, sensitivity, specifi-

city and AUC of 0.767, 88.3, 89.4, 87.3 and 95.1%, respectively.

Explicitly, MCC and accuracy of mAHTPred were approximately

6.3–8.3% and 12.6–16.6% higher than the existing method, thus

demonstrating the superiority of our proposed predictor.

Furthermore, we plotted ROC curve (Supplementary Fig. S1) which

provide a comprehensive performance comparison between

mAHTPred and other method. mAHTPred significantly outper-

formed the existing method using a P-value threshold of 0.01, thus

demonstrating that our model was indeed a robust one in the accur-

ate prediction of AHTPs.

The consistent performance of mAHTPred on both benchmark-

ing and independent dataset suggest that our method could accur-

ately identify AHTPs from unknown peptides. The rationale for an

improved performance of mAHTPred over the existing method are

as follows: (i) our feature learning model uses an enlarged set of in-

formative sequence-based features, including residue composition,

sequence local-order information, physicochemical properties and

residue position specific information. (ii) Our model uses the prob-

ability of predicted AHTPs from the original feature descriptors,

which significantly reduced the high-dimensional complex feature

space into a low-dimensional and more informative one; and (iii)

our final ensemble integrates four meta-predictors, which further led

to a more stable performance.

Fig. 5. t-SNE distribution of AHTPs and non-AHTPs using 51-dimensional vec-

tor and the top five individual descriptors. (A–F) are the distribution of H10,

H4, OVPN5, TOBNC4, BPFNC4 and 51-dimensional vectors, respectively

Table 1. Performance comparison of between our proposed

method and the state-of-the-art methods for predicting AHTPs

based on the benchmarking dataset

Methods MCC Acc Sn Sp AUC

mAHTPred 0.697 0.848 0.821 0.874 0.903

PAAP 0.585 0.791 0.865 0.780 NA

AHTpin_AAC 0.567 0.785 0.777 0.793 NA

AHTpin_ATC 0.573 0.785 0.783 0.787 NA

Note: First column represents the method name employed in this study.

The second, third, fourth, fifth and the sixth columns, respectively, represent

the MCC, Acc: accuracy, Sn: sensitivity, Sp: specificity and AUC. NA: not

available.

Table 2. Performance comparison of between our proposed

method and the state-of-the-art methods for predicting AHTPs

based on the independent dataset

Methods MCC ACC Sn Sp AUC P-value (AUC)

mAHTPred 0.767 0.883 0.894 0.873 0.951 —

AHTpin_ATC 0.641 0.820 0.798 0.842 0.888 0.000015

AHTpin_AAC 0.601 0.800 0.821 0.780 0.852 <0.000001

Note: First column represents the method name employed in this study.

The second, third, fourth, fifth and the sixth columns, respectively, represent

the MCC, ACC: accuracy, Sn: sensitivity, SP: specificity and AUC. The last

column represents the pairwise comparison of AUCs between mAHTPred and

the other methods using a two-tailed t-test. P< 0.01 indicates a statistically

meaning full difference between the mAHTPred and the existing method

(shown in bold).
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4 Conclusion

Hypertension is linked to several diseases including cancer, cardio-

vascular diseases, renal diseases and other complications. Naturally

derived bioactive peptides with antihypertensive activities serve as

promising alternatives to pharmaceutical drugs. Therefore, accurate

identification of AHTPs from provided sequence information seems

as one of the challenging tasks in bioinformatics. Although there

have been few computational methods to predict AHTPs, a system-

atic comprehensive assessment of informative features, the effective-

ness of ML algorithms, and their potential integration have been

lacking. In this study, we conducted a comprehensive analysis of 51

feature descriptors using six different ML algorithms for the compu-

tational identification of AHTPs. In order to develop a high effi-

ciency predictor, we implemented the following protocol: (i) we

applied a feature representation learning and extracted more in-

formative features using ERT algorithm; (ii) the predicted probabil-

ity of AHTPs were utilized as an input to SVM, RF, ERT and GB

classifiers, and their related optimal meta-predictors were built using

a two-step feature selection strategy; and (iii) a combination of these

four meta-predictors into ensemble strategies produced a more sta-

ble performance. Our analysis highlighted that mAHTPred showed

consistently better performance on both benchmarking and inde-

pendent datasets, indicating that the proposed method is more prag-

matic and idealistic for the prediction of AHTPs. Additionally, we

made our method available in the form of a free web server for the

easy accessibility and utility to a wider research community. We ex-

pect that mAHTPred will be a powerful bioinformatics tool for iden-

tifying new potential AHTPs in an effective and economical manner.

Moreover, our proposed computational framework will not only be

applicable to AHTPs but could be further extended to other peptide

sequence-based predictors (e.g. cell-penetrating peptides, antimicro-

bial peptides and antibacterial peptides), as well as other bioinfor-

matics fields (Cui et al., 2018; McDermaid et al., 2018).

Additionally, it can be expected that integrating other informative

features, such as conserved motif features, might further improve

the performance of sequence-based predictors (Ma et al., 2013;

Yang et al., 2017).
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