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Abstract

Motivation: Coiled coils are protein structural domains that mediate a plethora of biological inter-

actions, and thus their reliable annotation is crucial for studies of protein structure and function.

Results: Here, we report DeepCoil, a new neural network-based tool for the detection of coiled-coil

domains in protein sequences. In our benchmarks, DeepCoil significantly outperformed current

state-of-the-art tools, such as PCOILS and Marcoil, both in the prediction of canonical and non-

canonical coiled coils. Furthermore, in a scan of the human genome with DeepCoil, we detected

many coiled-coil domains that remained undetected by other methods. This higher sensitivity of

DeepCoil should make it a method of choice for accurate genome-wide detection of coiled-coil

domains.

Availability and implementation: DeepCoil is written in Python and utilizes the Keras machine

learning library. A web server is freely available at https://toolkit.tuebingen.mpg.de/#/tools/deepcoil

and a standalone version can be downloaded at https://github.com/labstructbioinf/DeepCoil.

Contact: s.dunin-horkawicz@cent.uw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Canonical coiled-coil domains consist of two or more a-helices in a

parallel or antiparallel orientation that are wrapped around each

other into regular left-handed supercoiled bundles. Coiled-coil

regions are present in �10% of all proteins and support a wide

range of biological functions, such as transport of molecules, provid-

ing structural rigidity and transduction of conformational changes

(Lupas and Bassler, 2017). Owing to their regularity and stability,

coiled coils are also of great interest as templates for designing new

structures (Woolfson, 2017) and systems for drug delivery

(McFarlane et al., 2009), respectively.

The stability of coiled coils stems from the regular meshing of

side chains into the so-called knobs-into-holes packing, in which a

residue from one helix (knob) packs into a cavity formed by side-

chains of the facing helix (hole) (Lupas et al., 2017). Canonical

coiled-coil structures, arranged according to the knobs-into-holes

packing, are underpinned by seven-residue sequence repeats,

referred to as heptad repeats. If the seven positions of a heptad re-

peat are labeled a–g, the residues forming the core are in positions a

and d. The core-forming positions are usually occupied by hydro-

phobic residues, whereas the remaining, solvent-exposed positions

are dominated by hydrophilic residues. Repeats longer than seven

residues are the basis for the formation of non-canonical coiled coils

(Lupas et al., 2017). All such repeats can be described as combina-

tions of three- and four-residue segments. For example, the combin-

ation of 3 þ 4 þ 4 segments leads to a 11-residue repeat (hendecad),

characteristic of slightly right-handed coiled-coil bundles. In many

natural coiled coils, transitions between different repeats types

can be seen; for instance, coiled-coil stalk of the trimeric autotrans-

porter adhesin YadA contains three consecutive repeat types:
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non-canonical 15-residue (pentadecad) and 19-residue (nonadecad)

repeats followed by a canonical 7-residue repeat (Alvarez et al.,

2010). Regardless of the repeat type and its context, the deviation

from the canonical heptad repeat causes the appearance of an add-

itional form of interhelical packing termed knobs-into-knobs. The

structural constraints imposed by this packing are different than the

ones imposed by knob-into-holes packing, but they also lead to the

periodical appearance of positions dominated by hydrophobic and

hydrophilic residues.

The regular nature of coiled coils makes them a perfect model

for studying sequence-structure relationships (Grigoryan and

Degrado, 2011; Szczepaniak et al., 2018) and opens the possibility

of developing computational methods for the prediction of their

structural features based on sequence information. These methods

fall into two main categories, namely coiled-coil oligomeric state

prediction and coiled-coil domain detection. While some oligomeric

state prediction methods such as SCORER (Armstrong et al., 2011),

Multicoil2 (Trigg et al., 2011) and RFCoil (Li et al., 2015) allow dis-

crimination between dimers and trimers, others such as LOGICOIL

(Vincent et al., 2013) can also predict tetramers and topology of

dimers (parallel versus antiparallel). The second category of predic-

tions, i.e. the detection of coiled-coil domains, can be performed

based on a single sequence or a sequence profile derived from a mul-

tiple sequence alignment. Unsurprisingly, methods that take advan-

tage of evolutionary information (profile-based methods) perform

better (for a comparison of the available methods see Gruber et al.,

2006; Li et al., 2016).

Here, we describe DeepCoil, a new neural network-based

method for the prediction of canonical and non-canonical coiled

coils based on a sequence (DeepCoil_SEQ) or a sequence profile

(DeepCoil_PSSM). By performing a rigorous benchmark using two

independent test sets, we show that both versions of DeepCoil out-

perform current state-of-the-art methods such as COILS (Lupas

et al., 1991), PCOILS (Gruber et al., 2005), Marcoil (Delorenzi and

Speed, 2002), Multicoil2 (Trigg et al., 2011) and CCHMM_PROF

(Bartoli et al., 2009). Moreover, we show that DeepCoil can be used

to detect hitherto undetected coiled-coil domains in the human

genome.

2 Materials and methods

2.1 Data preparation
The dataset (structures and the corresponding sequences with per-

residue annotations of the coiled-coil domains) was generated by

running SOCKET (cutoff 7.4 Å) (Walshaw and Woolfson, 2001) on

crystallographic structures (biological assemblies) obtained from the

PDB clustered to a maximum pairwise sequence identity of 50%

with BLASTClust (ftp://resources.rcsb.org/sequence/clusters/bc-50.

out). To increase the number of positive examples, i.e. structures

containing coiled-coil domains, from each cluster, we preferentially

selected structures with coiled-coil domains. To ensure the quality

of the dataset, it was again filtered with CD-HIT, an accurate tool

for sequence clustering, to 50% sequence identity (parameters used -

c 0.5 -n 2 -T 0) and structures with a resolution <4 Å were removed.

Sequences and their corresponding structures containing non-

standard residues, <25 amino acid residues, or >500 amino acid

residues were also removed, resulting in a final set of 21 138 entries,

of which 2125 contained at least one canonical or non-canonical

coiled-coil segment. For each entry, a position-specific scoring ma-

trix (PSSM) was generated by searching the nr90 database with PSI-

BLAST (Altschul et al., 1997) (three iterations, 1e-3 e-value cut-off).

The nr90 database was generated from the NCBI non-redundant

protein sequence database (nr) using MMseqs2 (Steinegger and

Söding, 2017), a tool for fast and sensitive clustering of large data-

sets. Since coiled coils generally contain high proportions of low-

complexity regions, we did not filter out low-complexity sequences

from nr90, which is generally a standard practice in the creation of

filtered down sets. Entries shorter than 500 residues in the final set

were randomly zero-padded from either left or right side to a con-

stant length of 500 and one-hot encoded to generate 500 � 20

matrices (500 residues � 20 amino-acid types). Information stored

in the PSSMs was zero-padded using the same procedure and

encoded by transforming the values with sigmoid function, yielding

matrices of size 500 � 20. The coiled-coil assignments (labels) were

also zero-padded and one-hot encoded to generate 500 � 2

matrices.

2.2 Definition of training and test sets
Considering the overwhelming prevalence of the negative examples

in the initial set (only �1, 5% residues were in coiled-coil segments),

we removed half of all sequences that did not contain any coiled-coil

segment. The obtained dataset was then randomly split into a train-

ing set (90% of all entries; 10 438 entries) and a test set (10% of all

entries; 1193 entries; referred to as test set no. 1 henceforth), while

maintaining an equal percentage of coiled-coil residues in each set

(Supplementary Table S1). Furthermore, it was ensured that (i) none

of the test set sequences showed more than 30% identity to any se-

quence of the training set and (ii) the pairwise sequence identity in

the test set did not exceed 30%. A second, independent test set was

derived from the test set used in a recent benchmark of coiled-coil

prediction methods (Li et al., 2016). Out of 1643 entries present in

the test set of (Li et al., 2016), we selected 518 (test set no. 2) that

show no more than 30% sequence identity to any sequence of the

test set no. 1 and the training set. It is important to note that these

entries are not similar to the training datasets of any other coiled

coil prediction method (Li et al., 2016). The sequence identities

were calculated using BLAST (Altschul et al., 1997) (parameter -

evalue 1e-2). The training set and the two test sets contained a simi-

lar proportion of parallel dimers, antiparallel dimers, trimers and

tetramers. Also, the fraction of residues participating in non-

canonical coiled-coil interactions is comparable to those in canonic-

al ones (Supplementary Table S1). All the sets used in this study are

available for download at https://lbs.cent.uw.edu.pl/deepcoil.

2.3 Neural network implementation and training
DeepCoil neural network was implemented in Keras (Chollet et al.,

2015). It consists of two, stacked convolutional layers, with 64 fil-

ters each, that scan the sequence with window sizes of 28 (first layer)

and 21 (second layer). The convolutional layers are followed by a

densely connected layer of 128 neurons and the output layer.

‘ReLU’ activation functions were used for all layers, except the out-

put layer, where ‘softmax’ was used. During the training process,

two dropout layers (probabilities 0.5 and 0.25, respectively) were

added after each of the two convolutional layers to avoid overfitting.

The training process was performed in a 5-fold cross-validation

(CV) framework: the training set was divided into five equally sized

parts, each containing approximately the same number of coiled-

coil residues. In each CV round one part served as validation set,

whereas the remaining four together as training set. The training

was performed for 100 epochs with the ‘Adam’ (Kingma and Ba,

2014) optimizer with categorical cross-entropy as the loss function

and a batch size of 64. From each CV round, a best model
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(according to the F1-score) was selected and the resulting five mod-

els were used to build the final ensemble predictor. The outlined

procedure was used to train two variants of the predictor,

DeepCoil_SEQ, utilizing only sequence data, and DeepCoil_PSSM,

utilizing sequence as well as profile data. DeepCoil_SEQ and

DeepCoil_PSSM were trained using 500 � 20 (encoded sequences)

and 500 � 40 matrices (encoded sequences and PSSMs), respective-

ly. All the code necessary to replicate the analyses presented in this

work is available at https://github.com/labstructbioinf/DeepCoil_

Paper_2018, whereas the standalone version of DeepCoil can be

downloaded from https://github.com/labstructbioinf/DeepCoil.

2.4 Identification of non-canonical coiled-coil regions
The packing in a coiled coil requires that the involved residues oc-

cupy periodically equivalent positions along the bundle interface.

This cannot be achieved with undistorted helices displaying a peri-

odicity of 3.63 residues per turn and in which the position of side-

chains drift continuously. For this reason, helices in coiled coils are

bent and wrapped around each other into supercoiled bundles. The

handedness of the supercoiling defines whether the number of resi-

dues per turn is effectively (with respect to the bundle axis) changed

to a value below 3.63 (left-handed bundles) or above 3.63 (right-

handed bundles). In left-handed canonical coiled coils, the number

of residues per turn is reduced to 3.5, allowing the position of the

side chains to repeat after two helical turns and giving rise to a

seven-residue sequence repeat (7/2 ¼ 3.5; heptad) pattern. Non-

canonical repeats are formed in an analogous way, e.g. 11/3 (hen-

decad), 15/4 (pentadecad) and 19/5 (nonadecad) sequence patterns

are brought about by the increasingly tighter right-handed twisting

of the bundle, resulting in periodicities (effective number of residues

per turn) of 3.666, 3.75 and 3.8, respectively.

To identify residues that participate in non-canonical coiled-coil

interactions, we analyzed 2404 coiled-coil-containing structures pre-

sent in the training set and test sets nos. 1 and 2 using a modified

version of the SamCC program (Dunin-Horkawicz and Lupas,

2010). The Crick parameters (Lupas and Gruber, 2005; Grigoryan

and Degrado, 2011) calculated with SamCC were used to compute

per-residue periodicity (P) for all residues in all coiled-coil regions

using the following equation:

P ¼ p

1� p � Dx0=360

where p ¼ 3.63 is the number of residues per turn in an undistorted

helix and Dx0 determines the degree of twist of the coiled-coil bun-

dle, i.e. for every residue, the angle by which the superhelix turns

around the coiled-coil axis. Residues for which P deviates > 0.1

from the canonical value of 3.5 were marked as interacting in a non-

canonical manner.

2.5 Human genome scanning
Sequences of human proteins were obtained from ftp://ftp.ncbi. nih.-

gov/genomes/Homo_sapiens/protein/protein.fa.gz and those con-

taining non-standard amino acids or containing more than 1000

residues were removed. The remaining 94 655 sequences were used

to generate PSSMs by searching the nr90 database with PSI-BLAST

(three iterations, 1e-3 e-value cutoff). Sequences and corresponding

PSSMs were used to predict coiled-coil regions using

DeepCoil_PSSM, CCHMM_PROF and PCOILS, whereas sequences

alone were used for prediction with COILS, Marcoil and

Multicoil2. All predictions were performed in per-residue mode, i.e.

each residue was assigned a score defining coiled-coil formation

propensity. Coiled-coil regions predicted only by DeepCoil_PSSM

but not by any other method were defined as sequence ranges in

which (i) all per-residue scores provided by all methods except

DeepCoil_PSSM were smaller than 0.5 and (ii) at least 28 consecu-

tive residues had DeepCoil_PSSM score > 0.9. Finally, sequences

containing such regions were filtered to 90% pairwise sequence

identity using CD-HIT (Fu et al., 2012).

3 Results and discussion

3.1 Benchmark of DeepCoil and other prediction

methods
We used 10 438 structures containing 4140 uninterrupted coiled-

coil regions to train DeepCoil, a neural network-based method for

prediction of coiled-coil regions in protein sequences. DeepCoil was

implemented in two variants: DeepCoil_SEQ that uses a single pro-

tein sequence as input, and DeepCoil_PSSM that additionally util-

ities evolutionary information obtained from a multiple sequence

alignment. To assess the performance of the two DeepCoil variants

and to compare them to the other available methods, we used two

test sets: one defined in this study and the other comprising a subset

of a test set used in a recent benchmark of coiled-coil prediction

methods (Li et al., 2016) (see Section 2). Both test sets are independ-

ent from the training set in that none of their sequences share >30%

pairwise sequence identity to the sequences of the training set. The

two DeepCoil variants, COILS, PCOILS, Multicoil2, Marcoil and

CCHMM_PROF were used to predict coiled coils in sequences of

the two test sets. To assess and quantify the accuracy of these meth-

ods in predicting the per-residue localization of coiled-coil domains

(each residue of a sequence is assigned a binary value defining

whether it participates in the formation of a coiled-coil region), the

following metrics were used: precision, sensitivity and F1-score.

Moreover, to account for partial prediction, i.e. situations where

only part of a coiled coil is correctly predicted, we used the mean

segment overlap (SOV) score, a measure that is based on segments

rather than individual residues (Zemla et al., 1999). SOV can be

seen as a more detailed measure of sensitivity—its value of 0 indi-

cates that a given coiled coil segment was missed by the predictor,

whereas the value of 1 indicates a good prediction covering most of

a coiled coil. In addition, we considered the percentage of coiled-coil

segments having a non-zero SOV, i.e. containing at least one cor-

rectly predicted residue (‘detected segments’ in Tables 1 and 2).

Since the performance assessment based on the aforementioned

scores strongly depends on the chosen thresholds, we additionally

performed receiver operating characteristic (ROC) analysis (Fig. 1)

and calculated the corresponding area under ROC curves (AUC;

Tables 1 and 2). The AUC scores were calculated in two variants:

per-residue (see above) and per-sequence that assesses the efficiency

of methods in predicting whether a given sequence contains at least

a single coiled-coil region at any position (a whole sequence is

assigned a binary value representing presence or absence of a coiled

coil).

The benchmark performed on both test sets (Figs 1 and 2 and

Tables 1 and 2) demonstrates that DeepCoil_PSSM and

DeepCoil_SEQ significantly outperform the other methods. In com-

parison to the second best method (PCOILS_28), DeepCoil_PSSM

correctly predicts at least a single residue (non-zero SOV) in nearly

twice as many true coiled-coil segments (61 versus 31% and 68 ver-

sus 39% for test sets nos. 1 and 2, respectively), while providing

considerably better precision (49 versus 35% and 66 versus 49%,

respectively). This notion is also supported by F1 (harmonic mean
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of precision and sensitivity) and AUC scores. The AUC scores were

calculated for two prediction tasks, i.e. per-residue and per-sequence

detection of coiled-coil domains. In both cases, DeepCoil performs

substantially better than any other method. The per-sequence AUC

scores obtained in this study are in good agreement (q ¼ 0.93,

P-value < 0.01) with those obtained by Li et al. (2016) (Table 2),

supporting the validity of our benchmarking procedure. It is also im-

portant to note that DeepCoil_SEQ, a variant of DeepCoil that does

not require the computationally intensive task of profile calculation,

is better than the currently available profile-based methods. Finally,

the CV analysis (see Section 2) and benchmarks on the test sets

resulted in very similar statistics, indicating that model is not over-

fitted, e.g. due to the imbalance between the training set (max. 50%

pairwise sequence identity) and the test sets (max. 30% pairwise

sequence identity).

To assess the performance of DeepCoil in the prediction of vari-

ous types of coiled-coil domains, the test sets were divided into sub-

sets, each of which contained parallel dimers, antiparallel dimers,

trimers and tetramers. In addition, a test set variant containing only

coiled-coil residues interacting in non-canonical fashion was

generated. All these sets were used to benchmark DeepCoil and the

other methods (Supplementary Figs S1 and S2 and Supplementary

Tables S2 and S3). The obtained results indicate that despite a bias

in the training set (Supplementary Table S1), which for example

contains only a tiny number of non-canonical coiled coils, DeepCoil

performs equally well in the prediction of both common and rare

coiled coil types.

3.2 Identification of coiled-coil regions in the human

genome
In the test set no. 1, we identified 57 coiled-coil segments with a

length of 14 or more residues, all of which are correctly assigned by

DeepCoil, but not by any other method. This observation prompted

us to check whether DeepCoil can be used to detect previously un-

detected coiled-coil domains in the human genome. To this end, we

scanned �100.000 human proteins using methods listed in Tables 1

and 2, and identified those that contain coiled-coil segments

detected only by DeepCoil (see Section 2 for details). We found 35

coiled-coil regions that were not predicted by the other methods

Table 1. Benchmark of DeepCoil and other coiled-coil prediction methods using a test set defined in this study (test set no.1)

Method Profile-baseda Precision Sensitivity F1 score Mean SOV Detected

segments

AUCb AUCc

DeepCoil_PSSM Yes 0.492 0.599 0.540 0.541 0.609 0.961 0.922

DeepCoil_SEQ No 0.390 0.491 0.435 0.413 0.518 0.929 0.867

PCOILS_28d Yes 0.333 0.440 0.379 0.311 0.338 0.860 0.824

PCOILS_21d Yes 0.348 0.409 0.376 0.301 0.312 0.864 0.818

Marcoil No 0.392 0.324 0.355 0.200 0.223 0.803 0.788

COILS_28d No 0.386 0.317 0.348 0.199 0.218 0.803 0.806

PCOILS_14d Yes 0.340 0.332 0.336 0.269 0.307 0.850 0.795

Multicoil2 No 0.550 0.242 0.336 0.124 0.127 0.732 0.691

COILS_21d No 0.332 0.322 0.327 0.228 0.252 0.836 0.794

CCHMM_PROF Yes 0.255 0.310 0.280 0.234 0.237 —e 0.803

COILS_14d No 0.252 0.306 0.276 0.261 0.309 0.832 0.760

Note: The methods are ordered according to the decreasing F1 score. The corresponding ROC plots are shown in Figures 1A and 2A.
aIndication whether a method is profile- or sequence-based.
bAUC scores for per-residue classification.
cAUC scores for per-sequence classification.
dSuffix refers to the size of the scanning window.
eCCHMM_PROF does not return per-residue probabilities.

Table 2. Benchmark of DeepCoil and other coiled-coil prediction methods using test set no. 2 (subset of the dataset defined in the study of

Li et al.)

Method Profile-baseda Precision Sensitivity F1 score Mean SOV Detected

segments

AUCb AUCc

DeepCoil_PSSM Yes 0.662 0.628 0.645 0.609 0.678 0.946 0.954

DeepCoil_SEQ No 0.607 0.465 0.527 0.424 0.538 0.903 0.897

PCOILS_28d Yes 0.495 0.449 0.471 0.359 0.388 0.837 0.833 (0.800*)

PCOILS_21(a) Yes 0.516 0.387 0.442 0.331 0.360 0.835 0.822 (0.800*)

COILS_28d No 0.559 0.278 0.372 0.219 0.239 0.788 0.823 (0.783*)

PCOILS_14d Yes 0.526 0.283 0.368 0.271 0.323 0.816 0.810 (0.800*)

Marcoil No 0.540 0.263 0.354 0.209 0.227 0.797 0.830 (0.808*)

COILS_21d No 0.512 0.266 0.350 0.232 0.259 0.816 0.813 (0.783*)

COILS_14d No 0.446 0.260 0.328 0.255 0.311 0.804 0.768 (0.783*)

CCHMM_PROF Yes 0.445 0.257 0.326 0.192 0.192 —e 0.848 (0.811*)

Multicoil2 No 0.610 0.170 0.265 0.098 0.101 0.695 0.706 (0.699*)

Note: The methods are ordered according to the decreasing F1 score. The corresponding ROC plots are shown in Figures 1B and 2B.

*Per-sequence AUC scores obtained from a work of Li et al.; for the description of the remaining footnotes see Table 1.
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even at a permissive cutoff of 0.5 but were predicted by DeepCoil at

a very strict cut-off of 0.9 (Supplementary Material S1). For ten of

these predicted coiled coils, there are available experimental struc-

tures. In nine of them, we indeed found a coiled-coil structure and

only one predicted coiled-coil corresponds to a regular helical re-

gion. Importantly, only four of these ten structures are present in the

training set. For the other 16 predicted coiled-coil regions, we identi-

fied homologs with known experimental structures using HHpred

(Remmert et al., 2011). Manual inspection of these structures

revealed that in 14 cases the segments predicted by DeepCoil form

coiled coils in the homologous structures and only in 2 cases they

don’t do so. Finally, for the remaining nine predictions, we could

not identify homologs of known structure, but considering the above

results, it is highly probable that most of them correspond to hither-

to uncharacterized coiled coils.

4 Conclusions

Our results show that DeepCoil outperforms the current best meth-

ods for the prediction of canonical and non-canonical coiled coils,

making it an attractive choice for genome-wide scans of previously

uncharacterized coiled-coil domains. DeepCoil is available as a

standalone method at https://github.com/labstructbioinf/DeepCoil

and as an easy-to-use web server at https://toolkit.tuebingen.mpg.

de/#/tools/deepcoil (Zimmermann et al., 2018).
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